1. A monopolist can segment its market into two sub-markets, call them 1 & 2. \(C = 200 + 5Q \), with \(Q = q_1 + q_2 \). The demand in the sub-markets is:

\[
P_1 = 20 - q_1/2 \quad \text{&} \quad P_2 = 35 - q_2.
\]

a) Find the profit-maximizing \(q_1, q_2, P_1, P_2 \), and find \(\pi \), and \(E_p^D \) in each sub-market at the profit-maximizing \(P \& q \).

b) Which sub-market gets the lowest \(P \)? Why?

c) What happens if there is a capacity constraint \(Q \leq 20 \)?

2. In Figure 1, is \(\pi \) maximized when \(q_A = 30 \) & \(q_B = 20 \)? Explain.

3. Stars have a value of $60 & lemons have a value of $30 to firms. Firms are unable to cheaply identify who is a star. Education, \(y \), is cheaper for stars than for lemons because stars exert less effort than lemons. For a star, education costs \(y/2 \), & for a lemon, education costs \(2y/3 \). Let \(y \) be a continuous variable (that is, it can be a non-integer).

a) Show algebraically & explain the lowest & highest values for \(y \) for which signaling could occur.

b) Assuming \(y = y_{Riley} \), if the fraction of stars in the population is known to equal \(s \), when will stars prefer signaling to pooling?

4. Suppose utility = \(U = 10\sqrt{I} \), where \(I \) = income. \(I = 100 \) (probability = .25) or $900 (probability = .75).

a) Find \(E(I) \) & \(E(U) \).

b) Find the risk premium (\(RP \)).
Answers

1. a) & b) \(MC = $5. \ TR_1 = 20q_1 - \frac{q_1^2}{2} \), & \(TR_2 = 35q_2 - q_2^2 \). Thus \(MR_1 = 20 - q_1 \) & \(MR_2 = 35 - 2q_2 \).

 Set \(MR_1 = MC \) & \(MR_2 = MC \): \(20 - q_1 = 5 \) & \(35 - 2q_2 = 5 \), so \(q_1 = q_2 = 15 \).

 Insert \(q_1 \) into the demand for sub-market 1 & do likewise for sub-market 2 & get \(P_1 \) & \(P_2 \):

 \(P_1 \approx $15.83 \) & \(P_2 \approx $23.33 \); both \(Ps \) \(\uparrow \) & both \(q_s \) \(\downarrow \) due to the capacity constraint.

2. The relevant \(MC \) is \(MC \) for \(Q = 50 \), which is clearly > $15. Thus, the \(\pi \)-maximizing \(Q < 50 \).

 Given the firm sells \(Q = 50 \), it should sell more in sub-market A & less in sub-market B since, with \(q_A = 30 \) & \(q_B = 20 \), \(MR_A = $15 \) & \(MR_B = $10 \). If the firm sells 1 more unit in sub-market A & 1 less unit in sub-market B, \(\Delta R = $5 \) ($15-$10 \), & \(\Delta C = 0 \), so \(\Delta \pi = $5 \). The firm should continue to sell more in sub-market A & less in sub-market B until \(MR_A = MR_B \), which \(\Rightarrow q_A > 30 \), \(q_B < 20 \), & \($10 < MR_A = MR_B < $15 \).

3. a) If employers believe those with \(y \geq y^* \) are stars, then the conditions for a star to signal & a lemon to not mimic a star (given those who signal will be paid 60, & others will be paid 30) are:

 \[
 60 - y/2 \geq 30,

 60 \geq y. \tag{1}

 60 - 2y/3 < 30,

 45 < y. \tag{2}

 \Rightarrow 45 < y \leq 60.

 Thus, \(45 < y^* \leq 60 \). Competition by firms for workers will drive \(y^* \rightarrow 45 = y_{Riley} \). Technically, \(y^* \) must be slightly greater than 45 for lemons not to mimic stars, but we can use \(y^* = 45 \).

 b) If all set \(y = 0 \) (pooling), then the pooling wage is \(W_{pool} = 60s + 30(1-s) = 30(1+s) \). The payoff to a star from signaling = \(60 - y_{Riley}/2 = 37.5 \). Stars prefer signaling to pooling if \(37.5 > 30(1+s) \), or \(s < .25 \).
4. \(E(I) = \text{[probability } I = \$100]\times\$100] + \text{[probability } I = \$900]\times\$900] = .25\times\$100] + .75\times\$900] = \$700. \)

\(E(U) = \text{[probability } I = \$100]\times[U($100)] + \text{[probability } I = \$900]\times[U($900)] = \)

\[.25\times[10\sqrt{100} + .75\times[10\sqrt{900} = 25 + 225 = 250. \]

To find \(RP \), find the certain \(I \) that yields \(U = 250 \):

\[10\sqrt{I} = 250 \]

\[\sqrt{I} = 25 \]

\[I = 25^2 = 625. \]

Thus \(RP = \$75. \)