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Abstract

The Pollution Haven Hypothesis (PHH) refers to the claim that production within polluting industries will shift to
locations with lax evironmental regulation. While straightforward, empirical analysis of the PHH has been anything
but straightforward. The existing literature is inconclusive due to two shortcomings. First, the issues of unobserved
heterogeneity and measurement error in environmental regulation are typically ignored due to the lack of a credible,
traditional instrumental variable. Second, while the recent literature has emphasized the importance of geographic
spillovers in determining the location choice of foreign investment, such spatial e¤ects have yet to be adequately
incorporated into empirical tests of the PHH. As a result, the impact of environmental regulations on trade patterns
and the location decisions of multinational enterprises remains unclear. In this paper, we circumvent the lack
of a traditional instrument within a model incorporating geographic spillovers utilizing three novel identi�cation
strategies. Using state-level panel data on U.S. inbound foreign direct investment (FDI), relative abatement costs,
and other determinants of FDI, we consistently �nd (i) evidence of environmental regulation being endogenous,
(ii) a negative impact of own environmental regulation on inbound FDI in pollution-intensive sectors, particularly
when measured by employment, and (iii) larger e¤ects of environmental regulation once endogeneity is addressed.
Neighboring environmental regulation is not found to be an important determinant of FDI.
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1 Introduction

The precise relationship between environmental policy, the location of production, and subsequent trade �ows remains

an open and hot-button issue. Of particular concern is the so-called Pollution Haven Hypothesis (PHH), whereby a

reduction in trade barriers enables polluting multinational enterprises (MNEs) to relocate (at least some) production

activities to areas with less stringent environmental regulation, thus altering both the spatial distribution of economic

activity and subsequent trade patterns through the creation of havens for polluting �rms. Kellenberg (2009, p. 242)

states that �the empirical validity of pollution haven e¤ects continues to be one of the most contentious issues in the

debate regarding international trade, foreign investment, and the environment.�Brunnermeier and Levinson (2004,

p. 6) characterize the debate as �particularly heated.�

Proper examination of this relationship is crucial for several reasons. First, the determinants of trade patterns

and the spatial distribution of MNE activity are salient given the dramatic rise in foreign direct investment (FDI)

relative to trade volumes over the past two decades. For example, global FDI in�ows rose from less than $600 billion

in 2003 to roughly $2.1 trillion in 2007 in nominal terms (UNCTAD 2010). Due to the Great Recession, global FDI

�ows fell to $1.1 trillion in nominal terms in 2009, but has since rebounded to $1.7 trillion in 2011 (OECD 2013).

Aggregate inbound FDI stocks rose from $2.1 trillion in 1990 to nearly $18 trillion in 2009 and almost $21 trillion

in 2011 in nominal terms (UNCTAD 2010; OECD 2013). Moreover, the U.S. � the focus of this analysis � is the

largest recipient of global FDI �ows, receiving $310 billion in FDI in�ows in 2008, roughly $100 billion more than

the next largest host, Belgium (OECD 2013). Even with the overall decline in FDI during the Great Recession, the

U.S. remains the largest recipient of global FDI �ows, receiving $234 billion in 2011. China was the second largest

host in 2011, receiving $229 billion (OECD 2013).

Second, if countries are able to attract (or deter) FDI by manipulating environmental regulations, then interna-

tional coordination may be necessary to avoid Pareto-ine¢ cient levels of regulation due to transboundary pollution

or other spillovers (e.g., Levinson 1997, 2003). Copeland (2008, p. 60) states that if the PHH is true, then the

�exodus�of pollution-intensive �rms to countries with lax regulation �could create a political backlash�in stringent

countries due to �concerns about losses of jobs and investment.�In fact, this may even initiate a �race to the bottom�

in environmental standards. Moreover, as further discussed in Copeland (2008, p. 60), the PHH may also a¤ect the

stock of natural capital and �exacerbate the e¤ects of pollution on health and mortality�due to the lower income of

countries with lax regulation. Third, if countries are able to in�uence the location of MNE activity and ultimately

trade patterns through environmental regulation, then bringing environmental policies under the purview of trade

agreements may be necessary to realize the intended e¤ects of such agreements (Ederington and Minier 2003; Bagh-

dadi et al. 2013). Fourth, and related to this prior point, existing institutional structures such as the World Trade

Organization (WTO) may be used to impede countries from choosing their desired environmental policies if such

policies can be shown to impact trade �ows between members (e.g., Eckersley 2004). Finally, a detailed analysis of

the PHH has broader implications for the general study of capital competition (e.g., Wilson 1999).

Despite the high stakes, the existing literature has been unable to convincingly assess the empirical validity of

the PHH for three reasons. First, environmental regulation is complex and multidimensional, making any empirical

measure fraught with measurement error. Shadbegian and Wolverton (2010, p. 13) state: �Measuring the level of
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environmental stringency in any meaningful way is quite di¢ cult, whether at the national, state, or local level.�The

di¢ culty arises from the fact that di¤erent regulations typically cover di¤erent pollutants, regulations may exist at

multiple levels (e.g., federal and local), and monitoring and enforcement are imperfect. Along these lines, Levinson

(2008, p. 1) states: �The problem is not merely one of collecting the appropriate data; merely conceiving of data that

would represent [environmental stringency] is di¢ cult.�Xing and Kolstad (2002, p. 3) refer to the measurement of

environmental regulation as �no easy task�due to its �complexity.�Moreover, depending on the empirical measure

employed, the measurement error need not be classical and any bias may be accentuated by the reliance on �xed

e¤ects methods in the recent literature.

Second, even if an accurate measure of environmental regulation is available, it may be endogenous for other

reasons (e.g., Levinson 2008; Levinson and Taylor 2008). For example, it may be correlated with unobserved

determinants of location choice such as tax breaks or other �rm-speci�c treatments, the provision of other public

goods in addition to environmental quality (e.g., infrastructure), agglomeration, the stringency of other regulations

such as occupational safety standards, corruption, local political activism, political institutions, etc. (see Arauzo-

Carod et al. (2010) for a review). In addition, reverse causation may be an issue. For instance, anticipation of low

FDI in�ows may drive reductions in environmental stringency. Or, an increase in FDI may increase the e¢ cacy of

industrial lobby groups (e.g., Cole et al. 2006; Cole and Fredriksson 2009). Conversely, as Keller and Levinson (2002,

p. 695) state: �Those states that do not attract a lot of polluting manufacturing probably do not enact stringent

regulations �there simply is less need to worry about industrial pollution in states with less industrial activity, and

those states that do attract polluting manufacturing may respond by enacting more stringent regulation.�Levinson

(2010, p. 63) summarizes these arguments succinctly: �International trade has environmental consequences, and

environmental policy can have international trade consequences.�

Third, existing studies of the PHH inadequately incorporate geographic spillovers. Recent theoretical models

emphasize that the scale of MNE activity in one location depends not just on attributes of that location, but also

on the attributes of other potential hosts. Moreover, the predicted direction of the cross-e¤ects is not always in the

opposite direction of the own-e¤ects, a restriction that is implicit in discrete choice models (e.g., Yeaple 2003; Ekholm

et al. 2003; Grossman et al. 2003; Baltagi et al. 2007, 2008; Blonigen et al. 2007, 2008; Arauzo-Carod et al. 2010).

Failure to account for geographic spillovers in empirical analyses of the PHH may lead to biased inference. This may

be particularly problematic in the context of empirical analyses of inbound U.S. FDI since state-level environmental

regulations have been shown to be strongly related to the regulatory stringency of neighboring states (Fredriksson

and Millimet 2002).

While these shortcomings, particularly the �rst and second, are well known, convincing solutions have proven

elusive since standard �xed e¤ects models will not overcome these identi�cation problems and valid exclusion restric-

tions have proved elusive. In this paper, we simultaneously address these three shortcomings while examining the

spatial distribution of inbound U.S. manufacturing FDI across the 48 contiguous states over the period 1977-1994.

Geographic spillovers are incorporated in an unrestricted manner by including a spatially lagged counterpart for

each state-level attribute. Measurement error, unobserved heterogeneity, and reverse causation concerns are then

addressed utilizing three novel identi�cation strategies designed to circumvent the need to identify valid exclusion
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restrictions in the usual sense.

The �rst and second estimation approaches are similar in that each is based on an identi�cation strategy utilizing

higher moments of the data. The Klein and Vella (2009, 2010) and Lewbel (2012) approaches exploit conditional

second moments to circumvent the need for traditional instruments. In the Lewbel (2012) approach, identi�cation

is achieved through the presence of covariates related to the conditional variance of the �rst-stage errors, but not

the conditional covariance between �rst- and second-stage errors. Identi�cation is achieved in the Klein and Vella

(2009, 2010) approach by assuming that while the errors are heteroskedastic, the conditional correlation between the

errors is constant. In light of the similarity between these two approaches, as well as the nonstandard approach to

identi�cation, we undertake a third identi�cation approach that is a bit more transparent as a robustness exercise.

The third method generates instruments utilizing a di¤erencing strategy based on Pitt and Rosenzweig (1990). The

key identifying assumptions are that the marginal e¤ects of certain covariates are identical across pollution-intensive

and non-pollution-intensive sectors, and these covariates are signi�cantly related to environmental stringency.

The results are striking. We consistently �nd (i) evidence of environmental regulation being endogenous when

examining the behavior of pollution-intensive industries, (ii) a negative impact of own environmental stringency

on inbound FDI in pollution-intensive sectors, particularly when measured by employment, and (iii) signi�cantly

larger e¤ects (in absolute value) of environmental regulation once endogeneity is addressed. Moreover, neighboring

environmental regulation is not an important determinant of FDI (although the estimates are relatively imprecise).

However, spillovers from other attributes are present (although not the focus of this study), indicating the importance

of incorporating spatial e¤ects more generally in models of FDI determination. Thus, while the impact is not

homogeneous, environmental regulation is a signi�cant determinant of location choice by some MNEs at least at the

regional level.

The remainder of the paper is organized as follows. Section 2 presents a brief literature review, concentrating

on prior studies attempting to address endogeneity concerns. Section 3 describes the empirical methods, Section 4

discusses the data, and Section 5 presents the results. Finally, Section 6 concludes.

2 Literature Review

The literature assessing the empirical validity of the PHH has yet to reach a consensus due to the numerous complex-

ities confronted by researchers.1 Levinson (2008) e¤ectively separates the literature into �rst and second generation

studies. The �rst generation encompasses cross-sectional studies treating environmental regulation as exogenous.

These studies typically found no statistically meaningful evidence in support of the PHH (and sometimes found

counter-intuitive e¤ects). The second generation predominantly encompasses panel data studies designed to remove

unobserved heterogeneity invariant along some dimension (most often time, but occasionally across sectors di¤eren-

tiated by pollution intensity). Panel approaches, however, require environmental regulation to be strictly exogenous

conditional on the (typically time invariant) unobserved heterogeneity (and other covariates). A few studies within

this second generation have attempted to relax this assumption and utilize traditional instrumental variable (IV)

1See Ja¤e et al. (1995), Copeland and Taylor (2004), and Brunnermeier and Levinson (2004) for reviews of the literature.
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approaches. These second generation studies typically �nd economically and statistically signi�cant evidence in

support of the PHH.

As mentioned, it is unlikely that existing panel studies are su¢ cient to yield unbiased estimates of the impact

of environmental regulation on the location of economic activity and/or subsequent trade patterns. The omission of

third-country e¤ects, the omission of relevant variables that vary over time or di¤erentially a¤ect pollution-intensive

and non-pollution-intensive sectors such as tax breaks and agglomeration e¤ects, measurement error in proxies for

environmental regulation, and dependence between current environmental regulation and past (or current) shocks to

economic activity point strongly to violations of strict exogeneity (e.g., Henderson 1997; List et al. 2003; Cole and

Fredriksson 2009).

Recognizing this, several studies test the PHH utilizing traditional exclusion restrictions. These studies are

summarized in Table 1. At the risk of over-simplifying the literature, the instruments used generally fall within three

categories. The �rst set includes lagged environmental regulation or lags of other covariates (Cole and Elliott 2005;

Jug and Mirza 2005; Ederington and Minier 2003). For such variables to represent valid instruments, the error term

should not be serially correlated, which may be particularly unrealistic if measurement error is serially correlated or

agglomeration e¤ects are not accurately modeled. Both are distinct possibilities. Serial correlation in measurement

error is likely due to the use of the same imperfect proxy over time. Agglomeration e¤ects are not likely to be

modeled perfectly given their complex nature due to multiple origins (e.g., domestic versus foreign and within and

across industries) and non-linearities (Arauzo-Carod et al. 2010).

The second set includes instruments based on the geographic dispersion of industries (Levinson and Taylor 2008;

Cole et al. 2005; Ederington et al. 2004; List et al. 2003). Speci�cally, the level of pollution emitted by other

industries in the locations where a given industry tends to locate is used to generate instruments. For such variables

to be valid instruments, the geographic distribution of industries must be exogenous. However, as with the �rst

set of instruments, these instruments are likely to be correlated with the error term if agglomeration e¤ects are not

accurately modeled. In fact, the instruments fail the Sargan overidenti�cation test at the p < 0:01 con�dence level

in Levinson and Taylor (2008). Similar instruments do fare better in Cole et al. (2005).

The �nal set of instruments include a variety of contemporaneous, location-speci�c attributes that are hypothe-

sized to impact environmental regulation but not directly impact �rm location decisions or trade patterns. Examples

range from economic variables such as attributes of the agricultural sector, per capita income, and public expendi-

tures to demographic variables such as the Human Development Index, urbanization, infant mortality, population

density, and schooling to political economy variables such as corruption, and proxies for industry lobby bargaining

power. Kellenberg (2009) also utilizes some spatially lagged covariates as exclusion restrictions. Needless to say, one

can plausibly argue in each case that such variables may also directly impact �rm location or trade patterns, or be

correlated with the error term due to non-classical measurement error or omitted geographic spillovers, agglomeration

e¤ects, or other sources of heterogeneity. Brunnermeier and Levinson (2004, p. 37), reviewing the literature at the

time, state that �as is always true of instrumental variable analyses, the instruments are open to critique.�That

said, Kellenberg (2009) is noteworthy as the instruments fare well in terms of the usual speci�cation tests.

Despite the suspect validity of the identi�cation strategies employed in these prior studies, rigorous speci�cation
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testing is noticeably absent in many. A few discuss the strength of the �rst-stage relationship and/or conduct

Hausman-type tests for endogeneity, but most neglect to test or even discuss why the proposed instruments should

be exogenous or excluded from the second-stage equation for location choice or trade patterns; Levinson and Taylor

(2008) and Kellenberg (2009) are notable exceptions. Nonetheless, these studies nearly universally obtain a more

detrimental e¤ect of environmental regulation on the behavior of pollution-intensive sectors once endogeneity is

(attempted to be) addressed. Given this background, we now turn to our analysis.

3 Empirical Analysis

3.1 Structural Model

To �x ideas, a typical model used to assess determinants of (continuous) measures of FDI stocks or �ows with panel

data is a standard two-way �xed e¤ects speci�cation:

ln(FDIit) = �i + �t +
P

k �kxikt + 'it; (1)

where FDI is some measure of MNE activity in location i and time t, xk, k = 1; :::;K, are time-varying observable

attributes of location i, �i and �t are location and period �xed e¤ects, respectively, and 'it is the error term. A

proxy for environmental regulation is one element in x. Strict exogeneity of x is required for consistency.

As discussed previously, the model in (1) is potentially �awed due to the exclusion of geographic spillovers. The

omission of spillovers is one reason why the strict exogeneity assumption may fail in practice. Thus, we begin by

augmenting (1) to include spatially lagged counterparts for each covariate:

ln(FDIit) = �i + �t +
P

k

h
�kxikt + �k

P
j2
 !ijtxjkt

i
+ "it; (2)

where "it � 'it�
P

k �k
P

j2
 !ijtxjkt, !ijt is the weight given by location i to neighbor j in period t, 
 includes the

set of neighbors of location i, and "it is the new error term.2 Even if all elements in the regressors in the augmented

model are strictly exogenous, estimation of (2) is nonstandard given the introduction of the weights, !.

To proceed, the weights must be chosen a priori and this choice is necessarily ad hoc.3 Because the true weights

are unknown, we utilize four straightforward weighting schemes. First, we assign a weight of zero to non-contiguous
2One might consider augmenting the model in (2) with spatially lagged FDI (i.e., a spatial lag model). We pursue the current

speci�cation for two reasons. First, as discussed in Blume et al. (2010), identi�cation becomes extremely di¢ cult in models with spatially

lagged covariates and dependent variable. Since our interest is in the e¤ects of own and neighboring environmental regulation, we omit

the spatially lagged FDI, implying our model should be viewed as a reduced form in this sense. Second, the theoretical FDI literature

discussed previously implies speci�cations of the form in (2). Similarly, one might consider augmenting (2) with (temporally) lagged own

FDI as a regressor (i.e., a dynamic panel data model) to capture agglomeration e¤ects. While this is worth exploring in future work, we

quickly ran into identi�cation problems in the current data (even ignoring issues with the unequal spacing of the data discussed in the next

section; see, e.g., McKenzie (2001)). Thus, we interpret the model as having omitted (a perhaps inadequate proxy for) agglomeration,

contributing to the potential endogeneity of own and neighboring regulation.
3To explore the consequences of using incorrect weights, consider a simpli�ed, cross-sectional model with a single covariate, x. Assume

the �true�model is given by

yi = �+ �xi + �
P
j2
 !

�
ijxj + "i;

where x is the covariate and !�ij is the �true�weight placed on state j by state i. If the weights are mis-speci�ed such that the assumed
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neighbors and equal weights to all contiguous neighbors. In other words,
P

j !ijtxjkt simpli�es to the mean of xjkt in

contiguous neighbors. Second, following Fredriksson and Millimet (2002), we adopt two regional breakdowns for the

48 mainland U.S. states (see Appendix A). The use of regional weights is also motivated by the evidence in Glick and

Woodward (1987) that foreign-owned a¢ liates in manufacturing tend to serve regional markets. For each regional

breakdown,
P

j !ijtxjkt simpli�es to the mean of xjkt computed over all neighbors within the same region (again,

giving each regional neighbor equal weight). The two regional classi�cations come from the U.S. Bureau of Economic

Analysis (BEA) and Crone (1998/1999). The BEA regional classi�cation system was introduced in the 1950s and

has never been amended. While this classi�cation system is widely used by economists in studying regional economic

activity, Crone (1998/1999) devised an alternative regional breakdown for U.S. states using cluster analysis to group

states according to similarities in economic activity. We refer to these weighting schemes as BEA and Crone regional

weights, respectively. Finally, we utilize a weighting scheme based on (inverse) distances between U.S. states. In

this case,
P

j !ijtxjkt reduces to a weighted average of xjkt computed over all other states; the weight attached by

location i to neighbor j is (1=dij)=
P

j 6=i(1=dij), where dij denotes distance between i and j.

Even with speci�cation of the weights, estimation of (2) is complicated by the fact that own and neighboring

environmental regulation are likely correlated with the error term, ", due to measurement error, spatial error corre-

lation, unobserved heterogeneity, and/or reverse causation. As such, traditional �xed e¤ects estimates are not likely

to yield consistent estimates of � and �. Before turning to our �rst two approaches to identi�cation, we re-write (2)

more compactly, as well as introduce the �rst-stage equations, in order to make explicit the system of equations we

are estimating. The system of equations is given by

ln(FDIit) = Xit�+ � ln(Rit) + � ln(
P

j2
 !ijtRjt) + "it (3)

ln(Rit) = Xit�R + �1it (4)

ln(
P

j2
 !ijtRjt) = Xit�SR + �2it; (5)

where R is the proxy for environmental regulation, X includes all the other regressors from x in (2) except R (i.e.,

including the spatial terms and the state and time �xed e¤ects), and �1 and �2 are the error terms in the �rst-stage

equations assumed to be correlated with ".4 All errors are assumed to be mean zero. Note, the model is not identi�ed

in the traditional sense since there are no exclusion restrictions in (4) and (5).

weight is

!ij = !�ij +  ij ;

then substitution yields

yi = �+ �xi + �
P
j2
 !ijxj +

h
"i � �

P
j2
  ijxj

i
:

If  is mean zero and independent of x, then this is analogous to a standard random coe¢ cients model (Swamy and Tavlas 2003). In

this case,  ij 6= 0 generates heteroskedasticity which is actually exploited for identi�cation by the estimators used in this paper. If  

and x are not indepdendent, then OLS estimates of � will be biased in a nontrivial way in addition to the problem of heteroskedasticity.

However, as in the usual case of measurement error, consistent estimation may still be possible via IV or other methods such as those

explored here.
4The log-linear speci�cation of (3) follows from a theoretical gravity model for FDI (e.g., Kleinert and Toubal 2010; Schmeiser 2013).
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3.2 Lewbel (2012) Approach

The Lewbel (2012) approach exploits the conditional second moments of the endogenous variables to circumvent

endogeneity. This approach complements earlier work by Vella and Verbeek (1997), Lewbel (1997), Rigobon (2003),

and Ebbes et al. (2009) and generates instruments that are valid under certain assumptions. Speci�cally, Lewbel

(2012) shows that if the �rst-stage errors, �1 and �2, are heteroskedastic and at least a subset of the elements of X are

correlated with the variances of these errors but not with the covariances between these errors and the second-stage

error, ", then the model is identi�ed.

Formally, the Lewbel (2012) approach entails choosing zr � X such that

E[z
0
r�
2
r] 6= 0 (6)

E[z
0
r"�r] = 0 (7)

for r = 1; 2. If these assumptions are satis�ed, then ezr � (zr � z)�r, r = 1; 2, are valid instruments. For instance, if
the errors in (3) �(5) contain a common (homoskedastic) factor, along with heteroskedastic idiosyncratic components

(where the heteroskedasticity of �r depends on zr), then these assumptions will be satis�ed. In other words, if we

can re-write the errors in (3) �(5) as

"it � �it + e"it
�rit � $r�it + e�rit; r = 1; 2;

where � is homoskedastic, e�r, r = 1; 2, is heteroskedastic (with variance depending on zr), $r are factor load-

ings, and e�r, r = 1; 2, and e" are independent of each other and �, then (6) and (7) are satis�ed. Note, e" may
be either homoskedastic or heteroskedastic. This data-generating process (DGP) is plausible if � represents ho-

moskedastic measurement error in environmental stringency, or a composite index of unobserved variables impacting

both environmental stringency and FDI (such as those discussed previously) is drawn from an identical distribution

across observations. However, the idiosyncratic shocks to environmental stringency may be drawn from di¤erent

distributions.5

In the analysis, we use the Koenker (1981) version of the Breusch-Pagan test for heteroskedasticity to identify

variables signi�cantly related to the �rst-stage error variances. We include a subset of x in z1; the spatially-lagged

5Note, measurement error in the weights does not, in general, satisfy these assumptions. In the simpli�ed model given in footnote 3,

�i is equal to �
P
j2
  ijxj which is heteroskedastic with variance depending on x. Thus, setting z = x would not satisfy the restricition

in (7). However, if we extend this simpli�ed model to allow for two covariates, as in

yi = �+
P2
k=1 �kxki +

P2
k=1 �k

P
j2
 !

�
ijxkj + "i;

then substitution yields

yi = �+
P2
k=1 �kxki +

P2
k=1 �k

P
j2
 !ijxkj +

h
"i �

P2
k=1 �k

P
j2
  ijxkj

i
:

In this case, if, say, �1 = 0, then x1 may serve the role of z in order to derive an instrument for, say, x2, if it is related to the variance of

the idiosyncratic portion of the �rst-stage error and uncorrelated with the covariance between the �rst- and second-stage errors due to

the term �2
P
j2
  ijx2j . Moreover, homoskedastic measurement error in the covariates themselves (as opposed to measurement error

in the weights) would also satisfy (6) and (7) as long as the variances of the idiosyncratic errors depend on x.
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counterparts of these variables are included in z2 (discussed below). The instruments, ezr, are then created by replacing
�r with its estimate obtained from (consistent) Ordinary Least Squares (OLS) estimates of the �rst-stage. As z1 and

z2 are vectors in our implementation, the models are over-identi�ed. Thus, the usual battery of speci�cation tests

in models estimated via instrumental variables are available. Finally, note, after construction of the instruments,

estimation is carried out using Generalized Method of Moments (GMM). See Appendix B for further estimation

details.

3.3 Klein & Vella (2009) Approach

The next identi�cation strategy is based on a parametric implementation of the estimator proposed in Klein and

Vella (2009, 2010) and expanded upon in Farré et al. (2013). To proceed, recall that we are still working with the

same system of equations given in (3) �(5). However, rather than invoking the assumptions given in (6) and (7)

concerning the errors, the following assumptions are made:

"it = S"(zit)"
�
it (8)

�rit = Sr(zit)�
�
rit; r = 1; 2 (9)

S"(zit)=Sr(zit); r = 1; 2; varies across i (10)

E["
�
it�

�
rit] = �r; r = 1; 2 (11)

where "�it and �
�
rit are homoskedastic errors and z � X. Thus, at least some of the errors are required to be

heteroskedastic in such a way that the ratio S"(zit)=Sr(zit), r = 1; 2; varies across observations. However, the

conditional correlation, �r, r = 1; 2, between the underlying homoskedastic portion of the errors must be �xed. Note,

while the three heteroskedasticity terms �S"(zit) and Sr(zit), r = 1; 2 �are written as a function of the same set of

covariates, z, this need not be the case. There are no restrictions on which variables may enter each of these terms.

Klein and Vella (2010) give some examples of DGPs satisfying these assumptions. One such case arises if there

exists a common factor, as in the Lewbel (2012) approach. However, here the common factor enters multiplicatively

and may itself be heteroskedastic. Speci�cally, if we can write the errors as

"it = S"(zit)�ite"it
�rit = Sr(zit)�it

e�rit; r = 1; 2
where e" and e�r are mean-zero, independent of X and �, and have a constant correlation given by �r, then (8) �(11)

are satis�ed.

Referring back to (11), it is worth considering what this identi�cation condition implies. One possible interpreta-

tion includes viewing "�it and �
�
rit, r = 1; 2, as correlated measures of agglomeration (see footnote 2). Agglomeration

may a¤ect environmental stringency due to the scale e¤ect of pollution-generating activity. However, the impact may

depend on state-level attributes, zit. For instance, states with attributes that are not conducive to attracting FDI

may limit the impact of agglomeration on environmental stringency. Similarly, own agglomeration may impact FDI

through economies of scale, but the e¤ect may depend on state-level attributes as well. Neighboring agglomeration
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may adversely impact FDI by improving the desirability of neighboring locations. However, once we condition on

these state-level attributes, the return to own and neighboring agglomeration, �1 and �2, respectively, are constant.

While not testable, this seems plausible.

Continuing, we parameterize S"(zit) and Sr(zit) as

S"(zit) = exp

�
z"it�"
2

�
(12)

Sr(zit) = exp

�
zrit�r
2

�
; r = 1; 2 (13)

where zr includes additional covariates beyond those employed in the Lewbel (2012) approach.6 Using the Koenker

(1981) version of the Breusch-Pagan test, we identify an additional vector of covariates likely to be related to the

structural error variance in the FDI equations, z".

With this setup, (3) may be re-written as

ln(FDIit) = Xit�+ � ln(Rit) + � ln(
P

j2
 !ijtRjt) + �1
S"(zit)

S1(zit)
�1it + �2

S"(zit)

S2(zit)
�2it +

ee"it (14)

where �1
S"(zit)
S1(zit)

�1it and �2
S"(zit)
S2(zit)

�2it are control functions and ee"it is a well-behaved error term. Given the functional
form assumptions in (12) and (13), (14) can be estimated by nonlinear least squares (NLS) in a number of ways.

Standard errors are obtained via bootstrap. See Appendix B for further estimation details.

4 Data

All of the data except interstate distance, dij , come directly from Keller and Levinson (2002); thus, we provide only

limited details.7 Summary statistics are provided in Appendix A. The data cover the 48 contiguous U.S. states from

1977 � 1994, omitting 1987 due to missing data on abatement costs. The measures of FDI include the value of

gross property, plant, and equipment (PP&E) of foreign-owned a¢ liates for all manufacturers, as well as just for the

chemical sector (1992 �1994 omitted), and employment at foreign-owned a¢ liates for all manufacturers, as well as

just for the chemical sector (1992 �1994 omitted).8 ;9 The chemical sector (SIC 28) is analyzed in isolation given

that FDI in these industries is most likely to be responsive to spatial variation in environmental stringency given the

pollution-intensive nature of production (Ederington et al. 2005).

Consistent with �gures reported elsewhere, inbound FDI stocks increased tremendously over the sample period.

Aggregate manufacturing PP&E increased over tenfold from 1977 to 1994, from roughly $20 million to nearly $300

million (in 1982 US$). A similar increase occurred in the chemical sector from 1977 to 1991, from roughly $10 million

6The Lewbel (2012) approach does not require one to identify all covariates satisfying (6) and (7). All we require is a su¢ cient number

of (valid) instruments to identify the model. In fact, too many instruments may have undersirable e¤ects particularly if some instruments

are weak (Wooldridge 2002). However, the Klein and Vella (2009) approach requires a consistent estimate of Sr(zit), r = 1; 2.
7The data on interstate distances are from Wolf (2000) and have been used in Millimet and Osang (2007) and elsewhere.
8For each dependent variable, the sample represents an unbalanced panel where the number of observations for total manufacturing

PP&E (employment) are 811 (814); for chemical sector PP&E (employment), the sample size is 563 (621).
9Following Keller and Levinson (2002), Cole and Elliott (2005), Kellenberg (2009), and others, we analyze FDI stocks. The inclusion

of �xed e¤ects in the model, however, implies we are utilizing the temporal variation in stocks to identify the parameters.
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to $90 million. Employment grew at a slower, but still substantial, rate, increasing from roughly 675,000 to almost

2.3 million in aggregate manufacturing; 190,000 to 500,000 in the chemical sector.

In the theoretical model of inbound FDI presented in Blonigen et al. (2008), determinants of FDI include trade

costs, cost and demand shifters, and parent country attributes. Here, total road mileage and state e¤ects capture time-

varying and time invariant (e.g., distance to ports) di¤erences in trade costs across states. Population and market

proximity (a distance-weighted average of all other states� gross state products) re�ect market size and demand

shocks. Relative abatement costs (RAC), unemployment rate, unionization rate, average production-worker wages

across the state, land prices, energy prices, and tax e¤ort (actual tax revenues divided by those that would be collected

by a model tax code, as calculated by the Advisory Commission on Intergovernmental Relations) capture variation

in production costs and resource availability.10 RAC is the proxy for environmental regulation. This measure is

attributable to Levinson (2001) and represents the ratio of actual state-level abatement costs to predicted state-level

abatement costs, where the predicted value is based on the industrial composition of the state. Consequently, higher

values indicate relatively more stringent environmental protection. The index varies over time and across states.

Finally, since FDI is aggregated across all countries outside the U.S., time e¤ects capture parent country attributes.

All variables are expressed in logarithmic form with the exception of the unemployment and unionization rates. In

addition, we form the spatially lagged variables �rst and then take logs, again with the exception of spatially lagged

unemployment and unionization rates.

Prior to continuing, it is important to note that the Spearman rank correlation between RAC and total manu-

facturing FDI as measured by PP&E is positive (� = 0:11, p = 0:003); the correlation is even stronger when only

considering the chemical sector (� = 0:13; p = 0:001). Neither correlation is statistically signi�cant using employ-

ment to measure FDI. Moreover, as shown in Keller and Levinson (2002), total manufacturing FDI as measured by

employment (and PP&E) increased by more over the sample period in the 20 states experiencing the largest increase

in RAC than in the 20 states experiencing the largest decline in RAC. In addition, Table A1 in the Appendix shows

that mean total manufacturing FDI as measured by PP&E is higher when RAC exceeds one (indicating more strin-

gent environmental regulation), as well as for the chemical and non-chemical sectors considered separately. However,

mean total manufacturing employment, as well as in the chemical and non-chemical sectors, is lower in states with

RAC greater than one. In any event, �nding statistical evidence consistent with the PHH, particularly using data

on PP&E, would appear to require the existence of signi�cant selection (on either observed or unobserved variables)

into more stringent RAC.

10Although ignored by much of the prior literature, one might be concerned about whether other covariates besides own and neighboring

environmental regulation are not strictly exogenous. For example, Eskeland and Harrison (2003) treat some covariates as endogenous in

a model of FDI shares by industry (but treat pollution abatement costs as strictly exogenous). Unfortunately, this is beyond the scope

of the current study.
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5 Results

5.1 Lewbel (2012) Approach

The baseline results are presented in Tables 2 and 3. Table 2 contains the results for the chemical sector only;

Table 3 assesses total manufacturing. Panel A in each table measures FDI using PP&E; Panel B measures FDI

using employment. Five speci�cations are estimated in each panel. Speci�cation 1 omits all geographic spillovers.

Speci�cations 2-5 include such spillovers, where Speci�cation 2 uses the contiguous weighting scheme, Speci�cations

3 and 4 use the BEA and Crone regional weighting schemes, respectively, and Speci�cation 5 uses the distance-

based weighting scheme. The estimates obtained using the Lewbel (2012) approach are given under the column

labelled �IV�. OLS estimates are presented for comparison, where the Speci�cation 1 results are identical to Keller

and Levinson (2002).11

To generate the instruments, we include three variables in z1 and z2. Speci�cally, z1 includes land prices, market

proximity, and total road mileage; z2 includes the spatial lags of these variables.12 It is interesting to note �with

further examination �that land prices and total road mileage are associated with a lower variance of �1; neighboring

land prices and total road mileage (market proximity) are associated with a lower (higher) variance of �2. In Keller

and Levinson (2002), land prices and total road mileage are negatively associated with FDI in�ows, whereas market

proximity is positively related. Thus, the pattern of heteroskedasticity is consistent with the notion that states with

less favorable attributes for attracting FDI minimize the volatility in another attribute, environmental stringency,

that may adversely impact inbound FDI.

Turning to the results, we obtain �ve salient �ndings. First, the OLS estimates are negative and statistically

signi�cant in the vast majority of cases. The main exception is when examining FDI as measured by employment in

total manufacturing (Panel B, Table 3). In addition, the OLS estimates are fairly stable across the �ve speci�cations;

neighboring environmental regulation is statistically signi�cant only in Speci�cations 2 and 3 when assessing em-

ployment in the chemical sector (Panel B, Table 2). Inclusion of the spatial e¤ects has little e¤ect on the estimated

marginal e¤ect of own environmental regulation.

Second, the Lewbel (2012) identi�cation strategy works well as determined by the usual IV speci�cation tests

when geographic spillovers are omitted (Speci�cation 1) as well as in the majority of cases when spatial e¤ects are

11We only display the point estimates for own and neighboring environmental regulation to conserve space. Full estimation results

are available upon request. However, Tables A2 and A3 in Appendix A report the full set of coe¢ cient estimates on the covariates for

Speci�cations 1, 3, and 5 for the chemical sector. Heteroskedasticity-robust standard errors are used (Baum et al. 2007).
12According to the Koenker (1981) version of the Breusch-Pagan test for heteroskedasticity of the �rst-stage error for own environmental

regulation, land values, market promixity, and total road mileage have test statistics of 41.44, 42.69, and 11.92, respectively, when using

PP&E for aggregate manufacturing. When using PP&E for the chemical sector alone, the test statistics are 7.43, 15.23, and 17.44. The

test statistic is distributed �21 and we reject the null of homoskedasticity in each case at the p < 0:01 level. The tests of heteroskedasticity

of the �rst-stage error for spatially lagged environmental regulation yield test statistics of 47.91, 46.10, and 10.70 for neighboring land

values, neighboring market promixity, and neighboring total road mileage, respectively, when using distance-based weights and PP&E

for aggregate manufacturing. When using PP&E for the chemical sector alone and distance-based weights, the test statistics are 7.85,

14.45, and 15.96. The test statistic is again distributed �21 and we reject the null of homoskedasticity in each case at the p < 0:01 level.

See also Table 4. Additional results �using other weighting schemes or for other covariates �are available upon request.
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included. Speci�cally, we reject the null that the model is underidenti�ed at the p < 0:01 con�dence level in every case

using Kleibergen-Paap (2006) rk statistic, and the Kleibergen-Paap F-statistic is reasonably large with the possible

exception of Speci�cation 4 when examining the chemical sector. In addition, we fail to reject the validity of the

instruments using Hansen�s J-test in all but four cases at the p < 0:10 con�dence level for Speci�cations 1, 3, 4, and

5. Thus, the Lewbel (2012) approach performs well. Third, when focusing on the cases that pass the speci�cation

tests, we reject exogeneity of own and neighboring environmental regulation in the majority of cases for the chemical

sector. There is much less support for endogeneity when examining total manufacturing.

Fourth, turning to the point estimates in the cases that pass the speci�cation tests for the chemical sector

(Table 2), the GMM estimates are statistically signi�cant at at least the p < 0:10 con�dence level using either

the traditional approach or the Anderson and Rubin (1949) test robust to weak instruments in most cases; often

statistically signi�cant at the p < 0:01 con�dence level, particularly when measuring FDI using employment (Panel

B). Moreover, the point estimates are larger in absolute value compared to OLS; however, the standard errors are also

roughly two to three times larger. The fact that the IV estimates suggest a stronger adverse e¤ect of environmental

regulation is consistent with many of the papers listed in Table 1, such as Xing and Kolstad (2002), Ederington and

Minier (2003), Fredriksson et al. (2003), Levinson and Taylor (2008), and Cole and Fredriksson (2009). For example,

Xing and Kolstad (2002) obtain a point estimate for FDI in the chemical sector that is more than three times

larger once environmental regulation is treated as endogenous. Ederington and Minier (2003) obtain an elasticity

estimate over 60 times greater once environmental regulation is treated as endogenous. Cole and Fredriksson (2009)

obtain IV estimates opposite in sign from the OLS estimates and 10-75 times larger in absolute value. Furthermore,

the magnitude of our estimates are on par with those obtained in Kellenberg (2009) when examining the chemical

sector in isolation. Finally, neighboring environmental regulation is statistically signi�cant in Speci�cation 3, but

not Speci�cations 4 and 5.

To put the magnitude of the e¤ects in context, consider the results in Panel B, Speci�cation 5. Ohio in 1991 had

17,600 workers in foreign-owned a¢ liates in the chemical sector. The value of its RAC index was 0.86, making it a

fairly lax state according to the index. The ceteris paribus e¤ect of Ohio increasing its RAC at the time to match

California (1.00) is estimated to entail a decline in employment in foreign-owned a¢ liates in the chemical sector from

17,600 to roughly 15,600. In contrast, the OLS estimate implies a decline to only about 16,600.

In terms of the total manufacturing results (Table 3), we often fail to reject exogeneity as noted previously.

Moreover, adding the spatial e¤ects has little in�uence on the estimates from Keller and Levinson (2002); Kellenberg

(2009) obtains a similar �nding. One noteworthy �nding, however, occurs in Speci�cation 2 when examining PP&E

(Panel A). Here, we do reject exogeneity and the IV point estimates for own and neighboring environmental regulation

are statistically signi�cant at the p < 0:05 level. Notwithstanding this case, we generally obtain much smaller and

statistically insigni�cant estimates when examining manufacturing as a whole. This is consistent with prior evidence

that the impact of environmental regulation (as well as the statistical properties of estimates) depends on the pollution

intensity of the industry (e.g., Ederington et al. 2005; Jug and Mirza 2005; Henderson and Millimet 2007; Mulatu

et al. 2010).

In sum, the Lewbel (2012) approach indicates an economically and statistically signi�cant, adverse impact of
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own environmental stringency on inbound FDI in the pollution-intensive chemical sector, particularly in terms

of employment, once endogeneity is addressed. However, there is little evidence that neighboring environmental

regulation matters, nor is there evidence of a deleterious e¤ect of own or neighboring environmental regulation on

inbound FDI for manufacturing as a whole. The downward (in absolute value) bias of OLS estimates for the chemical

sector may be attributable in part to measurement error and in part to unobservables positively correlated with both

environmental regulation and FDI in�ows. For instance, Becker (2011) �nds that there is signi�cant variation in

environmental compliance costs across counties within states; roughly one-third of counties di¤er signi�cantly from

their state average. Thus, signi�cant attenuation bias due to measurement error is clearly plausible. Similarly, a

multitude of unobservables (such as investments in other public goods or agglomeration e¤ects) as well as omitted

within-state variation in the observables included in the analysis, can explain the bias in estimates obtained under

the assumption of strict exogeneity. We next turn to the Klein and Vella (2009) approach for comparison.

5.2 Klein & Vella (2009) Approach

The results from the Klein and Vella (2009) approach are also presented in Tables 2 and 3 under the column labelled

�CF�(for control function). As noted above, we include an expanded set of variables in z1 and z2 relative to the

Lewbel (2012) approach. Speci�cally, we set z1 = z2 = z, where z includes land prices, total road mileage, market

proximity, population, unemployment rate, unionization rate, and the spatial lags of these variables. Allowing for

heteroskedasticity in the second-stage error, ", we include average production worker wages, population, and market

proximity in z" when examining FDI in the chemical sector; market proximity only is included when examining total

manufacturing FDI.13

Before discussing the point estimates, it is important to note that our speci�cation of Sr(zit), r = 1; 2, and

estimation procedure appears to work well. In particular, while we always reject the null of homoskedastic errors in

both �rst-stage equations using the Koenker (1981) test at the p < 0:01 level, we predominantly fail to reject the null

after transforming the data by 1=
qbSr(zit). As reported in Table 4, we continue to reject the null of homoskedasticity

(albeit at lower levels of con�dence) in the model for neighboring environmental regulation in Speci�cations 3 (BEA

regional weights) and 5 (distance-based weights). We only reject the null of homoskedasticity in the model for own

environmental regulation once (at the p < 0:10 level) when spillovers are included.14

Turning to the results for the chemical sector in Table 2, the point estimates for own environmental regulation

are fairly stable across the �ve speci�cations, particularly in Panel A (PP&E).15 Moreover, the estimates are never

statistically signi�cant at the p < 0:10 con�dence level due to the relatively large standard errors except in Speci-

�cation 3 when examining employment (Panel B). Neighboring environmental regulation is also rarely statistically

signi�cant (although the estimates are even more imprecise) and inclusion of the spatial e¤ects has little in�uence on

the estimated marginal e¤ects of own environmental regulation. Finally, with the appropriate caveats in mind due

to the size of the standard errors, it is still interesting to note that the point estimates are larger in absolute value

13Average production wages and population are excluded when examining total manufacturing FDI due to problems with convergence.
14As an aside, we often found that we continued to reject the null of homoskedastic errors after performing FGLS using simulated data

despite using the correct functional form for the heteroskedasticity and the Klein and Vella (2009) estimator performing well overall.
15Standard errors are obtaining using 250 bootstrap repetitions.

13



relative to the Lewbel (2012) estimates when using PP&E (Panel A) to measure FDI, but generally smaller when

using employment (Panel B) to measure FDI.

In terms of total manufacturing (Table 3), the results are consistent with the OLS and Lewbel (2012) approaches,

particularly when again considering the size of the standard errors. Thus, there is no statistically meaningful

evidence of a negative impact of own environmental regulation, or of neighboring environmental regulation, on FDI

in�ows across the manufacturing sector as a whole; the only exception corresponds to Speci�cation 5 when analyzing

employment (Panel B).

5.3 Sensitivity Analyses

We undertake several further analyses to explore the sensitivity of our results. First, we implement the Lewbel

(2012) using a jackknife IV estimator (JIVE) rather than GMM. As shown in Angrist et al. (1999) and Chao et

al. (2012), JIVE has desirable �nite sample and asymptotic properties, at least relative to two-stage least squares

(TSLS) and limited information maximum likelihood (LIML), particularly in the presence of heteroskedasticity

and many instruments. Second, we explore the robustness of the Lewbel (2012) results to alternative instrument

sets. Finally, we utilize a third estimation approach designed to generate exclusion restrictions when traditional

instruments are unavailable. Based on the approach put forth in Pitt and Rosenzweig (1990), this estimator does not

involve restrictions on higher moments. Instead, this approach achieves identi�cation under a completely unrelated

set of restrictions.

5.3.1 JIVE

Table 5 presents the Lewbel (2012) results obtained using the JIVE1 estimator of Angrist et al. (1999). This

estimator entails obtaining (out-of-sample) �tted values of the endogenous regressors for each state-time observation

after estimation of (4) and (5) omitting one observation at a time. After estimation of the �tted values, these are

used as instruments in the usual instrumental variable estimator. The estimates are quite imprecise except when

FDI is measured in terms of foreign employment in the chemical sector. In this case, own environmental stringency

is found to be an economically and statistically signi�cant deterrent to FDI. In addition, the magnitude of the e¤ect

is larger than the GMM estimates reported in Table 2. To put the magnitude of the e¤ects in context, let us return

to our prior thought experiment and use the point estimate from Speci�cation 5. If Ohio in 1991 had increased its

RAC at the time to match California, employment in foreign-owned a¢ liates in the chemical sector would have fallen

from 17,600 to roughly 14,200 in expectation; the GMM predicted decline from above is 15,600.

5.3.2 Alternative Instruments

Table 6 presents select results obtained using alternative instruments in the Lewbel (2012) approach. Speci�cally,

we report results obtained using Speci�cations 1 (no spatial lags) and 5 (spatial lags using distance weights), where

the instruments are based on di¤erent sets of variables in z1 and z2. Recall, the baseline results in Table 2 (repeated

in Table 5 for convenience) utilize own (spatially lagged) land values, market proximity, and total road mileage in

z1 (z2). Here, IV Set A �C utilize each of these variables individually. IV Set A uses own and spatially lagged land
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values in z1 and z2, respectively. IV Set B (C) uses own and spatially lagged market proximity (total road mileage).

IV Set D uses own (spatially lagged) population, unemployment rate, and unionization rate in z1 ( z2). While there

is some evidence that the �rst-stage error variances are related to these variables, it is generally weaker than the

variables we utilize in the baseline model. Finally, IV Set E combines the variables used in the baseline model with

the variables used in IV Set D. Note, the models using IV Sets A �C are exactly identi�ed.

The results indicate that while the estimated e¤ects of own environmental regulation are reasonably similar

across the various instrument sets, particularly in Speci�cation 1, the strength of the instruments and the results

of the overidenti�cation tests are less favorable with the new instruments. The weakness of the instruments in

these alternative IV sets should not be surprising. First, as stated above, our baseline instruments utilized the

results of heteroskedasticity tests to determine the most likely candidates to be strong instruments. Second, the

poor performance of IV Sets A �C in Speci�cation 5, relative to the baseline model, is attributable to the fact that

while one variable, say own market proximity, may be related to the error variance in (4), its spatial lag may be

weakly related to the error variance in (5). Thus, the set of instruments utilized in the baseline model gives us strong

identi�cation, despite the weak identi�cation using IV Sets A �C in Speci�cation 5.

5.3.3 Pitt & Rosenzweig (1990) Approach

Our �nal sensitivity analysis turns to a completely di¤erent approach to identi�cation than the estimators considered

up to this point. The approach is borrowed from Pitt and Rosenzweig (1990), who are concerned with the impact of an

endogenous household-level variable on children di¤erentiated by gender. Lacking a traditional exclusion restriction,

the solution proposed entails examining the di¤erential e¤ect of the endogenous variable on sons versus daughters and

generating exclusion restrictions by assuming that some exogenous household-level covariates have identical e¤ects

on boys and girls. In our application, we apply this logic to assess the di¤erential e¤ect of own and spatially lagged

environmental regulation on two types of FDI: FDI in pollution-intensive and non-pollution-intensive sectors. Valid

exclusion restrictions are generated by assuming that some exogenous state-level covariates have equal e¤ects on FDI

across these two sectors.

Formally, we re-write the second-stage equation in (3) separately for pollution-intensive (P ) manufacturing sectors

and non-pollution-intensive (NP ) manufacturing sectors:

ln(FDIpit) = X1it�
p
1 +X2it�2 + �

p ln(Rit) + �
p ln(

P
j2
 !ijtRjt) + "

p
it (15)

ln(FDInpit ) = X1it�
np
1 +X2it�2 + �

np ln(Rit) + �
np ln(

P
j2
 !ijtRjt) + "

np
it ; (16)

where X = [X1 X2] and �1 and �2 are conformable vectors of parameters. Thus, X1 includes a subset of X for which

the marginal e¤ects on FDI are allowed to di¤er depending on the pollution intensity of the industry. The marginal

e¤ects of covariates included in X2 are assumed to be constant across sectors (and thus lack a p or np superscript).

In the analysis, we take the chemical sector as the pollution-intensive sector and all other manufacturing sectors

as the (relatively) non-pollution-intensive sector (e.g., Xing and Kolstad 2002; Wagner and Timmins 2009). While

there are certainly other data partitions one may try (conditional on data availability), results based on treating

15



only the chemical sector as pollution-intensive should yield evidence of the PHH if it exists given that studies such

as Copeland and Taylor (2004, p. 45) consider the industry to be �one of the dirtiest.�

Subtracting (16) from (15) in each time period yields

� ln(FDIit) = ln(FDI
p
it)� ln(FDI

np
it ) = X1it ���1 +�� � ln(Rit) + �� � ln(

P
j2
 !ijtRjt) + �"it: (17)

Thus, � represents the di¤erence between P and NP at a point in time, not the change over time. In (17), X2 is

available as an exclusion restriction.16 Thus, the �rst-stage equations are given by

ln(Rit) = X1it�R1 +X2it�R2 + �1it (18)

ln(
P

j2
 !ijtRjt) = X1it�SR1 +X2it�SR2 + �2it (19)

which are, in fact, identical to (4) and (5).

This identi�cation strategy relies on choosing a set of exogenous controls, X2, and imposing the restrictions that

�p2 = �np2 = �2. If the restrictions imposed lead to an overidenti�ed model (i.e., there are at least two variables

in X2), then the usual overidenti�cation test constitutes a test of the restrictions imposed. To see this, note that

if �2 does in fact di¤er across sectors di¤erentiated by pollution intensity, then the error term in (17) will contain

X2it ���2 and the resulting instruments will be invalid.

While this approach aids in the generation of instruments for environmental regulation, it does so at a cost

(even if the restrictions are valid). Speci�cally, the approach only provides consistent estimates of ��1, ��, and

��, not the individual, structural parameters from (16) and (15). Thus, ignoring the case where �np1 , �
np, or �np

equal zero, this approach only identi�es the di¤erential e¤ects of X1, own environmental regulation, and neighboring

environmental regulation on inbound FDI in pollution-intensive relative to non-pollution-intensive sectors. While

one might be tempted to assume that the parameters in �np and �np corresponding to own and spatially lagged

environmental regulation are zero, this is unlikely to be the case. On the one hand, our de�nition of the non-

pollution-intensive sector still includes some polluting industries since it aggregates all manufacturing sectors except

the chemical sector. On the other hand, when treating environmental regulation as exogenous and ignoring geographic

spillovers, Henderson and Millimet (2007) obtain some positive and statistically meaningful nonparametric regression

estimates of the association between environmental regulation and inbound U.S. FDI. Similarly, Mulatu et al. (2010)

obtain a statistically insigni�cant, but positive e¤ect of environmental stringency on production shares in the least

pollution-intensive sectors. Thus, the magnitudes and even the signs of �np and �np are unknown.

The results are presented in Table 7. Estimation is by GMM, where the variables in X2 include demand-

side variables �market proximity and population �and tax e¤ort as such variables should be equally relevant to

all manufacturing industries.17 On the contrary, abatement costs, unemployment and unionization rates, average

production-worker wages, land prices, and energy prices are likely to have a di¤erential e¤ect on pollution-intensive

16Note, this approach is similar to the strategy employed in Wagner and Timmins (2009). However, in that study, the authors assume

that environmental regulation is exogenous in their analog to the di¤erenced equation given by (17). Thus, their identi�cation strategy

requires no location-speci�c unobservables be correlated with environmental regulation, but di¤erentially associated with investment

across sectors di¤erentiated by pollution intensity. As shown below, this assumption is rejected in our data.
17 As in the Lewbel (2012) approach, heteroskedasticity-robust standard errors are used (Baum et al. 2007).
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and non-pollution-intensive FDI given that polluting industries are expected to be capital-, energy-, and land-intensive

while non-polluting industries are likely to be labor-intensive (Mani and Wheeler 1998). Accordingly, these variables

are included in X1. Similarly, the inclusion of road mileage in X1 is also reasonable given the chemical sector�s

reliance on road transport (Chen and Nunez 2006).18 ;19 In addition, region and time �xed e¤ects are included in X1.

The inclusion of region e¤ects, rather than state e¤ects, restricts time invariant attributes that di¤erentially a¤ect

sectors according to their pollution intensity are constant within regions.

Turning to the results, four �ndings emerge. First, the OLS estimates are negative and statistically signi�cant,

as well as signi�cantly larger in absolute value than the OLS estimates reported in Tables 2 and 3. This di¤erence

follows from a change in the de�nition of the dependent variable, as well as the fact that the model in (17) eliminates

time-varying unobservables that are correlated with both FDI and environmental regulation, but a¤ect FDI equally

across sectors (e.g., local macroeconomic shocks or political corruption). In addition, the OLS estimates are fairly

stable across the �ve speci�cations; neighboring environmental regulation is rarely statistically signi�cant.

Second, the identi�cation strategy works well as determined by the usual IV speci�cation tests, particularly when

using employment to measure FDI. Speci�cally, we reject the null that the model is underidenti�ed at the p < 0:01

con�dence level in every case using Kleibergen and Paap�s (2006) rk statistic, and the Kleibergen and Paap (2006)

F-statistic is reasonably large in most cases. In addition, we fail to reject the validity of the instruments using

Hansen�s J-test in all cases when using employment to measure FDI, and in Speci�cations 2 and 3 in Panel A at the

p < 0:05 con�dence level. Third, we reject exogeneity of environmental regulation in all cases.

Finally, the GMM estimates are statistically signi�cant at the p < 0:01 con�dence level using either the traditional

approach or the Anderson and Rubin (1949) test robust to weak instruments in all cases. Moreover, the point

estimates are considerably larger in magnitude than the OLS estimates in absolute value; however, the standard

errors are also roughly four to six times larger. Neighboring environmental regulation is rarely statistically signi�cant

although the estimates are very imprecise.

While the point estimates for own environmental regulation are economically large, they are very similar in

magnitude to the IV estimates obtained in Kellenberg (2009).20 To put the magnitude in context, let us return to

our prior thought experiment and use the point estimate from Speci�cation 5. Ohio in 1991 had 17,600 (104,900)

workers in foreign-owned a¢ liates in the chemical sector (all other manufacturing sectors); thus, relative employment

in the chemical sector was 16.8%. The ceteris paribus e¤ect of Ohio increasing its RAC at the time to match California

would have been a decline in relative employment in the chemical sector to 12.3%. In contrast, the OLS estimate

implies a decline to only 15.6%. What is not known is how much of this change is due to a relative decline in

employment in the pollution-intensive sector and how much is due to a relative increase in employment in the

non-pollution-intensive sector. As stated previously, Henderson and Millimet (2007) �nd heterogeneous, and often

18Also, according to the 2007 Commodity Flow Survey, the chemical manufacturing industry transported nearly 40% of its hazardous

materials tonnage by truck. See http://www.bts.gov/publications/special_reports_and_issue_briefs/special_report/2011_01_26/html/entire.html.
19As an alternative, we also treated tax e¤ort as the only regressor in X2, thereby yielding exactly identi�ed models. However, the

instruments proved to be very weak.
20Kellenberg (2009) obtains elasticities in the -2 to -3 range. When he focuses exclusively on a measure of environmental enforcement

to capture regulatory costs, the elasticity approaches -5.
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positive, associations between own environmental regulation and total manufacturing FDI when treating regulation

as exogenous.

6 Conclusion

The debate over the empirical validity of the PHH is heated and for good reason; the answer has far-reaching con-

sequences at the local, national, and international levels. To date, however, empirical assessments of the PHH have

been hampered by the lack of a credible identi�cation strategy to overcome potential problems associated with mea-

surement error and unobserved heterogeneity. In addition, the empirical literature on the PHH has yet to adequately

incorporate lessons from the literature on so-called third-country e¤ects. In our view, Kellenberg (2009) comes closest

to overcoming these shortcomings, and consequently �nds economically and statistically meaningful support for the

PHH. Here, we propose three novel identi�cation strategies couched within a model that incorporates spatial e¤ects.

Together, the three approaches shed new light on the role of environmental regulation in the determination of FDI

location.

Speci�cally, using state-level panel data from 1977-1994 from the U.S., we consistently �nd (i) evidence of envi-

ronmental regulation being endogenous when examining the pollution-intensive chemical sector, (ii) a negative and

economically signi�cant impact of own environmental stringency on inbound FDI in the chemical sector, particularly

when measured by employment, and (iii) signi�cantly larger e¤ects of environmental regulation on the chemical sector

once endogeneity is addressed. The upward bias in standard �xed e¤ects estimates obtained under the assumption

of strict exogeneity is consistent with attenuation bias due to measurement error, as well as important unobservables

positively correlated with environmental regulation and FDI in�ows (such as tax breaks, investments in other public

goods, or agglomeration externalities).

While informative, continued research is warranted. First, the analysis here is at the regional level. Before

reaching important policy conclusions regarding such issues as the WTO�s justi�cation to intervene in the domestic

environmental policy arena or the sensibility of linking international environmental and trade agreements, further

analysis is needed to determine the external validity of the �ndings obtained here. Does environmental regulation

have similar e¤ects at the country level? Despite this unknown, our results do �rmly indicate that policymakers

should worry about the incentives for local environmental standards to deviate from Pareto-e¢ cient levels. Such

fears are particularly worrisome since prior evidence suggests that domestic investment may be even more sensitive

to spatial variation in environmental policy than foreign investment (e.g., List et al. 2004).

Second, the prior literature, while su¤ering from various de�ciencies, has emphasized the heterogeneous e¤ects

of environmental regulation along numerous dimensions. For instance, Ederington et al. (2005) point to substantial

heterogeneity across source country (of imports) and the pollution intensity and geographic mobility of the industrial

sector. Dean et al. (2009) similarly document important heterogeneity by source country (of foreign investment).

Henderson and Millimet (2007) and Millimet and List (2004) uncover heterogeneous e¤ects utilizing nonparametric

and semiparametric methods, respectively. Some of this heterogeneity is captured in this study; namely, di¤erential

e¤ects by pollution intensity of the sector as well as by measure of FDI (PP&E versus employment). However, other
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dimensions of heterogeneity uncovered by the prior literature cannot be addressed given the data and identi�cation

strategies utilized here. Future research investigating whether the empirical evidence of heterogeneous e¤ects contin-

ues to be present once measurement error, spatial e¤ects, and unobserved heterogeneity are accounted for is needed

for a deeper understanding of the linkages between environmental and trade policy.
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A Data Appendix

The BEA regional classi�cation is as follows.

1. New England: Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut

2. Mideast: New York, New Jersey, Pennsylvania, Delaware, Maryland

3. Great Lakes: Ohio, Indiana, Illinois, Michigan, Wisconsin

4. Plains: Minnesota, Iowa, Missouri, North Dakota, South Dakota, Nebraska, Kansas

5. Southeast: Georgia, Florida, Virginia, West Virginia, North Carolina, South Carolina, Kentucky, Tennessee,

Alabama, Mississippi, Arkansas, Louisiana

6. Southwest: Oklahoma, Texas, Arizona, New Mexico

7. Rocky Mountain: Montana, Idaho, Wyoming, Colorado, Utah

8. Far West: Washington, Oregon, California, Nevada

The Crone (1998/1999) regions �based on a cluster analysis of similar economic activity �are as follows.

1. Maine, New Hampshire, Massachusetts, Arizona, Utah, Montana

2. Ohio, Indiana, Illinois, Michigan, Iowa, Delaware

3. Georgia, Florida, Virginia, North Carolina, South Carolina, Missouri, Kentucky, Tennessee, Alabama, Missis-

sippi, Arkansas, Oklahoma, Rhode Island

4. New York, New Jersey, Pennsylvania, Maryland, Connecticut, West Virginia, Vermont

5. Washington, Oregon, California, Nevada, Idaho, Nebraska, Texas, Wyoming, Minnesota, Louisiana, Kansas

6. North Dakota, South Dakota, Colorado, New Mexico, Wisconsin
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Table A1.  Summary Statistics

Variable N Mean SD N Mean SD N Mean SD
Total Manufacturing FDI (PP&E) 811 2859.31 3919.40 449 2796.21 3610.31 362 2937.57 4275.67
Chemical Sector FDI (PP&E) 563 1016.94 1732.51 323 812.53 1117.36 240 1292.04 2289.90
Non-Chemical Sector FDI (PP&E) 563 1491.44 1923.02 323 1440.59 1703.17 240 1559.88 2186.17
Total Manufacturing FDI (Employment) 814 32680.75 36602.64 452 37596.70 39038.80 362 26542.60 32329.69
Chemical Sector FDI (Employment) 621 7691.73 9641.22 349 8760.95 10820.55 272 6319.83 7677.71
Non-Chemical Sector FDI (Employment) 621 23377.44 26783.65 349 26047.92 26573.23 272 19950.99 26710.69
Relative Abatement Costs (RAC) 816 1.02 0.37 452 0.76 0.16 364 1.34 0.31
Unemployment Rate 816 6.61 2.09 452 6.14 1.87 364 7.20 2.21
Agricultural Land Values ($/per acre) 816 887.02 775.04 452 974.93 896.84 364 777.84 572.50
Energy Prices, Industrial Sector 816 5.51 1.70 452 5.89 1.85 364 5.04 1.35
Highway Road Mileage 816 80500.90 48367.55 452 82200.68 42205.87 364 78390.18 55056.13
Population (millions) 816 4.94 5.13 452 5.45 5.43 364 4.30 4.67
Unionization Rate 816 16.55 6.71 452 17.37 6.86 364 15.54 6.38
Average Production Worker Wages, 816 9.10 2.24 452 9.09 2.28 364 9.10 2.19
     Manufacturing Sector ($/hr)
Tax Effort 816 96.06 16.05 452 98.51 18.89 364 93.01 10.88
Market Proximity 816 6630.94 8220.03 452 8218.10 9694.03 364 4660.08 5283.64

RAC > 1RAC ≤ 1Full Sample



Table A2.  Select Full Results for Chemical Sector PP&E: Lewbel (2012) and Klein & Vella (2009) Approaches. 

Own X Spatial X Own X Spatial X Own X Spatial X Own X Spatial X Own X Spatial X Own X Spatial X

ln(RAC) -0.567* -0.547* -1.129† -0.432† -1.356 -0.404 -0.375 -0.673 -0.334 1.213
(0.214) (0.202) (0.469) (0.208) (1.005) (0.454) (0.318) (0.525) (0.350) (1.547)

ln(Wages) -1.034 -1.189 -1.487 -0.341 -6.736 -0.18 -0.191 1.314 0.478 -3.698
(0.807) (0.863) (1.577) (0.878) (4.307) (1.438) (1.559) (2.719) (1.843) (5.992)

ln(Land -0.341† -0.409† 0.577‡ -0.317‡ 1.396‡ -(0.352) -(0.448) (0.019) -(0.381) -(0.301)
  Values) (0.135) (0.183) (0.300) (0.192) (0.750) (0.271) (0.307) (0.540) (0.344) (1.260)
ln(Energy 0.048 0.160 0.007 0.087 -0.257 -0.052 0.196 0.055 -0.093 0.167
  Prices) (0.235) (0.237) (0.392) (0.259) (1.003) (0.412) (0.422) (0.507) (0.486) (1.681)
ln(Tax -0.213 -0.219 -0.823 -0.287 1.727 -0.134 -0.090 -1.300 -0.210 0.071
  Effort) (0.302) (0.296) (0.595) (0.304) (1.576) (0.546) (0.550) (0.947) (0.553) (2.731)
ln(Market 1.635* 2.382* -1.657† 1.919* -1.044 (01.126) 1.998‡ -(02.095) 1.392 2.565
  Proximity) (0.451) (0.528) (0.698) (0.538) (2.322) (0.742) (1.077) (1.276) (1.016) (5.347)
ln(Pop) -0.922 -3.253* 3.482† -2.533† 5.768‡ -0.625 -3.07 4.844‡ -1.888 4.491

(0.653) (0.897) (1.352) (1.083) (3.224) (1.404) (2.211) (2.540) (2.385) (7.325)
Unemplymt 0.043* 0.050* -0.002 0.063* -0.029 0.02 0.036 -0.021 0.036 0.021
  Rate (0.017) (0.019) (0.032) (0.018) (0.065) (0.029) (0.030) (0.039) (0.033) (0.109)
Unionization -0.110* -0.106* -0.006 -0.114* -0.191† -0.099* -0.104* -0.007 -0.103* -0.163
  Rate (0.013) (0.013) (0.034) (0.014) (0.078) (0.025) (0.027) (0.062) (0.031) (0.177)
ln(Road -0.954‡ -0.960 -0.120 -0.421 -0.243 -1.372 -1.528 -0.347 -0.797 -1.410
  Mileage) (0.532) (0.675) (0.925) (0.644) (2.076) (1.120) (1.239) (1.298) (1.245) (4.600)

N 563 563563 563 563 563

Spec (1) Spec (3) Spec (5)

Notes: ‡ p<0.10, † p<0.05, * p<0.01.  Standard errors are in parentheses; Lewbel (2012) standard errors are heteroskedasticity-robust; Klein & Vella (2009) standard 
errors are obtained via bootstrap.  See Table 2 for further details. 

Lewbel (2012) Klein & Vella (2009)
Spec (1) Spec (3) Spec (5)



Table A3.  Select Full Results for Chemical Sector Employment: Lewbel (2012) and Klein & Vella (2009) Approaches. 

Own X Spatial X Own X Spatial X Own X Spatial X Own X Spatial X Own X Spatial X Own X Spatial X

ln(RAC) -0.836* -0.673* -0.809* -0.695* -1.133 -0.468 -0.619‡ -1.380‡ -0.267 0.452
(0.161) (0.141) (0.297) (0.162) (0.853) (0.572) (0.359) (0.749) (0.316) (1.095)

ln(Wages) 0.35 0.092 -0.668 1.301‡ -4.203 -0.517 -0.064 -0.475 1 -6.708
(0.675) (0.640) (1.061) (0.724) (3.762) (1.280) (1.451) (2.115) (1.383) (6.951)

ln(Land -(0.067) -(0.058) -(0.112) (0.024) (0.381) -(0.095) -0.449‡ (0.365) -(0.398) (0.175)
  Values) (0.111) (0.136) (0.228) (0.144) (0.644) (0.229) (0.247) (0.434) (0.265) (1.037)
ln(Energy -0.035 0.066 0.205 -0.116 0.435 -0.236 -0.247 0.063 -0.267 0.461
  Prices) (0.187) (0.172) (0.288) (0.195) (0.812) (0.323) (0.315) (0.471) (0.344) (0.954)
ln(Tax 0.037 -0.034 -1.714* -0.009 4.144* 0.002 -0.088 -0.994 -0.071 2.445
  Effort) (0.277) (0.259) (0.461) (0.271) (1.302) (0.519) (0.480) (0.849) (0.421) (2.152)
ln(Market 1.052* 1.725* -(0.599) 1.479* 4.650† 1.296† 1.451‡ (0.529) 1.129 7.749
  Proximity) (0.381) (0.399) (0.579) (0.425) (1.907) (0.641) (0.850) (1.179) (0.688) (4.893)
ln(Pop) -1.398* -3.701* 3.929* -3.326* 2.661 0.046 -0.46 -0.267 -0.399 -1.582

(0.502) (0.590) (0.933) (0.702) (2.360) (1.191) (1.891) (2.078) (1.363) (4.853)
Unemplymt 0.062* 0.059* 0.036 0.079* -0.006 0.04 0.058‡ 0.071 0.058‡ 0.045
  Rate (0.016) (0.016) (0.025) (0.018) (0.058) (0.034) (0.032) (0.045) (0.033) (0.093)
Unionization -0.025† -0.029* 0.003 -0.024† -0.074 -0.025 -0.042‡ -0.013 -0.033 -0.073
  Rate (0.012) (0.011) (0.027) (0.012) (0.069) (0.030) (0.025) (0.055) (0.029) (0.132)
ln(Road -0.945† -0.785† 0.067 -0.556 -0.641 0.246 -1.086 -2.077 -0.380 2.181
  Mileage) (0.433) (0.392) (0.703) (0.463) (1.717) (0.740) (0.881) (1.643) (0.812) (4.172)

N 621 621
Notes: ‡ p<0.10, † p<0.05, * p<0.01.  Standard errors are in parentheses; Lewbel (2012) standard errors are heteroskedasticity-robust; Klein & Vella (2009) standard 
errors are obtained via bootstrap.  See Table 2 for further details. 

621621621621

Spec (5)
Lewbel (2012) Klein & Vella (2009)

Spec (1) Spec (3) Spec (5) Spec (1) Spec (3)



B Estimation Algorithms

B.1 Lewbel (2012) Approach

Estimation of the empirical model

ln(FDIit) = Xit�+ � ln(Rit) + � ln(
P

j2
 !ijtRjt) + "it

proceeds as follows:

1. Regress ln(Rit) on Xit and obtain b�1it
2. Regress ln(

P
j2
 !ijtRjt) on Xit and obtain b�2it

3. Form instruments ezrit � (zrit � z)b�rit, r = 1; 2
4. Estimate the structural model via GMM using ezrit, r = 1; 2, as instruments for ln(Rit) and ln(Pj2
 !ijtRjt).

B.2 Klein & Vella (2009) Approach

Estimation of the empirical model

ln(FDIit) = Xit�+ � ln(Rit) + � ln(
P

j2
 !ijtRjt) + �1
S"(zit)

S1(zit)
�1it + �2

S"(zit)

S2(zit)
�2it +

ee"it
proceeds as follows:

1. Regress ln(Rit) on Xit and obtain b�1it
2. Regress ln(

P
j2
 !ijtRjt) on Xit and obtain b�2it

3. Estimate �j via Poisson Pseudo Maximum Likelihood (PPML) where E
�b�2jit� = exp (zjit�j); compute bSjit =

exp
�
zjitb�j
2

�
, j = 1; 2 (see Santos Silva and Tenreyro 2006)

4. Obtain updated estimates bb�1it and bb�2it via Feasible Generalized Least Squares (FGLS) using bS1it and bS2it
5. Verify that the use of bS1it and bS2it yield homoskedastic errors in the transformed �rst-stage equations
6. Obtain updated estimates of �j via PPML using

bb�2jit; compute bbSjit = exp� zjit
bb�j
2

�
, j = 1; 2

7. Using bb�1it, bb�2it, bbS1it, and bbS2it, obtain consistent estimates via NLS:
min

�;�;�;�1;�2;�"

P
i;t

264 ln(FDIit)�Xit�� � ln(Rit)� � ln(
P

j2
 !ijtRjt)

� �1
p
exp (z"it�")

� bb�1itbbS1it
�
� �2

p
exp (z"it�")

� bb�2itbbS2it
� 375

2

8. Estimate �" (again) via PPML where E
�b"2it� = exp (zit�"), where

b"it = ln(FDIit)�Xitb�� b� ln(Rit)� b� ln(Pj2
 !ijtRjt);

and compute bS"it = exp� z"itb�"2

�
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9. Use bS"it to estimate via FGLS:
ln(FDIit) = Xit�+ � ln(Rit) + � ln(

P
j2
 !ijtRjt) + �1

 bS"itbbS1itbb�1it
!
+ �2

 bS"itbbS2itbb�2it
!

| {z }
control function

+ ee"it:

10. Compute standard errors via bootstrap.
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Table 1.  Select Review of the Pollution Haven Hypothesis Literature with Endogenous Environmental Regulation.
Study Dependent Data Primary Measure of Primary Instruments

Variable Environmental Regulation
Grether et al. (2012) Total and average pollution content of 

imports
10 pollutants; 48 countries and 79 ISIC 4-
digit industries from 1987

Lead content of gasoline The Human Development Index

Mulatu et al. (2010) Industry shares 13 countries and 16 ISIC industries 
averaged over 1990–1994

Environmental Sustainability Index in 
2001

Corruption in 1995; income in 1992; urbanization in 
1997; schooling in 1990

Kellenberg (2009) Value added of majority owned U.S. 
multinational affiliates 

50 countries and nine industries over 
1999-2003

Two survey-based responses from 
executives concerning environmental 
stringency and consistency of 
enforcement

Own country: arable land/agricultural worker; 
tractors/agricultural worker.  Spatial lag of other 
countries in same region (weighted by GDP): 
land/agricultural worker; tractors/agricultural 
worker; public schools; capital/labor ratio; 
infrastructure; organized crime.

Cole and Fredriksson (2009) Inbound FDI stocks and flows divided by 
aggregate GDP

13 OECD and 20 developing countries 
over 1982-1992

Lead content of gasoline Total population

Levinson and Taylor (2008) U.S. net imports divided by the value of 
shipments

132 3-digit manufacturing sectors from 
Mexico and Canada over 1977-1986

PAOC per unit of value added The amount of a pollutant contributed by other 
sectors in the states in which the sector tends to 
locate (14 pollutants yields 14 instruments); 
weighted average of state per capita incomes

Cole and Elliott (2005) U.S. outbound FDI stocks in Brazil and 
Mexico divided by total U.S. stocks in 
each country

31 (Brazil) or 36 (Mexico) 3-digit U.S. 
SIC industries over 1989-1994

PAOC per unit of value added Lagged PAOC per unit of value added over 1973-
1978; industry-level pollution intensity in 1987

Cole et al. (2005) U.S. net exports as a share of value added 3-digit U.S. SIC industries over 1978-
1992, except 1979 and 1987

PAOC per unit of value added Follow Levinson and Taylor (2008); six types of air 
pollution yields six instruments

Jug and Mirza (2005) Imports as a share of domestic sales Nine 2-digit ISIC industries; 12 importing 
countries from the EU15 and 19 exporting 
countries from the EU15 and Central and 
Eastern Europe over 1996-1999

Environmental expenditures for total 
manufacturing

Total public expenditure; lagged investment in 
environmental equipment; lagged wages

Ederington et al. (2004) U.S. imports divided by the value of 
shipments

394 4-digit U.S. SIC industries fover 
1978-1994 except 1979 and 1987

PAOC per unit of total materials costs Similar to Levinson and Taylor (2008) based on 
geographic dispersion of industries

List et al. (2004) Number of manufacturing plant 
modifications and closures

New York State county-level data over 
1980-1990

Ozone attainment status Proportion of all contiguous western neighbors that 
are out of attainment

List et al. (2003) Number of new manufacturing plants New York State county-level data over 
1980-1990

Ozone attainment status Proportion of all contiguous western neighbors that 
are out of attainment

Fredriksson et al. (2003) U.S. state-level inbound FDI stocks across 
states

U.S. state-level panel data from four 
manufacturing sectors over 1977-1986

Levinson (2001) index of state-level 
relative PAOC

Per capita GSP and the share of legal services in 
GSP; non-military government employment and the 
interaction between non-military government 
employment and share of legal services in GSP; 
corruption and its interaction with tax effort; 
corruption squared and its interaction with tax effort



Table 1 (cont.).  Select Review of the Pollution Haven Hypothesis Literature with Endogenous Environmental Regulation.
Study Dependent Data Primary Measure of Primary Instruments

Variable Environmental Regulation
Ederington and Minier (2003) U.S. net imports divided by the value of 

shipments
374 4-digit U.S. SIC industries over 1978-
1992, except 1979 and 1987

PAOC per unit of total materials costs Four-firm concentration ratio; number of firms; 
value of shipments; percentage of unionized 
workers; industry unemployment rates; lagged 
changes in import and export penetrations; recent 
industry growth; lagged total trade

Cole and Elliott (2003) Net exports Four manufacturing sectors in 60 
countries from 1995

Index of environmental stringency from 
Eliste and Fredriksson (2004); proxy 
based on a change in energy intensity 
over 1980-1985 and level of energy 
intensity in 1980

Per capita income

Xing and Kolstad (2002) U.S. outbound FDI Six manfacturing sectors across 22 
countries from 1985 and 1990; data for 
some countries for both time points, in 
which case the average is used, and only 
from one of the years for the remainder

SO2 emissions Infant mortality rate; population density

Henderson (1997) Binary variable indicating whether an 
industry is located in a U.S. county or not

Five 3-digit U.S. SIC industries over 1978-
1987 for 742 urban counties

Ozone attainment status State fuel prices over 1978-1987; metro area 
manufacturing employment (except own industry) 
over 1978-1987; county and metro area total 
employment (except own industry) over 1978-1987



Table 2.  Determinants of Chemical Sector FDI: OLS, Lewbel (2012), and Klein & Vella (2009) Approaches. 

OLS IV CF OLS IV CF OLS IV CF OLS IV CF OLS IV CF
Panel A.  Plant, Property, and Equipment
ln(RAC) -0.198† -0.567* -0.404 -0.200† -0.359‡ -0.346 -0.153 -0.547* -0.375 -0.222† -0.411‡ -0.300 -0.169‡ -0.432† -0.334

(0.091) (0.214) (0.454) (0.093) (0.201) (0.290) (0.095) (0.202) (0.318) (0.100) (0.215) (0.315) (0.096) (0.208) (0.350)
ln(spatial RAC) -0.265 -0.677 -0.032 -0.313 -1.129† -0.673 0.323 0.313 0.321 -0.537 -1.356 1.213

(0.178) (0.599) (0.775) (0.214) (0.469) (0.525) (0.286) (0.952) (0.905) (0.530) (1.005) (1.547)

Underid Test 0.000 0.002 0.000 0.007 0.000
F-stat 16.759 6.134 12.327 4.317 15.452
Overid Test 0.842 0.002 0.713 0.103 0.574
Endogeneity 0.032 0.749 0.032 0.501 0.225
Joint Sign. Endog. 0.031 0.069 0.374 0.020 0.000 0.491 0.129 0.052 0.291 0.006 0.084 0.568 0.112 0.209 0.537
N 563 563 563 563 563 563 563 563 563 563 563 563 563 563 563

Panel B.  Employment
ln(RAC) -0.397* -0.836* -0.468 -0.386* -0.678* -0.562 -0.291* -0.673* -0.619‡ -0.379* -0.910* -0.558 -0.345* -0.695* -0.267

(0.074) (0.161) (0.572) (0.070) (0.152) (0.345) (0.066) (0.141) (0.359) (0.075) (0.200) (0.432) (0.071) (0.162) (0.316)
ln(spatial RAC) -0.344† -0.868† 0.002 -0.273‡ -0.809* -1.380‡ 0.270 -0.481 -0.582 -0.311 -1.133 0.452

(0.143) (0.376) (0.849) (0.160) (0.297) (0.749) (0.250) (0.865) (0.949) (0.421) (0.853) (1.095)

Underid Test 0.000 0.000 0.000 0.000 0.000
F-stat 45.390 15.628 20.698 8.045 17.304
Overid Test 0.186 0.031 0.223 0.743 0.398
Endogeneity 0.000 0.029 0.004 0.001 0.024
Joint Sign. Endog. 0.000 0.000 0.413 0.000 0.000 0.243 0.000 0.000 0.093 0.000 0.000 0.405 0.000 0.001 0.666
N 621 621 621 621 621 621 621 621 621 621 621 621 621 621 621
Notes: ‡ p<0.10, † p<0.05, * p<0.01.  Standard errors are in parentheses; OLS and IV standard errors are heteroskedasticity-robust and CF standard errors are obtained via 
bootstrap.  'IV' refers to the Lewbel (2012) approach estimated via GMM; 'CF' refers to the Klein and Vella (2009) control function approach.  Other covariates included in 
Specification 1 include: average production-worker wages, land prices, energy prices, total road mileage, unemployment rate, unionization rate, market proximity, population, 
tax effort, state dummies, and year dummies.  Specifications 2 - 5 also include spatial versions of these controls.  Excluded instruments in the IV estimations are land values, 
market proximity, and road mileage demeaned and interacted with the first-stage residuals (Specification 1) and the spatial counterparts (Specifications 2 - 5).  Underid reports 
the p-value of the Kleibergen-Paap (2006) rk statistic with rejection implying identification; Overid reports the p-value of Hansen J statistic with rejection casting doubt on 
instruments' validity; Endog reports the p-value of endogeneity test of the endogenous regressors; Joint Sign. reports the p-value of Anderson-Rubin (1949) chi-square test of 
endogenous regressors; F-stat reports the Kleibergen-Paap F statistic for weak identification.  See text for further details.   

Spec (1) Spec (2) Spec (3) Spec (5)Spec (4)



Table 3.  Determinants of Total Manufacturing FDI: OLS, Lewbel (2012), and Klein & Vella (2009) Approaches. 

OLS IV CF OLS IV CF OLS IV CF OLS IV CF OLS IV CF
Panel A.  Plant, Property, and Equipment
ln(RAC) -0.079 -0.143 -0.085 -0.082 -0.234† -0.140 -0.011 0.043 -0.078 -0.086‡ -0.094 -0.101 -0.075 -0.110 -0.063

(0.054) (0.098) (0.212) (0.054) (0.099) (0.162) (0.050) (0.088) (0.145) (0.052) (0.096) (0.137) (0.051) (0.089) (0.137)
ln(spatial RAC) -0.127 -1.119* 0.568 -0.094 -0.239 0.321 0.181 0.626 -0.334 0.117 -0.308 0.863

(0.096) (0.278) (0.487) (0.100) (0.190) (0.290) (0.161) (0.447) (0.622) (0.281) (0.528) (0.986)

Underid Test 0.000 0.000 0.000 0.000 0.000
F-stat 86.485 12.790 30.768 10.615 16.062
Overid Test 0.799 0.446 0.045 0.758 0.056
Endogeneity 0.318 0.000 0.632 0.395 0.726
Joint Sign. Endog. 0.143 0.484 0.689 0.112 0.000 0.370 0.635 0.065 0.405 0.103 0.409 0.672 0.320 0.092 0.647
N 811 811 811 811 811 811 811 811 811 811 811 811 811 811 811

Panel B.  Employment
ln(RAC) -0.013 0.036 0.250 -0.027 -0.031 0.108 0.053 0.168† 0.110 -0.042 -0.048 0.084 -0.013 0.101 0.128

(0.057) (0.119) (0.260) (0.054) (0.095) (0.182) (0.054) (0.083) (0.129) (0.057) (0.125) (0.162) (0.052) (0.102) (0.169)
ln(spatial RAC) 0.040 -0.173 0.287 -0.023 0.016 0.243 0.201 -0.047 -0.478 0.170 0.369 1.062‡

(0.100) (0.234) (0.276) (0.107) (0.161) (0.218) (0.136) (0.389) (0.301) (0.253) (0.475) (0.568)

Underid Test 0.000 0.000 0.000 0.000 0.000
F-stat 99.271 14.646 32.756 10.882 15.934
Overid Test 0.681 0.250 0.389 0.949 0.923
Endogeneity 0.538 0.503 0.132 0.772 0.318
Joint Sign. Endog. 0.820 0.845 0.336 0.740 0.381 0.519 0.488 0.206 0.434 0.244 0.991 0.166 0.773 0.912 0.161
N 814 814 814 814 814 814 814 814 814 814 814 814 814 814 814

Spec (1) Spec (2) Spec (3) Spec (5)

Notes: ‡ p<0.10, † p<0.05, * p<0.01.  Standard errors are in parentheses; OLS and IV standard errors are heteroskedasticity-robust and CF standard errors are obtained via 
bootstrap.  See Table 2 for further details.

Spec (4)



Table 4.  Tests for Heteroskedasticity in First-Stage Equations in Klein and Vella (2009) Approach.

Spec (1) Spec (2) Spec (3) Spec (4) Spec (5) Spec (1) Spec (2) Spec (3) Spec (4) Spec (5)
Panel A.  Plant, Property, and Equipment
Before: ln(RAC)
  Test Statistic 37.000 52.355 60.358 53.723 64.335 86.393 110.925 115.225 109.317 118.178
  P-Value p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000
After: ln(RAC)
  Test Statistic 4.060 8.775 11.896 10.189 11.607 11.220 19.097 13.861 14.533 13.984
  P-Value p = 0.669 p = 0.722 p = 0.454 p = 0.599 p = 0.478 p = 0.082 p = 0.086 p = 0.310 p = 0.268 p = 0.302
Before: ln(spatial RAC)
  Test Statistic 30.922 84.142 43.975 34.732 62.267 111.974 60.608 81.779
  P-Value p = 0.002 p = 0.000 p = 0.000 p = 0.001 p = 0.000 p = 0.000 p = 0.000 p = 0.000
After: ln(spatial RAC)
  Test Statistic 8.523 29.396 12.540 23.200 6.248 24.528 11.182 38.601
  P-Value p = 0.743 p = 0.003 p = 0.403 p = 0.026 p = 0.903 p = 0.017 p = 0.513 p = 0.000

Panel B.  Employment
Before: ln(RAC)
  Test Statistic 63.212 69.095 75.143 85.399 64.877 92.999 114.835 120.662 118.754 123.462
  P-Value p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000
After: ln(RAC)
  Test Statistic 5.921 14.170 9.667 10.641 21.451 11.798 17.338 12.771 13.383 12.461
  P-Value p = 0.432 p = 0.290 p = 0.645 p = 0.560 p = 0.044 p = 0.067 p = 0.137 p = 0.386 p = 0.342 p = 0.409
Before: ln(spatial RAC)
  Test Statistic 46.322 96.365 48.607 58.834 63.573 115.958 62.431 79.037
  P-Value p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000
After: ln(spatial RAC)
  Test Statistic 9.840 21.643 12.653 32.317 6.042 24.875 11.615 37.940
  P-Value p = 0.630 p = 0.042 p = 0.395 p = 0.001 p = 0.914 p = 0.015 p = 0.477 p = 0.000
Notes:  Test statistics and corresponding p-values are from Koenker's (1981) test for heteroskedasticity.  'Before' corresponds to the test of residuals from the 
initial OLS estimation of the first-stage equations (Steps 1 and 2 in Appendix B.2).  'After' corresponds to the test of the residuals after the FGLS estimation 
(Step 4 in Appendix B.2).  Test statistic is distributed as χ2 with 6 degrees of freedom in Specification 1 and 12 degrees of freedom in Specifications 2 - 5.  
See text for further details.

Chemical Sector Total Manufacturing



Table 5.  JIVE Estimation of the Lewbel (2012) Approach. 

Spec (1) Spec (2) Spec (3) Spec (4) Spec (5) Spec (1) Spec (2) Spec (3) Spec (4) Spec (5)
Panel A.  Plant, Property, and Equipment
ln(RAC) -1.539‡ -0.791 -4.432 -1.243 -3.603 -0.176 3.341 -0.020 -0.627 -0.174

(0.906) (0.582) (13.223) (1.329) (9.616) (0.135) (11.265) (0.128) (1.152) (0.130)
ln(spatial RAC) 0.506 -7.427 0.978 -22.515 17.880 -0.226 -4.745 -0.330

(0.586) (22.270) (1.120) (89.193) (57.838) (0.358) (12.348) (0.624)

Joint Sign. Endog. 0.090 0.175 0.738 0.350 0.708 0.193 0.767 0.877 0.586 0.181
N 563 563 563 563 563 811 811 811 811 811

Panel B.  Employment
ln(RAC) -1.092* -0.913* -1.009* -0.260 -1.183* 0.067 -0.201 0.224 0.560 0.142

(0.276) (0.246) (0.216) (0.536) (0.415) (0.176) (1.284) (0.149) (1.620) (0.189)
ln(spatial RAC) -0.658 -1.677* 6.218† -4.292 -1.610 0.098 6.129 0.797

(1.183) (0.471) (2.687) (2.899) (7.405) (0.302) (18.379) (1.383)

Joint Sign. Endog. 0.000 0.000 0.000 0.628 0.005 0.701 0.875 0.132 0.730 0.451
N 621 621 621 621 621 814 814 814 814 814

Chemical Sector Total Manufacturing

Notes: ‡ p<0.10, † p<0.05, * p<0.01.  Heteroskedasticity-robust standard errors are in parentheses.  See Table 2 for further details.   



Table 6.  Determinants of Chemical Sector FDI: Alternative Instruments in the Lewbel (2012) Approach.

Baseline IV Set A IV Set B IV Set C IV Set D IV Set E Baseline IV Set A IV Set B IV Set C IV Set D IV Set E
Panel A.  Plant, Property, and Equipment
ln(RAC) -0.567* -0.368 -0.641† -0.637† -0.486‡ -0.454† -0.432† 2.384 -0.947 -0.548 -0.247 -0.341†

(0.214) (0.704) (0.295) (0.300) (0.258) (0.182) (0.208) (62.550) (1.083) (0.352) (0.232) (0.157)
ln(spatial RAC) -1.356 29.205 11.223 0.093 0.744 0.559

(1.005) (72.667) (24.446) (1.763) (1.439) (0.635)

Underid Test 0.000 0.358 0.000 0.000 0.000 0.000 0.000 0.969 0.607 0.050 0.075 0.000
F-stat 16.759 0.709 31.711 26.152 10.440 13.088 15.452 0.001 0.113 2.570 2.071 10.367
Overid Test 0.842 0.116 0.460 0.574 0.020 0.062
Endogeneity 0.032 0.810 0.065 0.084 0.244 0.097 0.225 0.379 0.283 0.214 0.654 0.084
Joint Sign. Endog. 0.069 0.651 0.024 0.032 0.037 0.113 0.209 0.471 0.186 0.161 0.024 0.031
N 563 563 563 563 563 563 563 563 563 563 563 563

Panel B.  Employment
ln(RAC) -0.836* -0.973* -0.908* -0.784* -0.580* -0.546* -0.695* -1.112† -0.833* -0.632* -0.307‡ -0.343*

(0.161) (0.302) (0.171) (0.180) (0.153) (0.138) (0.162) (0.567) (0.287) (0.201) (0.157) (0.127)
ln(spatial RAC) -1.133 -6.031 -1.373 0.370 1.300 0.414

(0.853) (6.468) (4.266) (1.328) (1.181) (0.635)

Underid Test 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.315 0.238 0.003 0.047 0.000
F-stat 45.390 7.325 112.814 63.549 24.799 36.317 17.304 0.461 0.598 6.778 2.681 14.753
Overid Test 0.186 0.002 0.001 0.398 0.005 0.007
Endogeneity 0.000 0.004 0.000 0.004 0.091 0.093 0.024 0.070 0.005 0.023 0.335 0.421
Joint Sign. Endog. 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.024 0.000 0.001 0.001 0.000
N 621 621 621 621 621 621 621 621 621 621 621 621
Notes: ‡ p<0.10, † p<0.05, * p<0.01.  Heteroskedasticity-robust standard errors are in parentheses.  Baseline model is repreated from Table 2.  IV Set A uses own (spatially 
lagged) land values in z1 (z2); IV Set B uses own (spatially lagged) market proximity in z1 (z2); IV Set C uses own (spatially lagged) road mileage in z1 (z2); IV Set D uses own 
(spatially lagged) population, unemployment rate, and unionization rate in z1 (z2); and, IV Set E uses own (spatially lagged) land values, market proximity, road mileage, 
population, unemployment rate, and unionization rate in z1 (z2); See Table 2 for further details.   

Specification (1) Specification (5)



Table 7.  Determinants of Relative FDI: Pitt & Rosenzweig (1990) Approach.

OLS IV OLS IV OLS IV OLS IV OLS IV
Panel A.  Plant, Property, and Equipment
ln(RAC) -0.789* -4.452* -0.726* -4.507* -0.802* -3.273* -0.657* -3.198* -0.592* -3.142*

(0.155) (0.571) (0.146) (0.603) (0.142) (0.430) (0.151) (0.481) (0.137) (0.533)
ln(spatial RAC) -1.052* 0.676 0.596 0.840 0.148 4.759† -1.843 -2.562

(0.350) (1.346) (0.498) (1.508) (0.576) (2.355) (1.859) (4.509)

Underid Test 0.000 0.000 0.000 0.000 0.001
F-stat 39.174 8.684 6.344 9.340 3.284
Overid Test 0.029 0.111 0.053 0.010 0.014
Endogeneity 0.000 0.000 0.000 0.000 0.000
Joint Sign. Endog. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
N 563 563 563 563 563 563 563 563 563 563

Panel B.  Employment
ln(RAC) -0.498* -2.159* -0.447* -2.171* -0.494* -1.433* -0.584* -2.106* -0.456* -1.655*

(0.096) (0.295) (0.096) (0.298) (0.099) (0.280) (0.101) (0.304) (0.090) (0.271)
ln(spatial RAC) -0.759* 0.323 0.096 1.857† -0.546 1.577 -2.102† -1.548

(0.211) (0.702) (0.277) (0.830) (0.398) (1.613) (1.011) (2.424)

Underid Test 0.000 0.000 0.000 0.000 0.000
F-stat 38.003 13.321 10.666 10.037 5.481
Overid Test 0.834 0.166 0.156 0.134 0.242
Endogeneity 0.000 0.000 0.000 0.000 0.000
Joint Sign. Endog. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
N 621 621 621 621 621 621 621 621 621 621
Notes: ‡ p<0.10, † p<0.05, * p<0.01.  Standard errors are heteroskedasticity-robust.  IV estimation is via GMM.  Dependent variable is chemical 
sector FDI minus all other manufacturing FDI.  RAC is relative abatement costs.  Other covariates included in Specification 1 include: average 
production-worker wages, land prices, energy prices, total road mileage, unemployment rate, unionization rate, region dummies, and year dummies.  
Specifications 2 - 5 also include spatial versions of these controls.  Specification 2 uses contiguous weights; Specification 3 uses weights based on 
U.S. Census regions; Specification 4 uses weights based on Crone's (1998/1999) regions; Specification 5 uses distance-based weights.  Excluded 
instruments are market proximity, population, and tax effort (Specifications 1 - 5) and the spatial counterparts (Specifications 2 - 5).  Underid reports 
the p-value of the Kleibergen-Paap (2006) rk statistic with rejection implying identification; Overid reports the p-value of Hansen J statistic with 
rejection casting doubt on instruments' validity; Endog reports the p-value of endogeneity test of the endogenous regressors; Joint Sign. reports the p-
value of Anderson-Rubin (1949) chi-square test of significance of the endogenous regressors; F-stat reports the Kleibergen-Paap F statistic for weak 
identification.  See text for further details.

Spec (1) Spec (5)Spec (2) Spec (3) Spec (4)
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