GLY3160 / PHY3160
Introduction to Geophysics

• **What is geophysics?**
 - Comes in two* basic flavors *(your text says three)*
 - **Pure (academic) geophysics** – Studying various Earth processes from a physics approach.
 - Purpose: To understand Earth processes.
 - **Applied (geological) geophysics** – Using physical properties of the Earth to provide information about the subsurface.
 - Purpose: To better characterize the geology of the subsurface.

 - **A giant natural physics lab** – Used to test physics hypotheses / theories about general physical processes. Not really concerned about the Earth.
 - Purpose: To better understand physics laws.
Example: Gravity

• Pure Geophysics:
 ▪ Measure accel due to gravity → mass of the Earth.
 ▪ Then use size of Earth → avg. density

• Applied Geophysics
 ▪ Measure small changes in g → detect subsurface void

• Applied geophysics requires knowledge and understanding of pure geophysics!
Why Study Geophysics?

• **Who hires geophysicists?**
 - Energy Companies $$$
 - Mining Companies $$$
 - Government Jobs
 - Engineering Consultants
 - Environmental Consultants

• **Bottom line…geophysics is highly employable**
Why is Geophysics Useful?

Some sweeping generalizations…

• Geology:
 ▪ Limited to the surface of the Earth
 • Geologists must infer the 3rd dimension
 • Boreholes are an exception, but are expensive and only give limited information (<13 km depth).
 ▪ Gives extremely detailed data about small areas.
 ▪ Provides information about the past.

• Geophysics
 ▪ Adds information about the 3rd dimension.
 ▪ Can truly “look into the Earth”
 ▪ Gives less detailed information about much larger areas.
 ▪ Results are often “non-unique”
 ▪ Usually cannot give information about the past
 • Exceptions are radiometric dating and paleomagnetism.
 ▪ Can study non-tangible things…e.g. forces
How Do Geophysicists “Look at” Rocks?

• Geologists mainly look at rocks visually
 ▪ Map rock occurrence
 ▪ Visually identify mineral content
 • Optical microscopes
 • SEM
 ▪ “Direct” approach.

• Geophysicists “look at” rocks differently
 ▪ Measure properties such as density, resistivity, magnetic properties, elastic moduli, radioactivity, etc…
 ▪ Use these properties to infer rock type / composition
 ▪ “Indirect” approach, but offers information that is not possible to visually obtain.
Geology vs. Geophysics

- At the end of the day geology and geophysics are both useful when studying the Earth.

- Geophysics does not replace traditional geologic study; it compliments it.

- The best geologists understand and appreciate geophysics.

- The best geophysicists understand and appreciate geology.
The Scientific Method

- Science is not subjective
- Results are **statements** based on **observations**
- Results must be **reproducible** and **thoroughly tested**
- Scientific discovery is the results of human efforts... people just like you!
- Science is not involved with “proving” things; science just test ideas!
The Basic Steps of the Scientific Method

• 1- Identifying the problem or question
 What are we trying to figure out?

• 2- Collecting data
 Collect data that addresses the problem

• 3- Propose hypothesis
 An idea that is consistent with your collected data

• 4- Test hypothesis
 If your idea is correct, then maybe other things should be true too. Test ‘em! Get ‘er done!

Over time, others will test your hypothesis

- Does the hypothesis agree with other data?
- Does the hypothesis predict behaviors?
 - If yes, then the hypothesis may become a theory
 - If no, then the hypothesis must be modified or rejected
Hypotheses, Theories, and Laws, Oh My!

- **Hypothesis**
 - proposed by a person or several people
 - consistent with your data
 - other researchers test it

- **Theory**
 - proposed by the scientific community
 - consistent with all verified data
 - may be modified if new data is presented.

- **Scientific Model**
 - Combines many theories and hypotheses
 - to explain a complex system

- **Law**
 - considered absolutely correct throughout the natural universe (e.g. gravity, superposition)
 - usually based on logic or mathematics

The Moral…

It's not easy to become a theory.
Scientific Method Modern Example: Upheaval Dome, UT

• Step 1 – Identify the problem/question
 ▪ What formed this bizarre geologic structure?
Collect Data

- Circular shape
- Dome structure
- Lots of Faults
Make A Hypothesis

- Meteor Impact!
 - Consistent with dome structure and lots of faults
Great Hypothesis?

Boom!
Hypothesis Testing

- After you submit your findings, someone else reviews your work and points out that
- Salt deposits can also make circular domes!!
- Uh Oh! 😞
This Hypothesis is not Theory-bound!

Science?...or Something Else?

- A friend tells you that he read that sandstone is made of tiny diamonds.
 - So small that they are not detectable by any means.
- Is this science? Is it correct?
- String Theory...
 - Is it science or philosophy?
The Moral of the Story

• Most hypotheses don’t become theories

• *It takes a LOT of data for a hypothesis to become a theory*

• *Ideas that are not testable are not science*