The Planning Process for Constructing an Academic Library

Submitted as a Course Requirement for
LIS 608 – Independent Study
Dr. Lee Shiflett – Professor

By
David L. DeHart

December 6, 2002

© 2002 David L. DeHart, Boone, NC
The Planning Process for Constructing an Academic Library

The planning and design process for construction of a new facility is perhaps the most challenging and complex project that a library organization will ever undertake. To illustrate the long-term and far-reaching aspects of the process, a chronology of events and a list of key participants for planning the new central library at Appalachian State University are included as Appendixes A and B, respectively. In the 21st century, the daunting nature of this task is exacerbated by information technology innovation, which challenges library planners to project how information will be provided, organized, accessed, and manipulated by future users. Academic libraries, in particular, are experiencing a rapid transformation from repositories for print materials (books and journals) to providers of information in a variety of formats, with an ever-increasing shift toward electronic resources. It is interesting, however, that even in the face of a dynamic and seemingly pervasive technological environment, many institutions recognize and embrace the idea of “library as place.” This concept of the library connotes a physical location that accommodates intellectual exchange and socialization, and invites “contemplation, study, discovery, collaboration and engaged learning.”

This paper will examine and discuss two critical aspects of the planning process for constructing a new academic library: (1) how information technology is shaping the design of new academic library facilities, and (2) the general steps or stages that must be included to conduct a successful building project. Since several detailed and favorably-reviewed sources of literature already exist on this topic, the scope of this paper is limited to an introduction to the
influence of technology on library planning, and an overview treatment of the basic stages that are generally followed in planning for a new academic library facility.

The first area of interest identified current journal articles and conference proceedings addressing technology-sensitive design and space planning issues for academic libraries. The sources used for the literature review were published in 2000 or later to insure that the information was reasonably current in this era of rapidly evolving technology.

The discussion of facility planning stages was accomplished through a literature review of selected monographic literature published since 2000, and inspection of several key internal documents developed and disseminated for the planning of Appalachian State University’s new central library. These local documents were available for hands-on examination, and they proved to be a valuable complement to the information gleaned from the excellent monographic treatments.

A Review of Selected Current Literature on Academic Library Construction

In his speech at the Eleventh Seminar of the IFLA Section on Library Buildings and Equipment in 1999, British Library Director Brian Lang proposed that an examination of the key relationships that characterize libraries provides useful indicators as to the types of spaces and facilities that library organizations should be prepared to offer their users. For instance, Lang sees the relationship that exists between the library and its collections as being of major importance since the buildings must be designed to enhance use of the collections, and he further observes that electronic storage and retrieval of information has created an environment that requires a revised concept of what constitutes a “collection.” Another key relationship Lang notes is that between readers (users) and the building. He asserts that libraries must offer more
than just space for storage of various types of media; he contends that libraries have historically
been successful social places that stimulate intellectual dialogue and should continue to provide
for these needs. Also speaking at this seminar was Andrew McDonald, Director of Information
Services at the University of Sunderland (UK). McDonald, too, lauds the social role of libraries
as places where people interact. McDonald’s estimation of the value and role of libraries is
succinctly stated in his observation that current library designs incorporate “a people-centered
approach to planning as much as providing an environment suitable for collections and
information technology (IT). Indeed, the planning of libraries must recognize the importance of
people and their use of collections, IT and services, and also the dynamic and evolving
relationship between these key elements.”

Intentional planning and design choices to produce creative learning spaces are reviewed
in “Imagining Learning Spaces at Wayne State University’s New David Adamany
Undergraduate Library” by Lynn Sutton. The focus of the planners for the new library facility at
Wayne State University in Detroit, Michigan, was to create a building designed to accommodate
the library-centered information literacy efforts for the campus, “such as collaborative learning,
integrating information sources into the curriculum, and resource-based learning.” Some of the
designated spaces built into this library to accommodate curricular support include classroom
and office space for UGE 1000, a one-credit course required of all incoming freshman; an
auditorium for classroom assignments such as PowerPoint presentations and required film
viewings, as well as guest lectures and satellite teleconferences; a multimedia learning center to
support instruction on incorporating visuals into academic assignments; instructional computer
labs for bibliographic instruction; seminar rooms that permit faculty in the academic departments
to conduct classes in the library and have ready access to pertinent resources; and, the Office for
Teaching and Learning, which is responsible for faculty development. Collaborative learning spaces include a 24-hour extended study center; a community room that is booked for use by campus groups for an informal meeting space or more formal faculty-sponsored colloquia and seminars; and, collaborative (group) study rooms of various sizes. Throughout the planning stages, the new facility was envisioned as high-tech, welcoming in appearance, and to be less collection intensive than existing libraries. A significant factor in the latter design element was the noticeable decline in the use of print resources for research, particularly as evidenced by patrons’ preference for journal articles in electronic format as compared to the traditional print copies.

“Planning the UNLV Lied Library” by Shelley Heaton and Kenneth E. Marks offers an interesting review of the ten-year planning and construction process that was followed at their institution. While identification of and planning for the technology requirements in a new library facility is a primary focus, this article also documents the general steps that are widely used to guide a successful building scheme. In conjunction with a campus-wide long-range planning initiative that commenced in the early 1990’s, the university library began to consider its long-term needs in a systematic manner, resulting in a Library Planning Committee. Input from a library planning consultant and a new Dean of Libraries inspired an effort to survey the campus community and library departments to elicit these groups’ expectations of a new library facility. This feedback was incorporated into the first building program document which came some two years into the decade-long process. In addition to their useful insights on technology issues, the authors include a number of the integrated and overlapping steps that planning for a new library facility must address: space issues, funding, site visits to other libraries, working with
consultants and architects, and the all-important development of a comprehensive program
document to facilitate the planning process.

Alice Bahr highlights the changing role of libraries in the 21st century in her article
“Library Buildings in a Digital Age, Why Bother?” To counter arguments that new library
facilities are superfluous in a digital environment where the availability of online information is
rapidly expanding, Bahr identifies and elaborates ten points (statements) that demarcate the
changing and necessary presence of technologically up-to-date library facilities. One of her key
points addresses the idea that in the new millennium, libraries are being reconceptualized to
emphasize their role in providing user space rather than collection space. Examples of these
user spaces include networked conference rooms, electronic presentation rooms and classrooms,
collaborative work and study areas, computer labs, 24-hour cafes, group study rooms, and
teleconferencing facilities.

There are several excellent, up-to-date monographs available on library planning and
construction, though they are generally less focused on the impact of evolving information
technologies. William W. Sannwald’s Checklist of Library Building Design Considerations is a
valuable tool for building design teams that are responsible for programming library spaces.
Sannwald employs a checklist format that arranges an extensive list of some 1500 questions into
13 chapters that correspond to major functional areas typically found in libraries. These
questions address “almost every aspect of space and function in a library” to insure that the
building design team considers all possible areas for which programming of space will be
needed. Another feature of this source is its impressive bibliography of library planning and
design literature.
Jeannette Woodward’s *Countdown to a New Library: Managing the Building Project* is a very readable and instructive review of library facility planning from a librarian’s perspective. The book’s primary purpose is to bring librarians’ understanding of the planning and building process “up to speed” so that they may communicate knowledgeably and effectively with architects and builders. Throughout the 10 well-organized chapters of this text, Woodward has included numerous “Tips and Tales,” which are anecdotes that offer a plethora of advice and insightful comments from librarians and other information professionals who have weathered their own “construction wars.” A chapter entitled “Technology and Modern Building Infrastructure” is devoted to a review of major technology considerations that figure prominently in the planning for a new library in the 21st century.7

In the preface to the second edition of their *Academic Libraries as High-Tech Gateways*, Richard J. Bazillion and Connie L. Braun expound on the duality of the library “gateway” concept by noting that in the current information environment, *access* to resources has become more important than *ownership*, and stating their belief in the sustainability of libraries as physical spaces even in the face of ever-increasing availability of electronic information products.8 The authors envision modern academic libraries playing an increasingly important role as teaching and learning centers for their campuses. While this monograph provides excellent coverage of many traditional elements of library planning, a distinguishing feature is the text’s emphasis on recognition and integration of information technology requirements in shaping a flexible and innovative library design. There are numerous references to recent academic library construction projects that have incorporated such innovations into their design.

Another monograph, *Planning Academic and Research Library Buildings, 3rd* edition, by Philip D. Leighton and David C. Weber is widely regarded as the bible of library facility
planning. All major phases of the planning process for library construction are given detailed treatment in this comprehensive volume, with chapters arranged to cover topics in the order that most building projects would proceed. It provides librarians, administrators, and architects with background information and in-depth discussions of the various issues that library facility planning will present. The contents are well-organized and access is further enhanced by descriptive chapter content pages and extensive indexing, making this volume indispensable as a ready reference source. Helpful appended documents include examples of program statements, engineering standards, formulas and guidelines, and a glossary of design and construction terms. In recognition of and deference to the authority and scope of this work, the reader will note several references to Leighton and Weber’s text in the next section of this paper, which examines the major steps encompassed in the planning process for a new library facility.

General Steps in the Planning Process for New Academic Library Construction

In a broad sense, it is reasonable to postulate that the planning process for a new library facility begins when it is widely recognized that the building presently occupied has significant limitations that impede the library organization’s ability to fulfill its mission and goals, as well as to support those of the parent institution. To formalize and draw attention to the need for an enhanced facility, the library director, often in conjunction with an advisory group, prepares a statement of need document that may include a number of viable design options for addressing existing deficiencies. Such documentation typically defines and analyzes current space and facility usage, and provides projections of future usage that accentuate the need for an upgrade of existing facilities or a project to construct a new building.
When the limitations of the current library structure exceed what can be achieved by modifications or additions, then the option of a new facility must be assessed. In a higher education setting, strong commitment and input, both philosophical and financial, from the institution’s administration are prerequisite to any realistic effort to evaluate the potential benefits of a new library edifice. Leighton and Weber emphasize that serious planning cannot begin until the institution’s administration, including the major administrative officers and perhaps its board of trustees, understands and gives priority to the library’s space problem, and the authors offer an extensive list of major policy decisions that must be resolved before proceeding to a detailed planning stage. Two of the most prominent policy decisions, site selection and financing the construction project, will be examined next. The reader will find a detailed discussion of these preliminary stages in Chapter 3 of the aforementioned *Planning Academic and Research Library Buildings*, 3rd edition.

Site selection is generally one of the most critical and complicated steps in the planning process for a new library. For many higher education institutions, the site for a new library may have been identified and discussed in the long-range, campus master plan, a document that attempts to predict the extent and direction of future physical expansion. Since many in academe revere the library, at least philosophically, as the heart of the institution both in terms of its academic function and its physical location, the site chosen must be prominent and convenient for the campus community. Leighton and Weber list five major site evaluation factors that must be applied when considering a location already owned by the institution. These factors relate to the size, relationship to neighboring buildings and traffic flow on the campus, building orientation options, slope and natural features, and possible complications arising from the ground conditions beneath the building. With respect to the latter, test soil borings and a
subsequent report of findings can provide important information on the suitability of the location as a potential construction site.

Before detailed planning can proceed, projections of the approximate size and estimated cost of the project are needed to help identify the fund-raising strategy that will be employed to pay for the construction, furnishing, and equipping of the new building. The selected strategy will vary depending on the nature of the institution with those that are publicly supported relying primarily on state appropriations while church-affiliated institutions usually depend on construction funding from the church authority, and private professional schools may utilize internal financing. Some of the common funding sources are public bonds, governmental appropriations, federal grants from programs specifically designed for academic library buildings, loans or gifts from private foundations, contributions from private individuals, and from corporations. For many academic library construction projects, a combination of funding sources may be needed to provide the necessary capital. When governmental funding is not available or is insufficient, solicitation of private funds is generally required. The fund-raising methods used by institutions vary considerably, with some drawing on a strong alumni network while others depend more heavily on private foundations or corporate resources. Among the incentive strategies used to generate capital include “matching gift” and “naming opportunities.” The “matching gift” approach offers potential contributors the opportunity to have their gift matched in some proportion by a principal source of committed funds. To induce major gifts, institutions may offer potential contributors the opportunity to have the new building or one of its prominent areas bear the contributor’s name. Working out the details of such agreements often involves the institution’s upper-level development officers and other key administrators.
Once siting of the proposed building has been addressed and, as necessary, having developed an initial strategy for raising the needed capital, the institution’s design and construction office or a contracted firm will prepare a project description and an estimated cost. This document must then be submitted for review, negotiation, and approval by the institution’s administration, including the local governing board, and for publicly funded institutions, the approval of state government offices and authorizing bodies. Leighton and Weber note that “such approval is a major hurdle in authorizing the project” and may include formal authorization of funding sources. Once official approval has been obtained, the planning process can proceed in earnest.

Prior to advertising for and selecting architects for the project, it is recommended that preparation of the library staff include a study of published literature on academic library facilities and site visits to libraries of interest. Recently completed library construction projects that have incorporated notable design features and innovations may provide the stimuli for creative conceptualization of library space at the home institution.

Selection or appointment of a building planning team or committee(s) often occurs at this juncture of the process. Representation on the planning team will vary from one institution to another, but it typically includes the library director and other library administrators and supervisors, at least one person from the campus design and construction office or the institution’s equivalent, and other high-level campus officials. The building planning team will work closely with the architects and other individuals responsible for the building design. There must be ample opportunities for participation in the planning process by the institution’s faculty, staff, students, and alumni, and by interested officials and citizens of the host community. Campus focus groups, surveys, and well-publicized feedback/input sessions with the architects
and library administrators provide critical communication channels for extending ownership of the project to the campus community.

Another integral element of a successful planning process is the selection of an architectural firm “to design a building that will accommodate all the functional components, will operate effectively for years to come, and will be an aesthetically pleasing contribution to the community.”13 The previously discussed site visits afford a viable opportunity for identifying reputable firms having appreciable library design experience. Leighton and Weber present an extensive list of essential characteristics that should be considered when selecting an architectural firm, and perhaps the most vital of these is the firm’s demonstrated ability to establish a good working rapport with an institution’s building planning team.14 There should be discernable evidence of the firm’s commitment to developing working relationships that invite open communication and exchange of ideas with its clients. Many institutions have a prescribed method for selecting an architectural firm for major capital projects. An appointed committee may be used to narrow the field of prospects to a short list of recommended firms with the final selection often being the responsibility of the institution’s chief business officer or its board of trustees.

The next step, programming and conceptual design, yields a program document that is the specification or description of the facility and site requirements in detail. Leighton and Weber note that the program document “sets the essential requirements that the architect is expected to meet in the design of the [new] facility.”15 They further articulate the nature of a complete program document as one that includes “a concise but careful statement of desired spatial relationships between the different services as well as a description of how the library is to operate and will be administered.”16 This stage of the planning process should allow the
institution’s representatives, including individual library staff, to provide input relative to what specific areas will be used for and what equipment, furnishings, etc., will be needed. Moreover, accurate compilation and presentation of the information collected require significant working knowledge of library services and work processes. Among the many building design criteria to be considered in the program document are flexibility, expandability, user space, security, light and windows, acoustics, and sustainability. When finalized, the program document is considered an official document of the institution and its administration, and its approval by the library director, other administrative officers of the institution, and, perhaps, the governing board is generally required.

Before proceeding to the next stage of the planning process, it may be instructive to note that attention to sustainable building design has become more common in the planning of commercial buildings, including libraries, in recent years. The U.S. Green Building Council developed the Leadership in Energy and Environmental Design (LEED) Green Building Rating System and certification program “to develop a standard that improves environmental and economic performance of commercial buildings.” Some of the sustainability-related areas assessed for LEEDs certification include site development, water savings, energy efficiency, materials selection and indoor environmental quality. While there is increasing institutional interest in environmentally friendly “green” buildings, the additional costs and constraints associated with building a LEEDs-certified facility probably limit its feasibility for many institutions. Furthermore, basic architectural services and stringent building codes often incorporate many of the same green building principles promoted by the LEEDs program.

Once the program document has been approved, planning proceeds to the schematic design phase that translates the written facilities program into a graphic representation of an
architectural concept. The defining element of this stage is the architect’s effort to effect a tenable design solution that considers the new building’s mass, floor size, and space and function relationships in accordance with the established program requirements. Frequent and substantive face-to-face communication between the architect and other members of the design team during this phase is foundational to achieving a mutual understanding of the institution’s vision for the new library facility. Leighton and Weber observe that schematic design is typically the most exhaustively reviewed phase since it provides architectural drawings that can be related to more easily than the written program.

Upon institutional approval of the design schematics, the planning process moves to the design development or preliminary design phase, which is a period of refinement and continued development of the schematic plans. According to Leighton and Weber, the purpose of the design development phase is “to establish the final shape, relationships, sizes, scope, and appearance of the project, including major dimensions, materials, and finishes.” The architectural drawings rendered during this stage show structural building elements and location and space requirements for everything to be contained within the facility. When jointly reviewed with the outline specifications, the design development documents provide the basis for preliminary cost estimates.

It is not uncommon at the preliminary design stage of large construction projects to find that cost estimates exceed the amount of funding originally requested or set aside for constructing the new facility. If additional funds are not readily available to reconcile the additional cost, as is usually the case, then a value engineering or value analysis exercise may be conducted. Simply defined, value engineering is a design review process that has the goal of attaining the best and least costly design options that meet the stated requirements of the
project. The value engineering process itself may involve several phases and require a team of value engineering professionals that have not been associated with the project being reviewed. The general thrust of this process is to objectively review the project and then identify viable design alternatives that offer the cost savings potential for bringing the project in line with available funding.

The end of the design development phase establishes the final scope (program) and appearance of the construction project. The next phase is commonly referred to as the construction documents or contract documents phase, which calls for the architect’s preparation of the final working drawings and specifications for bidding and construction. During this phase the architect produces sheets of drawings that present various plans showing sections, elevations, detail diagrams, structural elements, etc., and a written specifications document. These drawings and specifications are technical in nature and utilize abbreviations and conventions not easily interpreted by the layperson, thus making it important that at least one member of the building planning team has appreciable experience working with construction documents. Completeness and clarity of the construction documents expedite the bidding process by articulating the construction details that prospective bidders will examine closely. When the architect has finalized the construction documents, the institution’s engineers and maintenance personnel will review them to insure that the campus design standards have been met. Government agencies will also perform a thorough review of these documents as part of their project approval process. For library personnel serving on the planning team, the review of the construction documents is important because any design issues previously discussed and agreed upon with the architects should be reflected accurately in these drawings and specifications; if questions exist regarding the status of such changes, it is critical to voice them at this point.
Acceptance of the construction documents leads to the bidding process, which includes advertising for bids, evaluating the bids received, and selecting the contractors or a construction manager for the project. During this stage of the planning process, the institution’s interests will be the responsibility of the architect and the institution’s project manager; library personnel generally have a very limited role during the bidding process.

When a successful bid is obtained, the project is awarded for construction. The construction stage often begins with a groundbreaking or cornerstone ceremony, after which construction will begin in earnest. The architect and librarian or other institutional representatives will review progress on regular intervals, and it is to be expected that many problems will arise during construction that will test the decision-making skills of the planning team. The architect and institutional personnel will also be responsible for “performance validations, document clarification, and consideration of or actions on requests for changes or additions.”24 As construction proceeds, the institution must safeguard and exercise its contractual right to inspect completed work to uphold compliance with the drawings and specifications for the project. Vigilance during the construction process may identify problems that have the potential for compromising long-term owner satisfaction with and utility of the structure.

Wrap-up of the construction stage calls for a final inspection that yields a list of items requiring correction by the contractor. To avoid premature activation of the warranty period, the library should refrain from occupying space in the new building until there has been final acceptance. Before final and legal acceptance of the building, an official of the institution should have in hand several documents relating to the project such as the sign-off building permits, a set
of as-built drawings showing the actual constructed conditions, operations manuals outlining maintenance routines, and approval from the architect for final payment to the contractor.25

The scope of this paper permits only a marginal treatment of several significant events that may be referred to as building commissioning. (See Chapter 16 in Leighton and Weber’s \textit{Planning Academic and Research Library Buildings} for a substantive discussion relating to “activation” of the new building.) A major element in preparing for occupancy of the new building relates to the selection and purchase of furnishings and equipment. Many decisions regarding these items are made during the programming and schematic design phases, while others are decided later in the planning process. Key factors to be considered are whether bids will be needed, the issue of contracts, identifying reputable manufacturers and vendors, and the time and design work required to fabricate custom pieces.

To assist patrons in finding their way in the new building, a system of well-conceived and well-placed signs must be developed. From the standpoint of aesthetics, the “signs should be tasteful and compatible with the architecture and décor.”26 For larger projects, the use of a consultant may be a costly but time-saving option. If planning for and production of signs is to be handled in-house, it should be anticipated that the process will require substantial time and careful attention to size, text, and location.

Another critical element in preparing for occupancy involves relocation of collections and furnishings to the new facility. Planning for collection moves is a time-consuming effort that demands superior organizational and coordination skills, and depending on budget and time constraints, may utilize the resources of the campus physical plant or contracted commercial movers. To minimize the disruption of access to collections and services, academic libraries
usually target the intersessions between academic terms as the preferred times for moving into a new building.

Leighton and Weber refer to a “settling in and shakedown period” that occurs from the point of “moving in until the end of the warranty period of the construction contract.”²⁷ This period is characterized by the surfacing of unanticipated problems, cleaning, final adjustments to equipment, and balancing the heating, ventilation, and air-conditioning (hvac) system.²⁸ Library personnel should be informed early on as to the proper procedure for reporting concerns and conditions relative to the functioning of the new building, and encouraged to exercise understanding and patience while efforts are made to correct deficiencies.

A dedication ceremony is usually the final formal event in the planning and construction process for a new academic library. The purpose of this event is to celebrate the completion of the project and to recognize those who have played significant roles in making the new facility a reality, with particular emphasis placed on acknowledging contributors to the fund-raising campaign for the project. Government officials, the institution’s chief administrator(s), the library director, and other dignitaries often participate in the program. Remarks typically address important aspects of the design and construction process as well as formal acceptance of the new library on behalf of various groups such as the board of trustees, faculty, students, and library staff. Many dedication ceremonies also include remarks on the role of the library in the institution’s educational program and mission.

Concluding Observations

Planning and construction of a new academic library is a complex process that necessarily involves the combined efforts of architects, consultants, engineers and other
professionals as they attempt to fashion a creative building design that responds functionally to the programming needs (scope) of the library organization. Librarians, faculty, students, and others have a vested interest in the building project, so their input must be encouraged and then carefully considered in the design process. Effective and timely communication among the individuals at the local institution, the contracted professionals, and the review and approval agencies involved in the project will be a significant factor in determining its success.

While acknowledging that this paper is limited to an overview treatment of the planning sequence and the influence of evolving information technology on library design, it is believed that several excellent sources of information for additional study have been identified, and the various phases that are likely to be encountered in the planning process have been sufficiently delineated and defined.
Appendix A

Chronology of Key Events in the Planning Process for the New ASU Library

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>• May Library Addition Advisory Task Force issues its report “For the Next Century: Appalachian’s Library of the Future”</td>
</tr>
<tr>
<td></td>
<td>• 2000</td>
</tr>
<tr>
<td></td>
<td>• February University Librarian articulates ASU’s library facility needs in her interview for UNC-TV’s “A Building Crisis”</td>
</tr>
<tr>
<td></td>
<td>• March Envisioning Committee of the Library Advisory Board publicizes the need for a new library facility through its report “The 21st Century Information Commons- Appalachian State University”</td>
</tr>
<tr>
<td></td>
<td>• November NC voters approve the Higher Education bonds</td>
</tr>
<tr>
<td></td>
<td>• December Site visits begin</td>
</tr>
<tr>
<td></td>
<td>• 2001</td>
</tr>
<tr>
<td></td>
<td>• March Site visits conclude and Internal Building Group is selected</td>
</tr>
<tr>
<td></td>
<td>• June Selection of architects</td>
</tr>
<tr>
<td></td>
<td>• July Architects’ first visit to ASU and Program Development phase begins</td>
</tr>
<tr>
<td></td>
<td>• September Campus focus groups convened</td>
</tr>
<tr>
<td></td>
<td>• November Schematic Design phase begins</td>
</tr>
<tr>
<td></td>
<td>• 2002</td>
</tr>
<tr>
<td></td>
<td>• February On-campus presentations of architects’ schematics</td>
</tr>
<tr>
<td></td>
<td>• March Design Development phase begins</td>
</tr>
<tr>
<td></td>
<td>• June Development of Construction Documents phase begins</td>
</tr>
<tr>
<td></td>
<td>• 2003 (Projected)</td>
</tr>
<tr>
<td></td>
<td>• January Project advertised for bids</td>
</tr>
<tr>
<td></td>
<td>• March Bid awarded</td>
</tr>
<tr>
<td></td>
<td>• April Groundbreaking; construction begins</td>
</tr>
<tr>
<td></td>
<td>• 2004 (Projected)</td>
</tr>
<tr>
<td></td>
<td>• December Construction completed and move to new library begins</td>
</tr>
<tr>
<td></td>
<td>• 2005 (Projected)</td>
</tr>
<tr>
<td></td>
<td>• January *New library opens</td>
</tr>
</tbody>
</table>

* If there are delays in the projected construction schedule, it may not be feasible to move the collections and designated furnishings from Belk Library until the 2005 Spring/Summer intersession, which would result in the opening of the new library being delayed until June 2005.
Appendix B
Key Players in the Design and Planning of the New Central Library at ASU

<table>
<thead>
<tr>
<th>Name of Person or Group</th>
<th>Location</th>
<th>Position or Title</th>
<th>Project Role or Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pease Associates</td>
<td>Charlotte, NC</td>
<td>Architectural Firm</td>
<td>Architects of Record (Executive Architect)</td>
</tr>
<tr>
<td>Shepley, Bullfinch, Richardson, Abbott</td>
<td>Boston, MA</td>
<td>Architectural Firm</td>
<td>Principal Design Architect</td>
</tr>
<tr>
<td>Bovis Lend Lease</td>
<td>Charlotte, NC</td>
<td>Construction Managers at Risk</td>
<td>Oversee the project; fiduciary responsibility for this project on behalf of the State of NC</td>
</tr>
<tr>
<td>Patrick Beville</td>
<td>ASU</td>
<td>Construction Manager</td>
<td>ASU’s project manager for the new library</td>
</tr>
<tr>
<td>Julie Brittain</td>
<td>ASU</td>
<td>University Interior Designer</td>
<td>Provide technical assistance to the IBG and the Design Team regarding interior design and furnishing options</td>
</tr>
<tr>
<td>Internal Building Group (IBG)</td>
<td>ASU</td>
<td>Selected ASU Library Personnel</td>
<td>Steering committee that provides info. about programmatic issues to assist the design team in the development of the program; an executive committee of this group consists of the UL, the AUL, and the Coord. of Systems and Automation</td>
</tr>
<tr>
<td>University Faculty, Staff, and Students</td>
<td>ASU</td>
<td></td>
<td>Provide building design feedback via architects’ presentations, focus groups, surveys, etc.</td>
</tr>
<tr>
<td>Community patrons and officials</td>
<td>Boone and surrounding communities</td>
<td></td>
<td>Evaluate design and construction plans for compatibility with current and planned local infrastructure; provide feedback on design issues</td>
</tr>
<tr>
<td>Library Building Committee</td>
<td>ASU</td>
<td>ASU Faculty and Staff</td>
<td>ASU Faculty and Staff appointed by Business Affairs; input on selection of architects</td>
</tr>
<tr>
<td>Library Advisory Board</td>
<td></td>
<td></td>
<td>Provide feedback on design issues, but no decision-making authority; assist with fundraising</td>
</tr>
<tr>
<td>Michael Trinkley (Chicora Found.)</td>
<td>Columbia, SC</td>
<td>Preservation Consultant</td>
<td>Analyze design plans for compliance with recommended preservation guidelines</td>
</tr>
<tr>
<td>McCracken & Lopez, PA</td>
<td>Charlotte, NC</td>
<td>Mechanical & Electrical Consulting Engineers</td>
<td>Provide mechanical, electrical, and plumbing design</td>
</tr>
<tr>
<td>State Construction Office</td>
<td>Raleigh, NC</td>
<td></td>
<td>Reviews and approves all plans and specifications; supervises letting of construction contracts; inspects all work done and materials used</td>
</tr>
<tr>
<td>NC Department of Insurance</td>
<td>Raleigh, NC</td>
<td></td>
<td>Administers the State building code and provides interpretations thereof; conducts a Plan Review; performs on-site electrical inspection</td>
</tr>
<tr>
<td>NC Department of Labor</td>
<td>Raleigh, NC</td>
<td></td>
<td>Responsible for inspecting any lifts (elevators), heavy equipment, boilers, etc; will perform a on-site final inspection of elevators and related system</td>
</tr>
<tr>
<td>Site Solutions</td>
<td>Charlotte, NC</td>
<td>Landscape Architecture Consultant</td>
<td>Develop site plans and responsible for landscape design</td>
</tr>
<tr>
<td>Kugler Tillotson Associates</td>
<td>New York, NY</td>
<td>Lighting Consultant</td>
<td>Recommend lighting design options to the principal design architects</td>
</tr>
<tr>
<td>Fred Schaefer Consulting</td>
<td>Concord, NC</td>
<td>A-V Consultant</td>
<td>Advise regarding equipment options for classrooms, auditorium, etc.; coordinate A-V installation with telecommunications and wiring</td>
</tr>
</tbody>
</table>
NOTES

3. Ibid, 217.

10. Ibid, 402.

12. Ibid, 8.

13. Ibid, 76.

14. Ibid.
15. Ibid, 8.

16. Ibid, 121.

20. Ibid, 483.

22. Ibid, 351.

23. Ibid, 569.

27. Ibid, 648.

28. Ibid.
SOURCES CONSULTED

Sutton, Lynn S. “Imagining Learning Spaces at Wayne State University’s New David Adamany Undergraduate Library.” Research Strategies 17, no. 2/3 (2000):139-146.
