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Previous research has shown that people exhibit a sample size bias when judging the average of a set of
stimuli on a single dimension. The more stimuli there are in the set, the greater people judge the average
to be. This effect has been demonstrated reliably for judgments of the average likelihood that groups of
people will experience negative, positive, and neutral events (Price, 2001; Price, Smith, & Lench, 2006)
and also for estimates of the mean of sets of numbers (Smith & Price, 2010). The present research focuses
on whether this effect is observed for judgments of average on a perceptual dimension. In 5 experiments
we show that people’s judgments of the average size of the squares in a set increase as the number of
squares in the set increases. This effect occurs regardless of whether the squares in each set are presented
simultaneously or sequentially; whether the squares in each set are different sizes or all the same size;
and whether the response is a rating of size, an estimate of area, or a comparative judgment. These results
are consistent with a priming account of the sample size bias, in which the sample size activates a
representation of magnitude that directly biases the judgment of average.
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People make judgments about averages in many different con-
texts and for many different purposes. For example, a teacher
might judge the average mathematical ability of her students in
deciding how best to teach them. Or a hospital patient might judge
the average number of headaches he gets per month in response to
a physician’s question. Or a football coach might judge the average
size or speed of an opposing defense in deciding what plays to call.
Although a long line of psychological research on judgments of
averages has shown that they tend to be accurate (Alvarez, 2011;
Peterson & Beach, 1967), we have recently found that they also
exhibit a curious bias. Specifically, they tend to increase as a
function of the sample size. We have observed this sample size
bias in judgments of average risk and likelihood for groups of
people (Price, 2001; Price, Smith, & Lench, 2006) and also in
estimates of the mean of sets of numbers (Smith & Price, 2010). In
the present studies, we extend this basic result to judgments of
averages on a perceptual dimension of a stimulus—the size of
squares—and test several possible moderators of the effect. As in
our previous research, we find not only that people exhibit the
sample size bias but also that it is quite robust across a wide variety
of conditions. We argue further that the robustness of the sample
size bias across stimuli, stimulus presentation modes, dimensions
of judgment, and response formats suggests that it is the result of
a very basic and general cognitive process—most likely a form of

priming. This, in turn, suggests possible connections among con-
ceptually similar phenomena in the literatures on judgment and
decision making and quantitative cognition and perception more
generally.

The Sample Size Bias Phenomenon

The original impetus for studying the sample size bias was the
social judgment phenomenon of unrealistic optimism. People gen-
erally judge themselves to be at lower risk than their peers for
experiencing negative life events like developing cancer, being
hurt in an accident, or getting divorced (e.g., Weinstein, 1980,
1987). In much of this research, however, the distinction between
self and peers is confounded with sample size. Judgments about
oneself are judgments about a small sample and judgments about
one’s peers are judgments about a large sample. Our goal was to
eliminate this confound and study the effect of sample size on risk
judgments directly. In one study, participants read a series of
descriptions of the employees at fictional companies in terms of
their risk factors for having a heart attack (Price, 2001). After
reading descriptions of one, five, or nine employees at each com-
pany, participants judged the heart-attack risk of the typical em-
ployee at that company. As hypothesized, these risk judgments
increased as a function of the number of employees. We then
generalized this result in a number of ways in a series of follow-up
studies (Price et al., 2006). For example, participants saw photo-
graphs of groups of five, 10, and 15 peers and judged the likeli-
hood that the average group member would experience various
negative, neutral, and positive events. Again, as hypothesized,
these likelihood judgments increased as a function of the number
of people in the group. In the final study, the stimuli were groups
of stick figures, the judgment was of their average height, and
again a sample size bias was observed.

These results were intriguing given that earlier research on
judgments of averages—primarily using numbers as stimuli—had
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found such judgments to be quite accurate across a wide range of
conditions (e.g., Anderson, 1964; Beach & Swenson, 1966; Levin,
1975; Spencer, 1961, 1963). Nothing like a sample size bias had
ever been reported. (See Peterson & Beach, 1967, for a classic
review of this work.) It seemed possible, therefore, that the sample
size bias we had observed depended on our use of ambiguous
concepts such as “risk,” “likelihood,” and the “average person.”
For this reason, we tested for the sample size bias by having people
quickly estimate the means of samples of numbers—a relatively
unambiguous task (Smith & Price, 2010). On each trial, partici-
pants saw samples of five, 10, 15, or 20 numbers with means of 20,
30, or 40. In one study, the numbers in each sample were presented
simultaneously and in another they were presented sequentially.
Although participants’ estimates tracked the objective means fairly
well—consistent with previous research and with the idea that
participants correctly interpreted their task—there was also a clear
sample size bias that accounted for approximately 10% of the
variance in their estimates. This was true even among participants
who consistently made the most accurate estimates.

Theoretical Considerations

One of the most notable features of the sample size bias has
been its robustness across variations in the stimuli, the mode of
stimulus presentation, the dimension of judgment, and the re-
sponse scale. This is important because it casts doubt on many
intuitively plausible theories that can explain it under some con-
ditions but not others. For example, the sample size bias for risk
judgments might be the result of a misunderstanding. Although
participants are supposed to judge the average risk that the people
in a group will experience a negative event, they might misunder-
stand their task as one of judging the risk that at least one person
in the group will experience it. However, such misunderstandings
seem much less likely for estimates of the average height of sets of
stick figures or the mean of sets of numbers. As another example,
the sample size bias might occur because people selectively attend
to the most extreme individual stimuli (e.g., the riskiest looking
people or the greatest numbers) or weight extreme stimuli more
heavily in making their judgments. However, selective attention
and weighting do not apply as neatly when the stimulus individuals
are identical stick figures so that there are no extreme individuals
(Price et al., 2006). As a final example, the anchoring-and-
adjustment heuristic (Epley & Gilovich, 2004) might underlie the
sample size bias. Specifically, people might use the sample size as
a starting point for their judgment, and insufficiently adjust away
from that anchor such that larger samples result in greater judg-
ments. This explanation seems plausible when both the sample size
and judgment of average are on the same order of magnitude but
not when they are on different orders of magnitude—as when in
one study sample sizes ranged from 1 to 15 but judgments were
made on a 0-to-100 risk scale (Price et al., 2006).

We have also suggested that the robustness of the sample size
bias implicates a very basic and general cognitive process—most
likely a priming effect of sample size on judgments of averages
that is independent of any conscious attempt to take the sample
size into account (Smith & Price, 2010). There are two lines of
evidence that give additional support to this interpretation. One is
that there exist several examples of phenomena in which an
irrelevant stimulus numerosity or frequency affects a quantitative

judgment. For example, Friedenberg and Limratana (2005) pre-
sented participants with displays consisting of several distinct
clusters of equal numbers of dots. They found that judgments of
the number of dots in a cluster were affected by the number of
clusters and also that judgments of the number of clusters were
affected by the number of dots in a cluster. Similarly, Pelham,
Sumarta, and Myaskovsky (1994) found that the number of distinct
elements in a stimulus affected a variety of quantitative judgments.
For example, the number of wedges that a circle was divided into
affected people’s judgments of the total area of the circle. And
Dormal and Pesenti (2007) have shown that the number of spots in
each of two horizontal arrays affects people’s ability to compare
those two arrays in terms of their physical length. Specifically, if
the longer array contains more spots, people make their compari-
sons faster and more accurately. But if the longer array contains
fewer spots, people make their comparisons slower and less accu-
rately. These researchers have also shown a similar effect of the
number of spots in temporal sequences on people’s ability to
compare those two sequences in terms of their duration (Dormal,
Seron, & Pesenti, 2006). In all of these examples, the number of
stimuli in a set—whether the stimuli are distributed spatially or
temporally—biased people’s judgments of another quantity. Fur-
thermore, these effects seem unlikely to be mediated by processes
like miscommunication, selective attention, or anchoring and in-
sufficient adjustment.

The second line of evidence comes from research on the cog-
nitive neuroscience of quantitative cognition and perception. Spe-
cifically, there is considerable research showing that a variety of
quantitative stimuli—including Arabic numerals, number words,
sets of dots, and sequences of tones—activate a modality-
independent representation of quantity or magnitude in the intra-
parietal sulci (IPS; Cantlon, Platt, & Brannon, 2009; Dehaene,
2011; Dormal & Pesenti, 2009; Walsh, 2003; but see Matthews,
Stewart, & Wearden, 2011, for an alternative interpretation). This
same area is also involved in quantitative comparisons and simple
computations (e.g., Chochon, Cohen, Van De Moortele, & De-
haene, 1999; Dehaene, 2011). Dormal and Pesenti (2009) showed
that both stimulus numerosity and stimulus length independently
activate the IPS and suggested that this neural overlap might
explain the effect of numerosity on judgments of length (among
many conceptually similar effects). Thus, the key elements of a
direct priming account of the sample size bias—that sample size
activates a representation of quantity or magnitude, which in turn
affects other quantitative judgments—are supported by research
from other perspectives.

Judgments of Perceptual Averages

With this background, we decided to study the sample size bias
for judgments of averages on a perceptual dimension: the size of
squares. The primary reason is that it is not immediately clear that
the sample size bias will generalize to such judgments. As with the
early research on number averaging, research on perceptual aver-
aging has shown it to be quite accurate across a wide range of
conditions and nothing like a sample size bias has ever been
reported or even suggested (see Alvarez, 2011, for a review). For
example, Ariely (2001) conducted a study in which, on each trial,
participants saw a sample of spots of varying sizes followed by a
single test spot and then judged whether the test spot was larger or
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smaller than the average size of the spots in the sample. With
discrimination thresholds roughly in the range of 5 to 10%, he
concluded that “the mean size of sets was known quite precisely”
(Ariely, 2001, p. 160). Similar results have been reported by other
researchers for judgments of average size (Chong & Treisman,
2005), and for other perceptual dimensions including brightness
(Bauer, 2009), orientation (Parkes, Lund, Angelucci, Solomon, &
Morgan, 2001), motion (Watamaniuk & Duchon, 1992), and location
(Alvarez & Oliva, 2008). Perceptual averaging also seems to occur at
very short exposure times and does not require focal attention to any
of the individual stimuli in the sample (e.g., Alvarez, 2011; Ariely,
2001; Parkes et al., 2001). These observations have suggested to some
researchers the possibility of specific neural circuits that are respon-
sible for the automatic computation of perceptual averages (e.g.,
Chong & Treisman, 2005). Thus, judgments of perceptual averages
might not be open to the effects of misunderstanding, selective atten-
tion, anchoring and adjustment, or other processes that could explain
the sample size bias for judgments of conceptual averages. On the
other hand, it is not unreasonable to expect judgments of perceptual
averages to be open to priming effects. After all, Dormal and Pesenti
(2007) found a direct effect of numerosity on perceived length.

The present studies consist of five experiments focusing on
people’s judgments of the average sizes of sets of squares. Exper-
iment 1 was the first strong test for a sample size bias for percep-
tual judgments of averages. The results of the study by Price et al.
(2006), in which people judged the average heights of stick fig-
ures, was somewhat ambiguous because people might have inter-
preted the stick figures as representations of real people and based
their judgments on their general knowledge about people’s heights.
In the first experiment, our approach was to present participants
with sets of three, six, nine, and 12 squares and to ask them to rate
the average size of the squares in each set. Then, in the next four
experiments, we tested potential moderators of the sample size
bias. In Experiment 2, we changed the response to an estimate of
the area of the average square in terms of a standard unit of area.
More important, we varied whether the size of the squares in each
sample varied or was constant. Again, this is a way to test the idea
that the sample size bias occurs because people focus on the most
extreme individual stimuli when judging averages. In Experiment
3, we presented the squares in each set sequentially rather than
simultaneously as a way of showing that it is the sample size rather
than the spatial distribution of the squares that matters. In Exper-
iments 4 and 5, we changed the response mode again to be more
similar to previous research on perceptual averaging. Participants
indicated whether the average square in a set or an individual
comparison square was larger (Experiment 4) or smaller (Experi-
ment 5). These studies were meant to test the possibility that the
sample size bias is limited to quantitative judgments made on a
numeric scale. Remarkably, the sample size bias was quite strong
and consistent across every one of these conditions.

Experiment 1

The primary purpose of Experiment 1 was to test for the sample
size bias in judgments of perceptual averages. The stimuli were
squares presented on a computer screen, and the response was a
rating of the average size of the squares.

Method

Participants. The participants were 35 undergraduate stu-
dents (31 women and four men) at California State University,
Fresno, who participated in this experiment as part of an introduc-
tory psychology course requirement.

Stimuli. The stimuli were 24 sets of gray squares presented on a
white background. These sets varied in both sample size (3, 6, 9, and
12) and in average square size (small and large). In the small-square
sets, there were equal numbers of squares that were 5, 11, and 17 mm
on a side for a mean area of 145.00 mm2. In the large-square sets,
there were equal numbers of squares that were 13, 19, and 25 mm on
a side for a mean area of 385.00 mm2. For each combination of
sample size and average square size, there were three sets of squares
in different quasirandom spatial arrangements. Specifically, the
squares were organized within a 12 � 8 cm rectangular area. For
samples of size 3, three of the four corners of the rectangular area
contained a square. For samples of size 6, 9, and 12, all four corners
of the rectangular area contained a square and the remaining squares
were distributed throughout the remaining space. This served as a
partial control for the envelope area of the squares—the smallest
polygon that contains all the squares.

Design and procedure. Participants were tested individually
using desktop computers. All responses were size judgments made
by using the mouse to click on one of the integers from 1 to 10 that
were arrayed horizontally across the bottom of the screen. Anchor
labels consisted of a small square (3 mm on a side) centered
beneath the 1 at the left end of the scale and a large square (27 mm
on a side) centered beneath the 10 at the right end of the scale. To
ensure that participants were familiar with the rating scale, they
were first presented with 13 individual squares ranging in size
from 3 mm on a side to 27 mm on a side—in a random order—and
judged the size of each one by clicking on a numeral on the rating
scale. They made each of these judgments at their own pace while
the stimulus square remained displayed on the screen. The main
task was then explained to participants as one of using the same
rating scale to judge the average size of the squares in each of
several sets. Participants then made average-size judgments for
two practice sets, had an opportunity to ask questions, and finally
made average-size judgments for the 24 stimulus sets. Again, they
made each of these judgments at their own pace while the stimulus
set remained displayed on the screen, and no feedback was pre-
sented to them at any time about the accuracy of their judgments.
The 24 stimulus sets were presented in a different random order for
each participant, with the constraint that each block of eight trials
contained one set with each combination of sample size and
average square size.

Results and Discussion

For each participant, we computed the mean judgment for
each combination of sample size and average square size.
Figure 1 presents the means and standard errors of these mean
judgments and shows a clear sample size bias, with the judg-
ments increasing as a function of the sample size. To confirm
this statistically, we submitted the mean judgments to a 4
(sample size) � 2 (average square size) repeated-measures
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analysis of variance (ANOVA).1 Not surprisingly, there was a
main effect of average square size, which simply shows that
participants distinguished the small-square sets from the large-
square sets, F(1, 34) � 302.44, p � .001, partial �2 � .90. Most
important for present purposes, there was a linear effect of
sample size, F(1, 34) � 63.66, p � .001, partial �2 � .65. There
was also an unexpected interaction between these two factors,
with the linear effect of sample size being somewhat stronger
for the large-square sets, F(1, 34) � 15.03, p � .001, partial
�2 � .31.

As a slightly different way of looking at these results, we
regressed each participant’s average size judgments onto the sam-
ple size to obtain both unstandardized and standardized regression
slopes for each participant, where a positive slope indicates a
sample size bias. The mean unstandardized regression slope was
0.14 (SD � 0.11), which is significantly greater than zero, t(34) �
7.98, p � .001, d � 1.35. This indicates that, on average, when the
sample size increased by one square, the judged average size
increased by 0.14 units on the 1-to-10 rating scale. The mean
standardized slope was 0.25 (SD � 0.15). This indicates that, on
average, when the sample size increased by one square, the judged
average size increased by 0.25 standard deviations. Perhaps more
remarkably, every one of the 35 participants had a positive regres-
sion slope.

Experiment 2

The results of Experiment 1 are consistent with previous re-
search on the sample size bias and suggest that judgments of
perceptual averages are biased by sample size just as judgments of
conceptual and numerical averages are. In Experiment 2 we rep-
licated this result while changing two important aspects of the
design and procedure. The first is that we changed the response to
be an estimate of area in terms of a standard unit that we provided
(a purple circle that we defined as having an area of one unit). The
second is that we manipulated whether the squares in each sample

varied in size or were all the same size as a way of testing the idea
that the sample size bias requires selective attention to or selective
weighting of more extreme individual stimuli. Recall that Price et
al. (2006) observed a sample size bias in a study in which some of
the sets consisted of identical stick figures and participants judged
the average height of the stick figures. At first, this seems incon-
sistent with a selective attention explanation because there were no
extreme individuals to selectively attend to. But, again, it is pos-
sible that participants interpreted the stick figures as representa-
tions of real people. A group of 10 stick figures might have
prompted them to imagine a group of 10 real people—in which
case they could still selectively attend to the taller imagined people
or weight them more heavily in their judgments. The present study
addresses this issue because it is clear to participants that they are
judging the average size of the very squares they are looking at.
Because all the squares are exactly the same size, there can be no
selective attention to or selective weighting of larger squares.

Method

Participants. The participants were 25 undergraduate stu-
dents (20 women and five men) at California State University,
Fresno, who participated in this experiment as part of an introduc-
tory psychology course requirement.

Stimuli. The primary stimuli were 48 sets of black squares
presented on a white background. The sets varied in terms of the
sample size (3, 6, 9, and 12), the average square size (small and
large), and the variability of the squares (variable or nonvariable).
In the small-square variable sets, there were equal numbers of
squares that were 5, 11, and 17 mm on a side for a mean area of
145.00 mm2. In the large-square variable sets, there were equal
numbers of squares that were 13, 19, and 25 mm on a side for a
mean area of 385.00 mm2. In the small-square nonvariable sets, the
squares were all 11 mm on a side for a mean area of 121.00 mm2.
In the large-square nonvariable sets, the squares were all 19 mm on
a side for a mean area of 361.00 mm2. For each combination of
sample size, average square size, and variability, there were three
sets in three different quasirandom arrangements in which each
square was approximately 1 to 2 cm from its nearest neighbors.
(We made no attempt to control the envelope area of the squares
in this experiment.) In addition, a purple circle 6 mm in diameter
(28.27 mm2) appeared in the upper left corner of the screen
throughout the experiment and was said to represent one unit of
area.

Design and procedure. Participants were tested individually
using desktop computers. They began by reading a detailed set of
instructions that described their task in a general way and ex-
plained how to make area judgments in terms of the standard unit
of area. Specifically, it was explained that the purple circle covered
one unit of area on the screen, and an example was presented to
show that a square that covered the same amount of area as three
purples circles would have an area of three units. Another example
was presented to show how the areas of four different sized
squares could be combined mathematically to find the average

1 In reporting our ANOVA results, we focus on the linear effect of
sample size. Results pertaining to the quadratic and cubic effects for all
experiments are presented in the Appendix. The only one of these effects
that was statistically significant was the quadratic effect in Experiment 1.
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Figure 1. Means and standard errors of participants’ judgments of aver-
age square size as a function of sample size and average square size in
Experiment 1.
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(arithmetic mean) area of the squares. The instructions then ex-
plained that the participants’ goal was not to compute the average
area precisely, but to make an intuitive estimate of the average area
in no more than about 10 s (although no time limit was actually
enforced). The instructions also explained that participants’ judg-
ments would be limited to the integers from 1 to 20 because all of
the averages were within this range.

After making three practice judgments and having an opportu-
nity to ask questions, participants saw the 48 sets of squares in a
random order and estimated the average area of each set by typing
an integer from 1 to 20. They made these judgments at their own
pace while the stimulus sets remained displayed on the screen, and
they received no feedback about their accuracy.

Results and Discussion

Figure 2 presents the means and standard errors of participants’
estimates of average square area as a function of sample size,
square size, and square variability. The figure shows a clear
sample size bias under all conditions. To confirm this statistically,
we computed the mean estimate for each of the 16 combinations of
sample size, average square size, and square variability for each
participant. Then we submitted these mean estimates to a 4 (sam-
ple size) � 2 (square size) � 2 (square variability) repeated-
measures ANOVA. As in Experiment 1, there was a main effect of
square size, which shows that participants reliably distinguished
the small-square sets from the large-square sets, F(1, 24) � 53.47,
p � .001, partial �2 � .69. There was no main effect of square
variability, F(1, 24) � 0.90, p � .77, partial �2 � .004, which
shows that participants did not distinguish the variable sets from
the nonvariable sets (even though there was actually a small
difference in their mean areas). Most important for present pur-
poses, there was a linear effect of sample size, F(1, 24) � 11.44,
p � .002, partial �2 � .32. Unlike in Experiment 1, in this
experiment there was no interaction between sample size and
average square size, F(1, 24) � 0.26, p � .62, partial �2 � .01.
There was also no interaction between sample size and square
variability, F(1, 24) � 0.02, p � .90 partial �2 � .001. This is
particularly important theoretically because it confirms that the
sample size bias does not depend on there being variability among
the individual items (see also Price et al., 2006). This, in turn,
provides evidence against the idea that the sample size bias de-
pends on selective attention to or weighting of the most extreme
stimuli in the set. Finally, there was no interaction between aver-
age square size and variability, F(1, 24) � 0.33, p � .57, partial
�2 � .014, nor was there a three-way interaction among the linear
effect of sample size, average square size, and square variability,
F(1, 24) � 0.59, p � .45, partial �2 � .024.

The nature of the response scale in this experiment makes it
possible to examine the accuracy of participants’ estimates of
average area. The dotted lines in Figure 2 show the objectively
correct areas for the small-square sets and large-square sets in
terms of the standard unit of area that participants used. For the
small-square sets, the mean response is a slight underestimate of
the objective value for samples of three squares, a slight overes-
timate for samples of six squares, and then an increasingly greater
overestimate as the sample size increases to nine and 12 squares.
For the large-square sets, the mean response is a substantial un-
derestimate for samples of three squares and then a smaller un-

derestimate as sample size increases to six, nine, and 12 squares.
These results illustrate that there is no fixed relationship between
sample size and accuracy.

Finally, we also regressed each participant’s average size esti-
mates onto the sample size to obtain both an unstandardized
regression slope and a standardized regression slope for each
participant—where a positive slope indicates sample size bias. The
mean unstandardized regression slope was 0.30 (SD � 0.44),
which was significantly greater than zero, t(24) � 3.37, p � .002,
d � 0.66. This indicates that, on average, when the sample size
increased by one square, the estimated average area of the squares
increased by 0.29 units of area (8.20 mm2). The mean standardized
regression slope was 0.29 (SD � 0.27). This indicates that, on
average, when the sample size increased by one standard devia-
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Figure 2. Means and standard errors of participants’ estimates of average
square area separately by sample size, average square size, and square
variability in Experiment 2. The judgments were made in terms of a
standard unit of area represented by a circle with an area of 28.27 mm2. The
dotted horizontal lines represent what would be objectively correct judg-
ments of area in terms of the standard unit.
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tion, the estimated average area of the squares increased by 0.29
standard deviations. Note that the standardized regression coeffi-
cients can be directly compared across Experiments 1 and 2 and
indicate a similarly strong sample size bias. It is also worth noting
that 24 of the 25 participants (96%) produced positive regression
slopes.

Experiment 3

Experiment 3 was essentially a replication of the variable-
squares condition of Experiment 2 with one very important differ-
ence. The squares in each set were presented sequentially rather
than simultaneously and the estimates of average area were made
immediately after all the squares in the set had been presented.
Previous research on the sample size bias has demonstrated it
under sequential presentation conditions (Price, 2001; Smith &
Price, 2010), which strongly suggests that we should observe it
here as well. Most important, sequential presentation controls for
the spatial distribution of the squares. In Experiments 1 and 2, the
more squares there were in a set, the more total area those squares
covered and the larger the envelope area of those squares was.
Thus, it is possible that either the total area or the envelope
area—rather than the sample size—was what is driving the sample
size bias. But a sample size bias with sequential presentation of the
squares rules out both of these possibilities.

Method

Participants. The participants were 21 undergraduate stu-
dents (15 women and six men) at California State University,
Fresno, who participated as part of an introductory psychology
course requirement.

Stimuli, design, and procedure. The design and procedure
were essentially the same as for Experiment 2. However, only the
variable sets of squares were used and the squares in each set
appeared one at a time in a random order in the center of the
screen. Each square appeared for 1,000 ms with a 500-ms interval
between squares. Immediately after the last square in the sample
was presented, participants were prompted to enter their average
area estimate, which again they did at their own pace.

Results and Discussion

Figure 3 presents the means and standard errors of participants’
estimates of average square area as a function of sample size and
average square size. Again, there was a main effect of average
square size, which simply shows that participants distinguished the
small-square sets from the large-square sets, F(1, 20) � 17.66, p �
.001, partial �2 � .47. Most important for present purposes, there
was also a linear effect of sample size, F(1, 20) � 21.02, p � .001,
partial �2 � .51. There was no interaction between sample size and
average square size, F(1, 20) � 2.55, p � .13, partial �2 � .11. In
terms of accuracy of participants’ estimates, the pattern was sim-
ilar to that from Experiment 2.

Again, we also regressed each participant’s average-area esti-
mates onto the sample size to obtain both an unstandardized
regression slope and a standardized regression slope for each
participant. The mean unstandardized regression slope was 0.38
(SD � 0.38), which was significantly greater than zero, t(20) �

4.58, p � .001, d � 1.00. This indicates that, on average, when the
sample size increased by one square the estimated average area of
the squares increased by 0.38 units (10.75 mm2). The mean stan-
dardized regression slope was 0.37 (SD � 0.28). This indicates
that, on average, when the sample size increased by one standard
deviation, the estimated average area of the squares increased by
0.37 standard deviations—a slightly stronger effect than in Exper-
iments 1 and 2. Furthermore, 19 of the 21 participants (90%) had
positive slopes.

Again, the sequential presentation of the squares in Experi-
ment 3 rules out the possibility that either the total area of the
squares or the envelope area of the squares—as opposed to the
number of squares—is what is driving the sample size bias. Of
course, the design used in Experiment 3 introduces a new
confounding variable—the total amount of time it takes to
present the squares in a set. So it is possible that total presen-
tation time is driving the sample size bias here. But this alter-
native explanation has two difficulties. One is that, in their
experiments on number averaging, Smith and Price (2010)
observed the sample size bias even in a sequential-presentation
condition in which total presentation time was controlled by
varying the time between stimulus numbers within a set. The
second is that it is more parsimonious to assume that the sample
size bias is driven by sample size for both simultaneous and
sequential presentation rather than being driven by total area or
envelope area for simultaneous presentation and by total dura-
tion for sequential presentation.

Experiments 4 and 5

In Experiments 4 and 5 we addressed the question of whether
there is a sample size bias in comparative judgments of size. This
is important because all of our previous research on the sample
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Figure 3. Means and standard errors of participants’ estimates of average
square area separately by sample size and average square size in Experi-
ment 3. The squares in each set were presented sequentially and judgments
were made in terms of a standard unit of area represented by a circle with
an area of 28.27 mm2. The dotted horizontal lines represent what would be
objectively correct judgments of area in terms of the standard unit.
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size bias has focused on ratings and estimates, while research on
perceptual averaging has tended to focus on comparative judg-
ments (e.g., Ariely, 2001; Chong & Treisman, 2005). This leaves
open the possibility that the sample size bias is introduced only at
the point of generating a quantitative response on a numeric scale.
The internal representation of average might remain unaffected. In
Experiment 4, we tested for this possibility by asking participants
on each trial to compare a set of squares with an individual
comparison square and choose which was larger: the average of
the set of squares or the comparison square. Note, however, that a
tendency to choose the average of the set could indicate that that
sample size is affecting the representation of the average, but it
could also indicate a simpler bias toward choosing physically
larger stimuli over physically smaller stimuli (Silvera, Josephs, &
Giesler, 2002). In Experiment 5, therefore, we asked participants
to choose which was smaller: the average of the set of squares or
the comparison square. Here the sample size bias should be re-
flected in a tendency to choose the comparison square, which
would rule out the possibility that participants are simply choosing
the physically larger stimulus.

Method

Participants. The participants were 110 undergraduate stu-
dents at Appalachian State University, who participated in this
experiment as part of an introductory psychology course require-
ment. There were 58 in Experiment 4 and 52 in Experiment 5.

Stimuli. The primary stimuli were sets of black squares on a
white background, which varied in terms of their sample size (3, 6,
9, 12, and 15). Each set contained an equal number of squares that
were 9.09, 11.69, and 14.29 mm on a side for a mean area of
141.16 mm2. The squares in each set were presented simultane-
ously in the upper two-thirds of the screen and their positions were
determined quasirandomly on each trial, with the constraint that no
squares could overlap.

Design and procedure. Participants were tested individually
using desktop computers. On the first trial of the experiment, they
were presented with a sample of nine squares. At the same time,
six individual squares ranging from 7.79 mm to 16.89 mm on a
side were arrayed from left to right across the bottom of the screen.
Participants were instructed to select the individual square from
this array that was closest to the average size of the sample of nine
squares. Unknown to the participants, this established a compari-
son square to be used in the rest of the experiment.2

Next came 19 trials on which a set of squares and a comparison
square were presented simultaneously, and participants were asked
to make their comparative judgments. In Experiment 4 they were
asked to indicate which was larger: the average of the set of
squares or the comparison square. In Experiment 5 they were
asked to indicate which was smaller: the average of the set of
squares or the comparison square. The set of squares appeared
within the top two thirds of the screen and the individual compar-
ison square was centered within the bottom third. A horizontal
band separated the set of squares and the comparison square and
contained both the judgment prompt (“Which is larger/smaller, the
size of the average square in the group above or the square
below?”) and two buttons (one that said “Average of Group” and
one that said “Individual Square”). These stimuli remained on the

screen until participants responded by clicking on one of the two
buttons.

Fifteen of these 19 trials were critical trials on which each of the
five sample sizes (3, 6, 9, 12, and 15) appeared three times each
and the comparison square was the one that participants had
selected on the first trial. The other four trials were filler trials. For
two of the filler trials, the sample sizes were 3 and 15 and the
comparison square was 7.79 mm on a side (slightly smaller than
the smallest square in the sample). For the other two filler trials,
the sample sizes were 6 and 12 and the comparison square was
16.89 mm on a side (slightly larger than the largest square in the
sample). The presentation order of these 19 trials (15 critical and
four filler) was determined randomly for each participant.

Results and Discussion

First, it is worth noting that participants made the correct choice
on 97% of the filler trials in Experiment 4 and 98% of the filler
trials in Experiment 5, indicating that they understood their task
and could almost always make the correct choice when it was
fairly obvious.

For each participant, we computed the percentage of critical
trials on which he or she indicated that the average of the set of
squares was larger than the comparison square (Experiment 4) or,
analogously, that the comparison square was smaller than the
average of the set of squares (Experiment 5). Figure 4 presents the
means and standard errors of these percentages and again we see
a clear sample size bias. We then analyzed these results separately
for the two experiments. In Experiment 4, a repeated-measures
ANOVA on the percentages showed a linear effect of sample size,
F(1, 57) � 38.06, p � .001, partial �2 � .40. As the sample size
increased, participants were more likely to choose the average of
the set as being larger than the individual comparison square. The
mean of the unstandardized regression slopes was 0.03 (SD �
0.04), which was significantly greater than zero, t(57) � 6.18, p �
.001, d � 0.81. The mean of the standardized regression slopes
was 0.41 (SD � 0.51). Of the 58 participants, 43 (74%) had
positive slopes, while 11 (19%) had negative slopes.

In Experiment 5, there was also a linear effect of sample size,
F(1, 51) � 4.16, p � .05, partial �2 � .08. In other words, as the
sample size increased, participants were again more likely to
perceive the average of the set to be larger as indicated by their
being more likely to choose the comparison square as smaller. The
mean of the unstandardized regression slopes was 0.01 (SD �
0.03), which was significantly greater than zero, t(51) � 2.03, p �
.05, d � 0.28. The mean of the standardized regression slopes was
0.18 (SD � 0.53). Of the 52 participants, 29 (56%) had positive
slopes while 15 (29%) had negative slopes.

Given that these two experiments were conducted in the same
lab within a few months of each other, it also made sense to
compare them directly to see if there were any differences. To do
so, we conducted a 5 (sample size) � 2 (question: larger vs.

2 In a pilot study, we provided the comparison square instead of letting
participants choose it. The problem with this approach was that some
participants always perceived the comparison square to be smaller than the
average of the set while others always perceived it to be larger. Thus, it was
not possible to observe a sample size bias for these participants using this
approach.
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smaller) ANOVA. Of course, this revealed a significant linear
effect of sample size, F(1, 108) � 33.55, p � .001, partial �2 �
.24. There was no main effect of question, F(1, 108) � 0.87, p �
.35, partial �2 � .008, but there was an interaction, with the linear
effect of sample size being stronger in the larger-question condi-
tion, F(1, 108) � 8.56, p � .004, partial �2 � .07. One possible
explanation of this difference is that it reflects another effect that
operates independently—and in the opposite direction—of the
sample size bias. One possibility is the aforementioned tendency
for people to prefer larger stimuli over smaller ones (Silvera et al.,
2002). Thus, when choosing whether the average of a set of
squares or an individual comparison square is larger, both the
sample size bias and the preference for larger stimuli would make
them more likely to choose the set as the sample size increases. But
when choosing whether the average of a set of squares or an
individual comparison square is smaller, the sample size bias
would lead them to choose the individual square as the sample size
increases, but the preference for larger stimuli would lead them to
choose the set as the sample size increases. This would result in a
weakened overall sample size bias.

Nevertheless, the results of Experiments 4 and 5 show that the
sample size bias does extend to comparative judgments of size.
These results are also consistent with the idea that sample size
affects the internal representation of the average. It is not simply a
response bias that occurs when people make a quantitative judg-
ment on a numeric scale, nor is it simply a response bias that
involves choosing physically larger stimuli over physically smaller
ones.

General Discussion

Summary

In this series of five experiments, we demonstrated a sample size
bias on people’s judgments of the average size of squares; the

more squares there were in a set, the greater people judged their
average size to be. Furthermore, this effect occurred across a wide
range of conditions. It occurred when the squares in each set were
presented simultaneously and also when they were presented se-
quentially. It occurred when the squares in the sets varied in size
and also when they were all the same size. It occurred when the
judgments were ratings or estimates of the average size of a set of
squares and also when they involved comparisons of the average
size of a set of squares to the size of an individual comparison
square. And for the comparisons, it occurred when participants had
to indicate whether the average of the set or the comparison square
was larger and also when they had to indicate whether the average
of the set or the comparison square was smaller.

The robustness of the sample size bias is even more impressive
when one takes into account that it has already been demonstrated
when people judge the average risk of groups of people—whether
the people are represented by written descriptions presented se-
quentially, photographs of real people presented simultaneously,
or even identical stick figures (Price, 2001; Price et al., 2006). And
it has been demonstrated when people quickly estimate the mean
of sets of numbers presented simultaneously or sequentially (Smith
& Price, 2010). Across all of these studies, the sample size bias has
been strong and consistent, with the vast majority of participants
exhibiting an effect in the expected direction.

Theoretical Considerations

As we argued in the introduction, the robustness of the sample
size bias casts doubt on many plausible explanations that can
account for it under some conditions but not others—and the
present results continue this trend. For example, the nature of the
task—judging average size—casts doubt on the idea that partici-
pants fundamentally misunderstand what they are supposed to do
(e.g., summing rather averaging). The sample size bias for sequen-
tially presented stimuli (Experiment 3) casts doubt on the idea that
the effect is driven by the spatial distribution of the items in a set
(as opposed to the number of items). The sample size bias for
nonvariable sets (Experiment 2) casts doubt on the idea that
participants’ judgments of average are based primarily on the most
extreme stimuli in a set. The sample size bias for comparative
judgments (Experiment 4) casts doubt on the idea that it only
affects quantitative judgments on a numeric scale, and the sample
size bias for comparisons in terms of smallness (Experiment 5)
casts doubt on the idea that people are simply more likely to
choose larger samples.

Yet another explanation that the present results cast doubt on is
that people’s judgments increase as a function of their response
time. Although response times in the present experiments are
difficult to interpret because participants were free to respond at
their own pace, they still provide some insight into this issue. First,
the mean response time generally did increase as a function of
sample size in the present experiments. However, unlike the sam-
ple size bias itself, this result is not a strong one at the level of
individual participants. For example, in Experiment 1 there were
18 participants who exhibited positive correlations between sam-
ple size and response time, but there were 17 participants who
exhibited negative correlations. Recall also that every participant
in Experiment 1 exhibited a positive correlation between sample
size and judged average size. In other words, the sample size bias
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was observed among participants who took more time to respond
to larger samples and also among people who took less time to
respond to larger samples. Although there is certainly more that
can be learned about judgments of averages from response times in
experiments designed specifically for that purpose, the present
results suggest that the sample size bias is not closely related to
them.

We believe that all of the present results are consistent with the
theory we described in the introduction—that the sample size bias
is a priming effect. Specifically, it seems likely that the sample size
activates an internal representation of relative quantity or magni-
tude that directly affects the internal representation of the average
and therefore affects the judgment of average. In addition to
accounting for the robustness of the results, this theory is consis-
tent with research showing that stimulus numerosity and frequency
do seem to activate internal representations of magnitude (e.g.,
Dehaene, 2011; Dormal & Pesenti, 2009; Feigenson, Dehaene, &
Spelke, 2004) and that irrelevant numerosities and frequencies do
affect subsequent quantitative judgments (Dormal & Pesenti,
2007; Friedenberg & Limratana, 2005; Pelham et al., 1994).

Although our research has focused exclusively on judgments of
average—this priming theory implies that the judgment does not
have to be about an average. So, for example, the number of
squares in a set should also affect judgments about the size of any
individual square in the set or the total area covered by the squares
in the set (cf. Pelham et al., 1994). In fact, from the priming
perspective, the number of items in a set should affect judgments
about entirely different stimuli. For example, if participants were
exposed to different numbers of squares while estimating quanti-
ties like the length of the Mississippi River or the high temperature
in Honolulu, the number of squares should affect these judgments
too. Of course, there would have to be boundary conditions on
these effects. Among them are that the sample size might require
some minimal level of cognitive processing and the judgment
might have to be made simultaneously with the presentation of the
set or immediately afterward (cf. Wilson, Houston, Etling, &
Brekke, 1996). Another potential boundary condition is that there
might have to be a certain amount of uncertainty associated with
the judgment. Clearly there is some uncertainty in judging average
risk, number, and size. But what if people were to judge the
average length of a set of yard sticks or the average weight of a set
of 16-pound bowling balls? Here it seems likely that knowledge
about the items being judged—along with their conceptual under-
standing of averages—would lead them to the same (correct)
answer regardless of the sample size.

Yet another factor that might moderate the sample size bias is
whether sample size is varied within subject—as in all of our
research to date—or between subjects. On the one hand, a within-
subject design calls attention to the changing sample sizes, which
may be important for producing the effect. In fact, research on the
response of the intraparietal sulcus to the presentation of sets of
stimuli shows habituation when the same number of items is
presented repeatedly and renewed activation when there is a
change in this number (Pinel, Piazza, Le Bihan, & Dehaene, 2004).
For this reason, in a between-subjects design—or even a within-
subject design with the stimuli blocked by sample size—it is
possible that the sample size bias would be reduced or even
eliminated. On the other hand, conceptually similar effects studied
by researchers in judgment and decision making do not seem to

require within-subject designs. For example, Wilson et al.
(1996)—in a between-subjects design—found that an arbitrary ID
number affected participants’ subsequent estimates of the number
of physicians listed in the telephone directory. Similarly, Oppen-
heimer, LeBoeuf, and Brewer (2008)—also in a between-subjects
design—found that copying a set of short or long lines affected
participants’ subsequent estimates of the length of the Mississippi
River and the average high temperature in Honolulu. Thus, it
remains important to study the role of within-subject versus
between-subjects designs in producing the sample size bias—not
only because of its theoretical implications but because of its
implications for understanding when the sample size bias is likely
to occur outside the laboratory.

Although we believe that the priming account of the sample size
bias is highly plausible and leads to many interesting and emi-
nently testable predictions, we should emphasize that there are still
other kinds of accounts that should be explored. One kind is that
sample size affects some other variable that, in turn, affects quan-
titative judgments. We have already seen that it seems unlikely to
be the spatial distribution of the stimuli or the time it takes to
respond to them. But there are still other possibilities. For example,
making judgments about larger samples might place a greater load
on working memory, and quantitative judgments might increase as
a function of working memory load. This idea could be tested by
having participants make quantitative judgments while manipulat-
ing the working memory demands of a secondary task. Another
kind of account is a psychophysical one. Perhaps to make their
judgments of average, people form representations of the dimen-
sion under consideration for the individual items, mentally sum
these representations, and then divide this sum by a representation
of the sample size. The psychophysical function for sample size is
almost certainly negatively accelerated (e.g., Feigenson et al.,
2004; Hintzman, 1988), which could produce a sample size bias
because participants would be dividing by a subjective sample size
that increases too slowly relative to the objective sample size.

Conclusions

The sample size bias in judgments of averages appears to be an
extremely robust phenomenon with important theoretical and prac-
tical implications. Theoretically, it is important now to identify the
precise mechanism underlying it and to explore how it relates to
conceptually similar effects from the study of quantitative cogni-
tion and perception and judgment and decision making. Practi-
cally, it is also important to study whether the sample size bias
affects judgments of averages in contexts in which they frequently
occur. These include supervisors’ evaluations of groups of people
(e.g., students, athletes), patients’ judgments of average symptom
frequency or severity, physicians’ judgments of average treatment
outcome, consumers’ estimates of average price, and people’s
judgments of average completion time for a repeated task. Given
the robustness of the sample size bias, it seems likely that it will
turn up in many, if not all, of these domains.

References

Alvarez, G. A. (2011). Representing multiple objects as an ensemble
enhances visual cognition. Trends in Cognitive Sciences, 15, 122–131.
doi:10.1016/j.tics.2011.01.003

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1329SAMPLE SIZE BIAS

http://dx.doi.org/10.1016/j.tics.2011.01.003


Alvarez, G. A., & Oliva, A. (2008). The representation of simple ensemble
visual features outside the focus of attention. Psychological Science, 19,
392–398. doi:10.1111/j.1467-9280.2008.02098.x

Anderson, N. H. (1964). Test of a model for number-averaging behavior.
Psychonomic Science, 1, 191–192. doi:10.3758/BF03342858

Ariely, D. (2001). Seeing sets: Representation by statistical properties.
Psychological Science, 12, 157–162. doi:10.1111/1467-9280.00327

Bauer, B. (2009). Does Stevens’s power law for brightness extend to
perceptual brightness averaging? The Psychological Record, 59, 171–
186.

Beach, L. R., & Swenson, R. G. (1966). Intuitive estimation of means.
Psychonomic Science, 5, 161–162. doi:10.3758/BF03328331

Cantlon, J. F., Platt, M. L., & Brannon, E. M. (2009). Beyond the number
domain. Trends in Cognitive Sciences, 13, 83–91. doi:10.1016/j.tics
.2008.11.007

Chochon, F., Cohen, L., Van De Moortele, P., & Dehaene, S. (1999).
Differential contributions of the left and right inferior parietal lobules to
number processing. Journal of Cognitive Neuroscience, 11, 617–630.
doi:10.1162/089892999563689

Chong, S. C., & Treisman, A. (2005). Statistical processing: Computing the
average size in perceptual groups. Vision Research, 45, 891–900. doi:
10.1016/j.visres.2004.10.004

Dehaene, S. (2011). The number sense: How the mind creates mathemat-
ics. New York, NY: Oxford University Press.

Dormal, V., & Pesenti, M. (2007). Numerosity-length interference: A Stroop
experiment. Experimental Psychology, 54, 289–297. doi:10.1027/1618-
3169.54.4.289

Dormal, V., & Pesenti, M. (2009). Common and specific contributions of
the intraparietal sulci to numerosity and length processing. Human Brain
Mapping, 30, 2466–2476. doi:10.1002/hbm.20677

Dormal, V., Seron, X., & Pesenti, M. (2006). Numerosity-duration inter-
ference: A Stroop experiment. Acta Psychologica, 121, 109–124. doi:
10.1016/j.actpsy.2005.06.003

Epley, N., & Gilovich, T. (2004). Are adjustments insufficient? Personality
and Social Psychology Bulletin, 30, 447– 460. doi:10.1177/
0146167203261889

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number.
Trends in Cognitive Sciences, 8, 307–314. doi:10.1016/j.tics.2004.05
.002

Friedenberg, J., & Limratana, W. (2005). Hierarchical number estimation.
Psychological Research, 69, 211–220. doi:10.1007/s00426-003-0169-y

Hintzman, D. L. (1988). Judgments of frequency and recognition memory
in a multiple-trace memory model. Psychological Review, 95, 528–551.
doi:10.1037/0033-295X.95.4.528

Levin, I. P. (1975). Information integration in numerical judgments and
decision processes. Journal of Experimental Psychology: General, 104,
39–53. doi:10.1037/0096-3445.104.1.39

Matthews, W. J., Stewart, N., & Wearden, J. H. (2011). Stimulus intensity
and the perception of duration. Journal of Experimental Psychology:

Human Perception and Performance, 37, 303–313. doi:10.1037/
a0019961

Oppenheimer, D. M., LeBoeuf, R. A., & Brewer, N. T. (2008). Anchors
aweigh: A demonstration of cross-modality anchoring and magnitude
priming. Cognition, 106, 13–26. doi:10.1016/j.cognition.2006.12.008

Parkes, L., Lund, J., Angelucci, A., Solomon, J. A., & Morgan, M. (2001).
Compulsory averaging of crowded orientation signals in human vision.
Nature Neuroscience, 4, 739–744. doi:10.1038/89532

Pelham, B. W., Sumarta, T. T., & Myaskovsky, L. (1994). The easy path
from many to much: The numerosity heuristic. Cognitive Psychology,
26, 103–133. doi:10.1006/cogp.1994.1004

Peterson, C. R., & Beach, L. R. (1967). Man as an intuitive statistician.
Psychological Bulletin, 68, 29–46. doi:10.1037/h0024722

Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and
overlapping cerebral representations of number, size, and luminance
during comparative judgments. Neuron, 41, 983–993. doi:10.1016/
S0896-6273(04)00107-2

Price, P. C. (2001). A group size effect on personal risk judgments:
Implications for unrealistic optimism. Memory & Cognition, 29, 578–
586. doi:10.3758/BF03200459

Price, P. C., Smith, A. R., & Lench, H. C. (2006). The effect of target group
size on risk judgments and comparative optimism: The more, the riskier.
Journal of Personality and Social Psychology, 90, 382–398. doi:
10.1037/0022-3514.90.3.382

Silvera, D. H., Josephs, R. A., & Giesler, R. B. (2002). Bigger is better:
The influence of physical size on aesthetic preference judgments. Jour-
nal of Behavioral Decision Making, 15, 189–202. doi:10.1002/bdm.410

Smith, A. R., & Price, P. C. (2010). Sample size bias in the estimation of
means. Psychonomic Bulletin & Review, 17, 499–503. doi:10.3758/PBR
.17.4.499

Spencer, J. (1961). Estimating averages. Ergonomics, 4, 317–328. doi:
10.1080/00140136108930533

Spencer, J. (1963). A further study of estimating averages. Ergonomics, 6,
255–265. doi:10.1080/00140136308930705

Walsh, V. (2003). A theory of magnitude: Common cortical metrics of
time, space and quantity. Trends in Cognitive Sciences, 7, 483–488.
doi:10.1016/j.tics.2003.09.002

Watamaniuk, S. N., & Duchon, A. (1992). The human visual system
averages speed information. Vision Research, 32, 931–941. doi:
10.1016/0042-6989(92)90036-I

Weinstein, N. D. (1980). Unrealistic optimism about future life events.
Journal of Personality and Social Psychology, 39, 806–820. doi:
10.1037/0022-3514.39.5.806

Weinstein, N. D. (1987). Unrealistic optimism about susceptibility to
health problems: Conclusions from a community-wide sample. Journal
of Behavioral Medicine, 10, 481–500. doi:10.1007/BF00846146

Wilson, T. D., Houston, C. E., Etling, K. M., & Brekke, N. (1996). A new
look at anchoring effects: Basic anchoring and its antecedents. Journal
of Experimental Psychology: General, 125, 387–402. doi:10.1037/0096-
3445.125.4.387T

hi
s

do
cu

m
en

t
is

co
py

ri
gh

te
d

by
th

e
A

m
er

ic
an

Ps
yc

ho
lo

gi
ca

l
A

ss
oc

ia
tio

n
or

on
e

of
its

al
lie

d
pu

bl
is

he
rs

.
T

hi
s

ar
tic

le
is

in
te

nd
ed

so
le

ly
fo

r
th

e
pe

rs
on

al
us

e
of

th
e

in
di

vi
du

al
us

er
an

d
is

no
t

to
be

di
ss

em
in

at
ed

br
oa

dl
y.

1330 PRICE, KIMURA, SMITH, AND MARSHALL

http://dx.doi.org/10.1111/j.1467-9280.2008.02098.x
http://dx.doi.org/10.3758/BF03342858
http://dx.doi.org/10.1111/1467-9280.00327
http://dx.doi.org/10.3758/BF03328331
http://dx.doi.org/10.1016/j.tics.2008.11.007
http://dx.doi.org/10.1016/j.tics.2008.11.007
http://dx.doi.org/10.1162/089892999563689
http://dx.doi.org/10.1016/j.visres.2004.10.004
http://dx.doi.org/10.1016/j.visres.2004.10.004
http://dx.doi.org/10.1027/1618-3169.54.4.289
http://dx.doi.org/10.1027/1618-3169.54.4.289
http://dx.doi.org/10.1002/hbm.20677
http://dx.doi.org/10.1016/j.actpsy.2005.06.003
http://dx.doi.org/10.1016/j.actpsy.2005.06.003
http://dx.doi.org/10.1177/0146167203261889
http://dx.doi.org/10.1177/0146167203261889
http://dx.doi.org/10.1016/j.tics.2004.05.002
http://dx.doi.org/10.1016/j.tics.2004.05.002
http://dx.doi.org/10.1007/s00426-003-0169-y
http://dx.doi.org/10.1037/0033-295X.95.4.528
http://dx.doi.org/10.1037/0096-3445.104.1.39
http://dx.doi.org/10.1037/a0019961
http://dx.doi.org/10.1037/a0019961
http://dx.doi.org/10.1016/j.cognition.2006.12.008
http://dx.doi.org/10.1038/89532
http://dx.doi.org/10.1006/cogp.1994.1004
http://dx.doi.org/10.1037/h0024722
http://dx.doi.org/10.1016/S0896-6273%2804%2900107-2
http://dx.doi.org/10.1016/S0896-6273%2804%2900107-2
http://dx.doi.org/10.3758/BF03200459
http://dx.doi.org/10.1037/0022-3514.90.3.382
http://dx.doi.org/10.1037/0022-3514.90.3.382
http://dx.doi.org/10.1002/bdm.410
http://dx.doi.org/10.3758/PBR.17.4.499
http://dx.doi.org/10.3758/PBR.17.4.499
http://dx.doi.org/10.1080/00140136108930533
http://dx.doi.org/10.1080/00140136108930533
http://dx.doi.org/10.1080/00140136308930705
http://dx.doi.org/10.1016/j.tics.2003.09.002
http://dx.doi.org/10.1016/0042-6989%2892%2990036-I
http://dx.doi.org/10.1016/0042-6989%2892%2990036-I
http://dx.doi.org/10.1037/0022-3514.39.5.806
http://dx.doi.org/10.1037/0022-3514.39.5.806
http://dx.doi.org/10.1007/BF00846146
http://dx.doi.org/10.1037/0096-3445.125.4.387
http://dx.doi.org/10.1037/0096-3445.125.4.387


Appendix

Additional Statistical Results: ANOVA Results for Involving Quadratic and Cubic Effects of Sample
Size for All Experiments

Effect df F p Partial �2

Experiment 1
Quadratic effect 1, 34 4.60 .04 .119
Cubic effect 1, 34 0.83 .37 .024
Quadratic � Sizea 1, 34 0.74 .40 .021
Cubic � Size 1, 34 1.38 .25 .039

Experiment 2
Quadratic effect 1, 24 2.75 .11 .103
Cubic effect 1, 24 0.09 .77 .004
Quadratic � Size 1, 24 0.12 .73 .005
Cubic � Size 1, 24 0.22 .64 .009
Quadratic � Varb 1, 24 0.26 .61 .011
Cubic � Var 1, 24 0.02 .90 .001
Quadratic � Area � Var 1, 24 2.51 .13 .095
Cubic � Area � Var 1, 24 0.29 .59 .012

Experiment 3
Quadratic effect 1, 20 3.12 .09 .135
Cubic effect 1, 20 1.50 .24 .070
Quadratic � Size 1, 20 0.74 .40 .036
Cubic � Size 1, 20 0.00 .97 .000

Experiment 4
Quadratic effect 1, 57 2.69 .11 .05
Cubic effect 1, 57 1.75 .19 .03

Experiment 5
Quadratric effect 1, 51 0.70 .41 .01
Cubic effect 1, 51 1.12 .30 .02

Experiment 4 and 5 combined
Quadratic effect 1, 108 0.24 .63 .00
Cubic effect 1, 108 2.81 .10 .03
Quadratic � Experimentc 1, 108 2.99 .09 .03
Cubic � Experiment 1, 108 0.01 .91 .00

Note. ANOVA � analysis of variance.
a “Size” refers to the size of the squares in a set: smaller or larger. b “Var” refers to the variability of the squares
in a set: variable or nonvariable. c “Experiment” refers to Experiment 4 in which participants were asked
whether the average of the set or the comparison square was larger or Experiment 5 in which they indicated
whether the average of the set or the comparison square was smaller.
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