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Dealing with Data and Fitting Empirically 
Notes by Holly Hirst 

 
Fitting Functions to Data: Regression 
 
When working with a situation for which we don’t have a physical law (and hence an equation, 
function or inequality), we observe the system, recording data from our observations.  We are then 
left with the task of making predictions and drawing conclusions from the data.  To do this we start 
by determining the trend of the data, and then fitting an appropriate function.  If the data from the 
observations are ordered pairs, we can look at a graph of the data to determine the trend, and hence 
the form of the function to fit.  Common practice puts the variable we are selecting to measure 
(input) on the x axis – statisticians call it the predictor – and the variable we are hoping to predict 
(output) on the y axis – the response. 
 
 In the graph below on the left, the trend appears to be roughly linear with a downward slope.  
We can fit the line “by eye” as in the graph on the right, simply drawing the line so that it looks like 
no one data point is too far from the line.  If an equation is needed, we could choose two points on 
the line and use simple algebra to find the equation.   
 

 
While fitting by eye is appealing because it is so simple, a slightly more mathematical approach 
yields a line for which we can quantify the fact that no point is too far from the line.  Let the formula 
for the line we are looking for be y = Ax+B, where A is the unknown slope and B is the unknown y-
intercept.  Look at the graph in the picture below.   
 

 
 
The actual data point value for x1 is y1 and the response value for the predictor x1 from the line is 
Ax1+B.  We’ll call the difference between these values the deviation.  One way to fit a line to the 
data is to minimize the sum of these deviations, 

minimize Axi + B ! yi
i= 0

n

" , 
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where we have assumed that there are n+1 data points numbered 0 through n.  Also note that we 
have used the absolute values of the deviations.  We do this so that deviations for points above the 
line don’t cancel out deviations for points below the line.   
 
 So what next?  To minimize this expression, we need to take the partial derivatives with 
respect to A and B (the unknowns), set the derivatives equal to zero, and then solve the resulting 
equations simultaneously.  Unfortunately, the absolute values are difficult to deal with when taking 
derivatives, since absolute values have discontinuous derivatives.  Note, however, that a linear 
programming approach can be taken to get a “Chebychev line of best fit.”  We will not pursue that 
here. 
 
 How do we fix this?  Instead of minimizing the sum of the deviations, we will minimize the 
sum of the squares of the deviations: 

minimize Axi + B ! yi( )2
i= 0

n

"  

The squares of the deviations are always non-negative – which is why we used the absolute values – 
but avoid the problems with derivatives.  In addition, minimizer for this sum is equal to the 
minimizer for the square root of this sum – and the square root of the sum is closely related to 
Euclidean distance.  
 
To finish this, we need to take the two partials and set them equal to zero: 
 

 !
!A

Axi + B " yi( )2
i= 0

n

# = 2 Axi + B! yi( )
i= 0

n

" xi( )=2 Axi
2 + Bxi ! xiyi( )

i= 0

n

" =0 (1) 

 !
!B

Axi + B " yi( )2
i=0

n

# = 2 Axi + B! yi( )
i= 0

n

" 1( )=2 Axi + B! yi( )
i= 0

n

" =0 (2) 

 
Yuk!  Now what?  We need to simplify these two equations and then solve them for A and B.  To do 
this we need to use the fact that we can rearrange sums of sums as follows: 
 

Ti + Ri + Si( )! = Ti +! Ri +! Si!  
 
The left side of this equation indicates to add the ith T, R and S values first and then add those sums; 
the right side says to add the T’s, add the R’s, add the S’s and then sum those sums.  Either way, we 
have added all the T’s, R’s and S’s together.  Using this fact, we can simplify (1) to get: 
 

 Axi
2

i= 0

n

! + Bxi
i=0

n

! " xiyi
i= 0

n

! = A xi
2

i=0

n

! + B xi
i=0

n

! " xiyi
i= 0

n

! = 0  (3) 

 
Where did the factor of 2 go?  We divided both sides of the equation by 2.  Similarly, (2) simplifies 
to: 
 

 Axi
i= 0

n

! + B
i=0

n

! " yi
i= 0

n

! = A xi
i= 0

n

! + Bn " yi
i=0

n

! = 0  (4) 

 
We are finally ready to solve these two equations for A and B.  We will rewrite these without the 
subscripts and limits for simplicity as: 
 

A x 2! + B x! = xy!    and    A x! + Bn = y!  
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Multiplying the first one by n and multiplying second one by x!  and then subtracting gives: 
 
 
 A n x2! " x! x!( ) = n xy! " x! y!  (5) 
 
Solving for A gives: 
 

A =
n xi yi
i=0

n

! " xi
i= 0

n

! yi
i=0

n

!

n xi 2
i= 0

n

! " xi
i= 0

n

!
# 
$ 
% & 

' 

2  

 
Plugging this expression for A into (4) gives a formula for B: 
 

B =
yi

i=1

n

! " A xi
i=1

n

!
n

 
 
 Here is an example done using these formulas.  We have used a table to organize the 
calculations of all of the sums.  (FYI: These data are from a physics experiment on springs.) 
 

 X Y X^2 XY 
 0 5.3 0 0 
 2 7.0 4 14 
 4 9.4 16 37.6 
 5 11.1 25 55.5 
 6 12.3 36 73.8 
 8 14.2 64 113.6 
sums: 25 59.3 145 294.5 

 
A = ( 6*294.5 – 25*59.3) / (6*145 – 25*25) = 1.61122 

B = (294.5 – 1.61122*25) / 6 = 5.044898 
 
So the line we might use to predict y using an x value is: y = 1.61 x + 5.04. 
 
Goodness of Fit 
 
So how can we tell the quality of the fit? First we need to look at the data and a graph showing the 
line and the data, asking whether the conditions needed for linear regression hold.  If we are satisfied 
with the fit, then we can look at a statistical measure of the strength of the fit called the coefficient 
of determination.   
 

As usual, let the actual data points be (xi, yi), i = 1, ..., n. Also let the predicted value for xi 
from the fitted line be   

 

ˆ y i . So we have  
  

 

ˆ y i = Axi + B . 
 
Conditions for Regression 
 
The assumptions we need for regression information to make sense (be unbiased estimates of 
coefficients and give reliable estimates of variance) are: 

1. The x values are fixed, not random.  
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2. The y data values are independent of each other and normally distributed.  This is usually the 
case if the data were collected carefully.  One notable exception is values that are serially 
collected for which the independent variable is not time.  These time series data may depend 
on time and hence on each other. 

3. The individual residuals (  

 

ˆ y i  – 

 

yi ) are independent of each other and normally distributed 
with mean 0.   

How do we recognize when these assumptions are violated? 
 

1.  The single best way to tell if the regression is good is: LOOK AT THE GRAPH!  Look for 
the following things: 

• Does the line go through the middle of the data? no  = bad (might be influenced by an 
outlier) 

• Is there a pattern to the deviations?  yes = bad (might be non-linear) 

• Is the shape of the data rectangular (rather than wedge shaped)?  no = bad (might need a 
transformation of the y values or a weighted regression). 

2.  One can also look at some other graphs: 
• Plot the y values on a histogram to look for normality 

• Plot the residuals (  

 

ˆ y i  – 

 

yi ) to look for normality with mean = 0. 

• Plot residuals against fitted values (Y = (  

 

ˆ y i  – 

 

yi ) versus X =   

 

ˆ y i ).  This should be a 
horizontal band across the graph.  If there’s a (sloped) linear pattern there might be an 
underlying independent variable that should replace the x that was used.  If there is a 
wedge shape, a transformation of y or weighted regression might be needed. 

 
Coefficient of Determination 
 
Once we are sure that none of the conditions above are violated, we can look at a value called the 
coefficient of determination, aka R-Squared.  This will give us a statistical measure of the quality 
of the fit. 
 
What did we do to find the fits? We solved the problem  

minimize 

 

Axi + b ! yi( )2

i=0

n

"  

or, using the hat notation: 

minimize 

  

 

ˆ y i ! yi( )2

i=0

n

"  

 
If we want to find out how well the line captures the relationship in the data, we can examine the 
following quantities that measure variance: 
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SSTO (total sum of squares): 

 

yi ! y ( )2

i=0

n

" , which measures the overall deviation from the mean 

(

 

y ) of the response variables without regard to the predictor variable.  If this were 0, then there 
would be no need to know any x values, i.e., no dependence on the x values. 

SSE (error sum of squares): 

  

 

yi ! ˆ y i( )2

i=0

n

" , which measures the deviation of the line values from the 

observed values for the response, i.e., taking into consideration the predictor variable.  If this were 0, 
then we would know that the relationship was exactly linear, i.e., all of the data points are on the 
regression line. 

SSR (regression sum of squares): 

  

 

ˆ y i ! y ( )2

i=0

n

" , which measures the overall deviation from the 

mean (

 

y ) of the fitted variables.  If this were 0, then there would be no need to know any x values, 
i.e., no dependence on the x values and the regression line would be horizontal. 
 
Using basic ideas from linear algebra, we can show that 

  

 

yi ! y ( )2

i=0

n

" = yi ! ˆ y i( )2

i =0

n

" + ˆ y i ! y ( )2

i=0

n

" ,                    (1) 

 
i.e., SSTO = SSE + SSR. This equality is the fundamental reason for choosing to minimize the sum 
of the squared deviations. In words, this equality says the following: 

 
The overall variation in the data is equal to the sum of the overall deviation of the data from 
the fitted line plus the deviation of the line values from the mean. 

 
The coefficient of determination is defined as the proportion of the error not attributable to the line 

(SSTO-SSE) out of the total error:  

 

SSTO! SSE
SSTO

, and thus calculated as 

  

 

1!
yi ! ˆ y i( )2

i=0

n
"

yi !y ( )2
i =0

n
"

 

 
or, in words, this is the proportion of the total variation that can be accounted for by the line fit. It 
can also be calculated as: 

  

 

ˆ y i! y ( )2
i =0

n
"

yi! y ( )2
i =0

n
"

 

 
That these two values are the same can be shown easily from the fundamental relationship 

(1). Also from (1) we know that this number is always between 0 and 1, and the closer to 1 it is, the 
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more the line "explains" the overall variation in the data. In fact, the coefficient of determination can 
be thought of as the %-goodness of fit of the line. 
 

We can calculate this by hand, but luckily for us, many software packages can calculate this 
automatically when the trendline calculation is done.  

y = 1.1612x + 5.0449

R
2
 = 0.9919

0
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16
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Linear (Series1)

 
Notice that the line is a pretty good fit (0.9919 is very close to 1).  
 

We need to use caution when looking at the coefficient of determination aka R-Squared. 
When fitting a line, we can interpret the number as a percent goodness of fit. So for the line fitted 
above, 

99% of the variation in the data is explained by the linear relationship y = 1.16 x — 5.04. 
What shouldn’t we say?  None of the following statements are true! 

The line will predict the y value 99% of the time. 
The y value predicted by the line will be 99% of the actual value. 

 
Non-Linear Fits 
 
Consider the example in Chapter 5 of the Edward’s and Hamson’s Guide to Modelling – data 
collected to see if there is a relationship between height in meters and weight in kilograms.  (Table 
6.1 on page 103) 
 

x(height) y(weight) 
0.75 10 
0.86 12 
0.95 15 
1.08 17 
1.12 20 
1.26 27 
1.35 35 
1.51 41 
1.55 48 
1.6 50 

1.63 51 
1.67 54 
1.71 59 
1.78 66 
1.85 75 
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These data, when plotted, give the following graph: 
 

Height versus Weight
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These data seem a little curved, but let’s fit a line to it and take a look: 
 

Height versus Weight

y = 57.871x - 41.079
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The linear fit isn’t bad, but notice that there is a pattern to the deviations – below 1 meter and above 
1.75 meters, the data points are above the line; in between 1 and 1.75 meters, the data points lie 
below the line.  As mentioned in the previous section, patterns to the deviations are indicative of a 
non-linear fit.   
 

So what non-linear function should we try to fit?  If we take the approach from MAT 5950, 
we would think about what the data represent:  Height versus weight in humans.  Let’s make some 
assumptions: 

• Humans are geometrically similar 
• Weight is proportional to volume 
• Volume is a 3-D measurement whereas height is 1-D. 

 
 From these assumptions, it seems reasonable to try weight ! height3 .  So let’s repeat the 
steps we used to find the formula for linear regression to find a formula for simple cubic regression.  
We start with minimizing the sum of the squared deviations: 
 

 minimize Axi
3 ! yi( )2

i= 0

n

"
 

 
Next we take the derivative with respect to the variable (A) and set the result equal to zero. 
 

 d
dA

Axi
3 ! yi( )2

i=0

n

" = 2 Axi
3 ! yi( )

i= 0

n

" xi
3( ) = 2A xi

6

i= 0

n

" ! 2 xi
3yi = 0

i= 0

n

"  (1) 
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Solving this for A gives: 

A =
xi 3yi

i=0

n

!
xi 6

i= 0

n

!
 

 
Organizing the calculations in table form: 
 

x(height) y(weight) x^6 x^3*y 
0.75 10 0.17797852 4.21875 
0.86 12 0.40456724 7.632672 
0.95 15 0.73509189 12.860625 
1.08 17 1.58687432 21.415104 
1.12 20 1.97382269 28.09856 
1.26 27 4.00150414 54.010152 
1.35 35 6.05344514 86.113125 
1.51 41 11.8539116 141.160991 
1.55 48 13.867245 178.746 
1.6 50 16.777216 204.8 

1.63 51 18.7553696 220.868097 
1.67 54 21.6919616 251.503002 
1.71 59 25.00211 295.012449 
1.78 66 31.8068026 372.223632 
1.85 75 40.0894751 474.871875 

 sum: 194.777376 2353.53503 
  A= 12.0832054 

 
Building a new table with x, y and A*x^3 gives: 

 
x(height) y(weight) A*x^3 

0.75 10 5.09760228 
0.86 12 7.68559529 
0.95 15 10.3598382 
1.08 17 15.2213588 
1.12 20 16.9760336 
1.26 27 24.1709541 
1.35 35 29.7292165 
1.51 41 41.6018841 
1.55 48 44.9963465 
1.6 50 49.4928093 

1.63 51 52.3293055 
1.67 54 56.2770821 
1.71 59 60.4185766 
1.78 66 68.1462818 
1.85 75 76.5063254 

 
Plotting this: 



 
Data Fitting Notes 

© Holly Hirst – HirstHP@appstate.edu 
9 

 

data with cubic fit
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Note from the graph that this fit appears to be bad at the bottom.  Why might our assumptions have 
let us down?  The lower values in our data set come from people under 1 meter tall – namely 
children.  Are children geometrically similar to adults?  Not really. 
 
 Let’s try some other models.  In the last attempt we chose the power on the height to be 3.  
What if we let that be unknown as well – letting the data drive the power empirically?   
 

minimize Axi
B ! yi( )2

i= 0

n

"  

 
Next we take the derivative with respect to the variables (A and B) and set the results equal to zero.  
Here is the partial derivative with respect to A.  
 

 !
!A

Axi
B " yi( )2

i= 0

n

# = 2 Axi
B ! yi( )

i= 0

n

" xi
B( ) = 2A xi

2 B

i= 0

n

" ! 2 xi
Byi = 0

i=0

n

"  (1) 

 
 Notice that the resulting equation is not going to be linear (B is in the exponent!), leading to a 
system that is not easy to handle.  Is there another way?  Yes!  We can use a log trick to get the B out 
of the exponent: 
 

y = AxB ! ln y( ) = ln AxB( ) ! ln y( ) = ln A( ) + ln xB( )
! ln y( ) = ln A( ) + Bln x( )

 

 
This says that Y = ln(y) and X = ln(x) have a linear relationship whenever y and x have a power 
relationship, with the slope equal to the power, B, and the y-intercept equal to ln(A) -- the log of the 
constant.  So what should we do?  Fit a line between ln(x) and ln(y)... 

 
x(height) y(weight) ln(x) ln(y) 

0.75 10 -0.2876821 2.30258509 
0.86 12 -0.1508229 2.48490665 
0.95 15 -0.0512933 2.7080502 
1.08 17 0.07696104 2.83321334 
1.12 20 0.11332869 2.99573227 
1.26 27 0.23111172 3.29583687 
1.35 35 0.30010459 3.55534806 
1.51 41 0.41210965 3.71357207 
1.55 48 0.43825493 3.87120101 
1.6 50 0.47000363 3.91202301 
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1.63 51 0.48858001 3.93182563 
1.67 54 0.51282363 3.98898405 
1.71 59 0.53649337 4.07753744 
1.78 66 0.57661336 4.18965474 
1.85 75 0.61518564 4.31748811 

 
Here is a line fit to ln(x) and ln(y): 
 

log-log plot

y = 2.3047x + 2.8206
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This is often referred to as log-log regression.  This looks linear, and the deviations are more 
randomly placed.  How do we recover the original function from this?  We'll use the statement we 
made two paragraphs up:  Y = ln(y) and X = ln(x) have a linear relationship whenever y and x have 
a power relationship, with the slope equal to power, B, and the y-intercept equal to ln(A) -- the log 
of the constant. 
 
So 2.3047 = B = power and 2.8206 = ln(A) or exp(2.8206) = 16.79 = constant, giving 
 

y = 16.79x2.305  
 
Here is the graph using the power curve: 
 

power fit using excel

y = 16.788x2.3047
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One last thing to try on this height-weight data set is exponential regression.  A*exp(Bx) is another 
function that has a similar shape for x > 0.  If we tried again with the naive approach to regression – 
minimizing the sum of the squared deviations, we would run into algebraic problems again, just like 
with the power curve calculations above.  We can transform this in a similar way: 
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y = AeBx ! ln y( ) = ln AeBx( )! ln y( ) = ln A( ) + ln eBx( )
! ln y( ) = ln A( ) + Bx ln e( )
! ln y( ) = ln A( ) + Bx

 

 
This says that Y = ln(y) and X = x have a linear relationship whenever y and x have an exponential 
relationship, with the slope equal to the power, B, and the y-intercept equal to ln(A) -- the log of the 
constant.  So what should we do?  Fit a line between x and ln(y)... 
 

x(height) y(weight) x(height) ln(y) 
0.75 10 0.75 2.30258509 
0.86 12 0.86 2.48490665 
0.95 15 0.95 2.7080502 
1.08 17 1.08 2.83321334 
1.12 20 1.12 2.99573227 
1.26 27 1.26 3.29583687 
1.35 35 1.35 3.55534806 
1.51 41 1.51 3.71357207 
1.55 48 1.55 3.87120101 
1.6 50 1.6 3.91202301 

1.63 51 1.63 3.93182563 
1.67 54 1.67 3.98898405 
1.71 59 1.71 4.07753744 
1.78 66 1.78 4.18965474 
1.85 75 1.85 4.31748811 

 
Here is a graph of the linearized data: 
 

log plot

y = 1.8558x + 0.9213
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This is often referred to as log regression.  This looks linear, and as in the power fit the deviations 
are more randomly placed.  How do we recover the original function from this?  We'll use the 
statement we made two paragraphs up:   Y = ln(y) and X = x have a linear relationship whenever y 
and x have an exponential relationship, with the slope equal to power, B, and the y-intercept equal 
to ln(A) -- the log of the constant. 
 
So 1.8558 = B = power and 0.9213 = ln(A) or exp(0.9213) = 2.513 = constant, giving 
 

y = 2.513e1.856x  
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Here is the graph using the power curve and the exponential curve and showing the functions 
together: 
 

height versus weight
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Checking for Goodness of Fit in the Non-Linear Case 
 
Since these fits are based upon a linearization of the original data, the same “rules” apply when 
deciding if the fit is good.  Look at the transformed data and check: 
  

1. The x values are fixed, not random.  
2. The y data values are independent of each other and normally distributed.  This is usually the 

case if the data were collected carefully.  One notable exception is values that are serially 
collected for which the independent variable is not time.  These time series data may depend 
on time and hence on each other. 

3. The residuals are independent of each other and normally distributed with mean 0.   
 
How do we recognize when these assumptions are violated?  The single best way to tell if the 
regression is good is – LOOK AT THE GRAPH!  Look for the following things both with the 
original and with the transformed data: 

• Does the curve go through the middle of the data? no  = bad  
• Is there a pattern to the deviations?  yes = bad  
• Is the shape of the data rectangular (rather than wedge shaped)?  In the case of the original 

data, look for a rectangle that is bent to follow the curve.  no = bad  
 

 
Coefficient of Determination as used with Non-Linear Fits 
 
Note that in each case we could get an R-squared value.  When fitting non-linear curves to the data, 
in particular the power and exponential fits we have seen already, caution must be used when 
looking at this number. It tells us how good the fit is for the transformed data — NOT the original 
data. In particular, logarithmic transformations change the distances between the y data values and 
the mean (

 

y ) in a non-uniform way. This implies that the traditional explanation for the meaning of 
the coefficient of determination doesn’t work if the data have been transformed in this way. 
 
 We can still look at the coefficient of determination in a comparative way to choose between 
two curves of the same kind, such as two different exponentials, two power fits, etc., but not as a 
way to choose between the fits from different kinds of curves. This mis-use is common in 
applications of statistics to the social sciences — remember to avoid this!!! 
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 So, bottom line, what is the best way to tell if we have chosen the best curve? Use your eyes! 
Look at the data with the various fits and choose the one that appears to come closest to all of the 
points and gives a random pattern in the deviations. 

 
Problems 
 
1. The following data table contains a sample of 40 individuals out of over 7000 who participated in 
a study in Honolulu, HI in 1969. Answer each question, and explain your conclusions. Is there a link 
between weight and cholesterol levels? Please note: Lower total cholesterol is considered healthier. 
Does age matter? Does physical activity matter? Does smoking affect blood pressure? 
 
Some experts propose that comparing weight alone to blood pressure is not as good as comparing 
weight per cm of height to blood pressure, i.e., create a new variable that is weight divided by height 
for each person. Can this new variable be used to predict blood pressure? 
 

Honolulu Study Data (1972) 
Education 
(Highest 

completed) 

 
Weight 
(kg) 

 
Height 
(cm) 

 
 

Age 

 
 

Smoker 

 
Physical 
Activity 

 
Chole-
sterol 

Systolic 
Blood 

Pressure 
primary 70 165 61 y moderate 199 102 
none 60 162 52 n heavy 267 138 
none 62 150 53 y moderate 272 190 

primary 66 165 51 y moderate 166 122 
primary 70 162 51 n heavy 239 128 

high school 59 165 53 n moderate 189 112 
none 47 160 61 n heavy 238 128 

intermediate 66 170 48 y moderate 223 116 
college 56 155 54 n heavy 279 134 
primary 62 167 48 n moderate 190 104 

high school 68 165 49 y heavy 240 116 
none 65 166 48 n moderate 209 152 
none 56 157 55 n heavy 210 134 

primary 80 161 49 n moderate 171 132 
intermediate 66 160 50 n heavy 255 130 
high school 91 170 52 n heavy 232 118 
intermediate 71 170 48 y moderate 147 136 

college 66 152 59 n heavy 268 108 
none 73 159 59 n moderate 231 108 

high school 59 161 52 n moderate 199 128 
none 64 162 52 y moderate 255 118 

intermediate 55 161 52 y moderate 199 134 
primary 78 175 50 y moderate 228 178 
primary 59 160 54 n moderate 240 134 

intermediate 51 167 48 y heavy 184 162 
intermediate 83 171 55 n moderate 192 162 

primary 66 157 49 y heavy 211 120 
high school 61 165 51 n moderate 201 98 

primary 65 160 53 n moderate 203 144 
intermediate 75 172 49 n moderate 243 118 
high school 61 164 49 n heavy 181 118 

none 73 157 53 y heavy 382 138 
primary 66 157 52 n moderate 186 134 
none 73 155 48 n heavy 198 108 

primary 61 160 53 n moderate 165 96 
intermediate 68 162 50 n heavy 219 142 

primary 52 157 50 n heavy 196 122 
college 73 162 50 n moderate 239 146 
none 52 165 61 y heavy 259 126 
none 56 162 53 y moderate 162 176 

 
2. Wild black bears were anesthetized, and their bodies were measured and weighed. One goal of the 
study was to look at whether the distribution of the weights is different for male and female bears.  
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The second goal of the study was to determine the kind of relationship that explained best the 
association between length and weight. The third goal of the study was to find a linear equation for 
weight in terms of some other measurable characteristic for forest rangers, so they could estimate the 
weight of a bear based on that one measurement. This would be useful because in the field it is easier 
to measure a length than it is to weigh a bear with a scale.  Use the dataset to investigate these goals. 
 
link to data: http://mathsci2.appstate.edu/~hph/SageMath/bears.csv 
 
 
3. In order to avoid the expense and inconvenience of using a water tank to determine body fat, we 
wish to find a measurement that can predict body fat. The data set provided below consists of 
estimates of body fat determined by underwater weighing along with various body circumference 
measurements for 252 men.   Which of these measurements is the best predictor of body fat?  
 
link to data: http://mathsci2.appstate.edu/~hph/SageMath/bodyfat.csv 
 
 
4. Is there a relationship between brain and body weight in mammals? Use the data provided for 53 
species’ average adult male body weight to investigate this question. 
 
link to data: http://mathsci2.appstate.edu/~hph/SageMath/brain-body.csv 
 
 
5. World Rankings:  Data Source: http://www.photius.com/rankings/ 
 
This problem is designed to let you grub around with real data.  Real data are not always “nice,” so 
don’t be surprised if you run into less than satisfying results. Your assignment is to try various fits 
and use the ideas from class to choose “the best” relationship or to say why you think there is no 
relationship.  Some examples of relationships you might investigate: 

• Explore the relationship between life expectancy and GDP. 
• Explore the relationship between energy use and GDP. 
• Explore the relationship between literacy and infant mortality rate. 
• Explore the relationship between CO2 emission and GDP. 
• Explore the relationship between population and energy use. 
• Explore the relationship between literacy and life expectancy. 
• Explore the relationship between CO2 emissions and energy use. 
• Explore the relationship between fertility rate and % over 60. 

 
 


