
People must often make judgments about the aver-
age or typical member of a group on a single quantita-
tive dimension. For example, a teacher might be asked 
by his students what the class average was on an exam. 
Or a survey respondent might be asked to report the av-
erage number of times she engages in a given behavior 
(e.g., consumes an alcoholic drink) per day, week, or year. 
Although previous research has found that such central 
tendency judgments tend to be accurate—a conclusion 
that we do not dispute—we hypothesize that they also re-
flect a systematic sample size bias. That is, they tend to 
increase as a function of the sample size, so that larger 
groups are judged to have greater central tendencies than 
smaller groups are. Furthermore, we believe that this is a 
fairly general bias that has implications for understanding 
a variety of judgment phenomena and also basic processes 
involved in quantitative reasoning and judgment.

Early researchers who studied central tendency judg-
ments conceptualized people as “intuitive statisticians” 
(Peterson & Beach, 1967) and found them to be quite ac-
curate when estimating the arithmetic mean of a sample 
of numbers (Anderson, 1964; Beach & Swenson, 1966; 
Levin, 1975; Spencer, 1961, 1963). For example, Spen-
cer’s (1963) participants estimated the mean of several 
sets of either 10 or 20 numbers that varied in terms of 
their variance and skewness. His overall finding was that 
“mean errors were remarkably low for all conditions” 
(p. 256). Beach and Swenson conducted a similar study 
with similar results, leading them to conclude that “the 
most important result of this experiment is the high de-

gree of accuracy evidenced in [participants’] estimates” 
(p. 162).

Recently, however, we have found evidence of a sys-
tematic sample size bias in people’s central tendency judg-
ments.1 For example, Price (2001) showed participants 
descriptions of several fictional employees in terms of 
their risk factors for having a heart attack and asked the 
participants to judge the heart attack risk of the average 
employee. He found that the risk of the average employee 
was judged to be higher as the company size increased 
from 5 to 10 employees, then again as the company size 
increased from 10 to 15 employees. In an extensive set of 
follow-up studies, Price, Smith, and Lench (2006) found 
a similar sample size bias when the stimulus people were 
presented in photographs and participants judged the like-
lihood that the average group member would experience a 
wide variety of negative, positive, and even neutral events. 
In their final study, Price et al. observed the sample size 
bias when the stimuli were identical stick figures and 
participants estimated their average height. This result is 
important, because it casts doubt on two plausible expla-
nations of the sample size bias. One is that people mis-
understand their task to be that of judging the likelihood 
that at least one person in the group will experience the 
event in question. No such misunderstanding is possible 
for height judgments. The second is that people attend 
primarily to extreme (e.g., riskier, taller) individuals, or 
weight them more heavily in their judgments. Because the 
groups in this study consisted of identical stick figures, 
however, there were no extreme individuals.

	 499	 © 2010 The Psychonomic Society, Inc.

Sample size bias in the estimation of means

Andrew R. Smith
University of Iowa, Iowa City, Iowa

and

Paul C. Price
California State University, Fresno, California

The present research concerns the hypothesis that intuitive estimates of the arithmetic mean of a sample of 
numbers tend to increase as a function of the sample size; that is, they reflect a systematic sample size bias. 
A similar bias has been observed when people judge the average member of a group of people on an inferred 
quantity (e.g., a disease risk; see Price, 2001; Price, Smith, & Lench, 2006). Until now, however, it has been 
unclear whether it would be observed when the stimuli were numbers, in which case the quantity need not be 
inferred, and “average” can be precisely defined as the arithmetic mean. In two experiments, participants esti-
mated the arithmetic mean of 12 samples of numbers. In the first experiment, samples of from 5 to 20 numbers 
were presented simultaneously and participants quickly estimated their mean. In the second experiment, the 
numbers in each sample were presented sequentially. The results of both experiments confirmed the existence 
of a systematic sample size bias.

Psychonomic Bulletin & Review
2010, 17 (4), 499-503
doi:10.3758/PBR.17.4.499

A. R. Smith, andrew-r-smith@uiowa.edu



500        Smith and Price

to make a precise calculation. Participants then completed one prac-
tice estimation trial under a time limit before proceeding to the 12 
regular estimation trials.

Participants were randomly assigned to see one of the four stimu-
lus sets of 12 samples. The samples were presented in a new random 
order for each participant. Each sample was displayed in the center 
of the screen in a grid with 5 rows and 4 columns. Samples with 
fewer than 20 numbers filled the grid starting from the leftmost col-
umn. The participants responded by typing their estimates using the 
number pad of the keyboard. Once they typed in their estimates, they 
pressed the enter key to see the next sample.

The participants were randomly assigned to one of two time limit 
conditions. In the constant-time-per-sample condition, they had 
5,000 msec per sample to make their estimates. This held the time 
per sample constant, but allowed the time per number to vary. In the 
constant-time-per-number condition, they had 500 msec per num-
ber in the sample (e.g., the sample of 5 numbers was displayed for 
2,500 msec). This held the time per number constant but allowed the 
time per sample to vary. On each trial in both time limit conditions, 
a vertical bar appeared to the right of the number grid. When the trial 
began, the bar started becoming shorter, completely disappearing 
when the allotted time was up.

Results and Discussion
Three participants were dropped from the analyses be-

cause their responses indicated they either misunderstood 
their task or were not attempting to provide accurate esti-
mates. We conducted a repeated measures ANOVA with 
sample size and objective mean as within-subjects fac-
tors and stimulus set and timing condition as between-
subjects factors. Focusing on the linear contrasts, this 
analysis confirmed that there was a main effect of sample 
size [F(1,126) 5 6.33, p 5 .013, η2

p 5 .05]. As Figure 1 
shows, participants’ estimates tended to increase as the 
size of the sample increased. The participants were sensi-
tive to the objective mean of the samples, as evidenced by 
the significant main effect of objective mean [F(1,126) 5 
61.35, p , .001, η2

p 5 .33]. There was no main effect of 
stimulus set [F(3,126) 5 0.30, p 5 .82, η2

p 5 .007]. There 
was a marginally significant main effect of timing condi-
tion [F(1,126) 5 2.87, p 5 .09, η2

p 5 .02], indicating that 
participants in the constant-time-per-number condition 
gave higher estimates than participants in the constant-

Price et al. (2006) suggested that the sample size bias 
occurs because people automatically encode the sample 
size and integrate it with their central tendency judgments. 
Such a general explanation suggests that the sample size 
bias should be a very general phenomenon. For example, it 
should be observed when people make intuitive estimates 
of the mean of a set of numbers, as in the intuitive statis-
tics research. In fact, some of those data are consistent 
with this hypothesis. Levin (1975, Experiment 3) showed 
participants groups of numbers that were said to represent 
the percent price increase for randomly selected items in a 
store, and their task was to estimate the mean percent price 
increase. The estimated means for samples of 8, 16, 32, 
and 64 items were 45.7, 46.2, 48.1, and 49.7, respectively. 
Although there appears to have been a sample size bias, 
the stimuli were not constructed, nor the data analyzed, to 
test this hypothesis specifically.

The primary goal of the present study, therefore, was 
to systematically test the hypothesis that there is a sample 
size bias in people’s intuitive estimates of the mean of a 
set of numbers. It is quite possible that we will not ob-
serve the sample size bias for this task. Recall that in the 
work of Price and colleagues (Price, 2001; Price et al., 
2006), each stimulus individual’s standing on the quan-
titative dimension of interest had to be estimated or in-
ferred, and the concept of central tendency was generally 
ill-defined. It may be only under these conditions that the 
sample size is integrated with central tendency judgments. 
By contrast, the standing of a numerical stimulus on the 
dimension of number is straightforward—no inference is 
necessary—and the concept of central tendency can be 
defined precisely. Under these conditions, it is possible 
that participants do not integrate sample size with their 
central tendency judgments.

Experiment 1

Method
Participants. Fifty-two participants from the University of Iowa 

and 85 participants from California State University, Fresno, partici-
pated in this study as partial fulfillment of a course requirement.2

Stimuli. Each participant estimated the mean of 12 samples of 
numbers that varied in terms of both their sample size (5, 10, 15, 
or 20) and mean (20, 30, or 40). To create these samples, we began 
with a sample of five numbers (9.4, 15.1, 17.2, 26.5, and 31.8) that 
had a mean of 20. To create additional samples of five numbers with 
means of 30 and 40, we added 10 and 20 to each of the original five 
numbers. Then to create samples of 10, 15, and 20, we repeated the 
numbers in each sample of five either two, three, or four times. Thus, 
we varied the size and mean of the samples without augmenting the 
variability or range. To ensure that there was nothing peculiar about 
the sample of five numbers that we started with, we created three 
more stimulus sets of 12 samples, based on slightly different initial 
samples of five numbers.

Design and Procedure. All the instructions and stimuli were 
presented using a personal computer. Participants were instructed 
that they would be estimating the arithmetic mean of several samples 
of numbers. To ensure that participants understood what we meant 
by arithmetic mean, we provided an example in the instructions and 
then had them complete four simple problems in which they men-
tally computed the mean of a small set of numbers (e.g., 5, 10, and 
15). Additional instructions indicated that they would have to make 
intuitive estimates for samples that would be presented too quickly 
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Figure 1. Mean estimates for all participants in Experiment 1 
as a function of sample size and objective mean. Error bars rep-
resent 61 standard error.
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These results revealed a sample size bias for intuitive 
estimates of the arithmetic mean of groups of numbers. 
This effect cannot be attributed to the variability of the 
numbers, a small number of participants who gave inac-
curate responses, or a tendency to focus on a subset of 
the largest numbers in each sample. It could be attributed, 
however, to the envelope area of the numbers—the area of 
the smallest polygon that contains the numbers—because 
larger samples had larger envelope areas.

Experiment 2

In Experiment 2, we addressed the issue of envelope 
area as a confounding variable in a way that emphasizes 
the generality of the sample size bias. Specifically, we 
displayed the numbers in each sample sequentially rather 
than simultaneously.

Method
Participants. One hundred twenty undergraduate psychology 

students at California State University, Fresno, participated as par-
tial fulfillment of a course requirement.

Design and Procedure. Aside from presenting the numbers se-
quentially rather than simultaneously, the design and procedures 
were essentially the same as in Experiment 1. After reading instruc-
tions about their task, the participants completed the same simple 
computational problems and practice estimation trial used in Experi-
ment 1. They then proceeded to the 12 regular estimation trials.

Each estimation trial began with a white plus sign presented in the 
middle of a blue background. This served as a fixation point. When 
the participant pressed the enter key, the numbers in the sample 
appeared at the fixation point, with a brief intertrial interval (ITI). 
After all the numbers in the sample were presented, the participant 
was prompted to enter his or her estimate of the mean, at which point 
the next trial began.

Participants were randomly assigned to one of two timing condi-
tions. In the constant-time-per-number condition, each number was 
presented for 1,000 msec, with an ITI of 500 msec. This held the time 
per number constant. In the constant-time-per-sample condition, each 
number was presented for 1,000 msec but the ITI was varied. This 
held the time it took to present a sample constant at 22.5 sec.

Results
We submitted the estimates of all participants to a re-

peated measures ANOVA, as described in Experiment 1. 
Again, there was a significant linear effect of sample size 
[F(1,112) 5 10.58, p 5 .002, η2

p 5 .09]. Participants’ es-
timates tended to increase as the size of the sample in-
creased (see Figure 3). There was also a significant effect 
of objective mean [F(1,112) 5 51.59, p , .001, η2

p 5 .32]. 
There were no other significant main effects or interac-
tions. As in Experiment 1, the MAD was quite high (M 5 
18.08, SD 5 47.13), because the full data set included 
several participants who made estimates lower than 10 
and greater than 100. After excluding 34 participants who 
made at least one extreme estimate, the MAD of the re-
maining participants was much lower and less variable 
(M 5 5.09, SD 5 4.00; see Figure 4). Among these more 
accurate participants, there was still a significant effect 
of both objective mean [F(1,78) 5 1,034.12, p , .001, 
η2

p 5 .93] and sample size [F(1,78) 5 6.78, p 5 .01, 
η2

p 5 .08]. There were no other significant main effects 
or interactions.

time-per-sample condition. There were no significant 
interactions.

Overall, the accuracy of the participants’ estimates 
was fairly poor. The mean absolute deviation (MAD) for 
all judgments was 17.60 (SD 5 44.76). This raises the 
concern that the sample size bias might be driven by a 
relatively small number of participants who gave particu-
larly inaccurate estimates. To rule out this explanation, 
we first identified extreme responses that were smaller 
than 10 or larger than 100. Nearly all stimulus numbers 
were within this range, so mean estimates falling outside 
of it were assumed to be the result of typing errors, a mis-
understanding of the task, or a lack of motivation to pro-
vide accurate responses. In all, 210 of the 1,644 estimates 
(12.77%) were classified as extreme. We then focused a 
second analysis on those participants who did not give any 
extreme responses (n 5 83). Not surprisingly, the MAD of 
the remaining participants was much lower and less vari-
able (M 5 4.84, SD 5 2.21; see Figure 2). Among these 
more accurate participants, there was still a significant ef-
fect of both sample size [F(1,75) 5 10.26, p 5 .002, η2

p 5 
.12] and objective mean [F(1,75) 5 773.12, p , .001, 
η2

p 5 .91]. There were no other significant main effects 
or interactions.

A possible explanation for the sample size bias is that 
people attend to, and base their estimates on, a subset of 
the largest numbers in the sample. For example, the mean 
of the five largest numbers in each sample does, in fact, 
increase as the sample size increases. Not only would 
this produce a sample size bias, it should also result in 
a tendency toward overestimation. Although there was a 
tendency toward overestimation when participants who 
gave extreme responses remained in the analysis, the ten-
dency reversed when these participants were eliminated. 
Among the most accurate participants, therefore, there 
was both a sample size bias and a tendency toward under-
estimation; the mean signed deviation of their estimates 
was significantly less than zero (M 5 21.73, SD 5 2.88) 
[t(82) 5 5.47, p , .001]. This argues against the idea that 
the sample size bias occurs because people focus on the 
largest numbers.
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Figure 2. Mean estimates for accurate responders in Experi-
ment 1 as a function of sample size and objective mean. Error 
bars represent 61 standard error.
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River than did people who first drew short lines. From 
this perspective, the sample size bias might occur because 
the sample size activates a representation of a larger or 
smaller magnitude, which is then assimilated into people’s 
central tendency judgments.

Of course, this explanation requires that sample size 
activate a magnitude representation and that it do so re-
gardless of whether the individual stimulus elements are 
presented simultaneously or sequentially. Although we 
have provided no direct evidence for this assumption 
here, we should note that event frequency does appear to 
be encoded fairly automatically (Hasher & Zacks, 1979). 
People make reasonably accurate frequency estimates for 
stimuli that were presented sequentially and for which they 
had no conscious intention to encode frequency informa-
tion (Naveh-Benjamin & Jonides, 1986). Furthermore, 
research on numerosity perception generally supports the 
idea that people form representations independent of the 
sensory modality in which the stimuli are presented and 
whether or not the presentation of individual stimulus ele-
ments is simultaneous or sequential (Barth, Kanwisher, & 
Spelke, 2003). So it seems likely that, if drawing a long 
or short line can activate a corresponding magnitude rep-
resentation, being presented with a small or large sample 
can do the same. Consistent with this idea is other research 
showing an effect of irrelevant numerosity information on 
quantitative judgments (Friedenberg & Limratana, 2005; 
Pelham, Sumarta, & Myaskovsky, 1994).

The magnitude priming explanation is precise enough 
to suggest several additional hypotheses about the sample 
size bias. One is that if sample size results in a modality-
independent magnitude representation, it should affect 
other kinds of judgments and responses. Consider that 
Oppenheimer et al. (2008) showed that drawing a long 
or short line affected not only people’s estimates of the 
length of the Mississippi River, but also their behavior in 
a word completion task. For example, those who drew a 
long line were more likely to complete the fragment  all 
to create the word tall. Would this effect be observed for 
people who had just been presented with samples of vari-
ous sizes? A second hypothesis is that what matters is the 

As in Experiment 1, there was a marginally significant 
tendency to underestimate the sample mean among the 
more accurate participants; the mean signed deviation of 
mean estimates was 20.88 (SD 5 4.36) [t(85) 5 1.88, 
p 5 .06]. Therefore, it is unlikely that the sample size bias 
occurs because people focus on the largest numbers in 
each sample, since this would result in a tendency toward 
overestimation.

General Discussion

In two experiments, we observed our hypothesized ef-
fect of sample size on people’s intuitive estimates of the 
means of samples of numbers. These experiments were 
designed to control several potential confounding vari-
ables, including the variability of the numbers and their 
spatial and temporal distribution. We were also able to 
demonstrate that the sample size bias occurs for people 
who make relatively accurate responses and that the bias 
cannot be explained by a tendency to focus on a subset of 
the largest numbers in each sample.

We believe that any plausible theory of the sample size 
bias must take into account the generality of the effect. 
We have observed it for judgments about heart attack risk 
based on written profiles (Price, 2001), risk and likeli-
hood judgments based on group photographs (Price et al., 
2006), estimates of the heights of identical stick figures 
(Price et al., 2006), and now for estimates of the means of 
samples of numbers presented both simultaneously and 
sequentially.

One explanation that might account for all of these 
results—a variation on the idea that people automatically 
integrate sample size into their central tendency judgments 
(Price et al., 2006)—is based on the concept of magni-
tude priming (Oppenheimer, LeBoeuf, & Brewer, 2008). 
The idea is that presenting people with a small or large 
quantity can activate a modality-independent representa-
tion of magnitude, which is then assimilated into other 
quantitative judgments. For example, Oppenheimer et al. 
showed that people who first drew long lines tended to 
provide higher estimates for the length of the Mississippi 
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Figure 4. Mean estimates for accurate responders in Experi-
ment 2 as a function of sample size and objective mean. Error 
bars represent 61 standard error.
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Notes

1. Elsewhere, we have referred to this phenomenon as the group size 
effect. We now believe that sample size bias is more descriptive and em-
phasizes its generality.

2. Estimates given by participants from the University of Iowa and 
California State University, Fresno, did not differ in any substantial way. 
Most importantly, university affiliation did not interact with sample 
size.
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revision accepted for publication January 12, 2010.)

relative sample size rather than the absolute sample size. 
As Oppenheimer et al. pointed out, the fact that drawing a 
line on a piece of paper can affect estimates of the length 
of the Mississippi River suggests a unit-free representation 
of magnitude that must necessarily be context dependent. 
In our paradigm, a sample of 10 might elicit very different 
estimates when presented with samples of 6 and 8 than 
when presented with samples of 20 and 30.

Regardless, the sample size bias appears to be quite 
general and has implications for understanding judgments 
in various contexts. We have already noted that the sample 
size bias can contribute to the magnitude of comparative 
optimism—people’s tendency to judge themselves to be 
at lower risk than their peers for negative events (Price, 
2001; Price et al., 2006). This is because judgments about 
oneself are judgments about a very small sample and judg-
ments about one’s peers are judgments about a very large 
sample. Similarly, it might contribute to high school and 
college students’ tendency to overestimate the extent to 
which their peers use drugs and practice unsafe sex (e.g., 
Page, Hammermeister, & Scanlan, 2000). Again, in this 
research, participants are generally asked to make judg-
ments about themselves (a small sample) and their typical 
or average peer (a large sample).
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