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Stochastic Processes and Markov Chains 
Notes by Holly Hirst 

Adapted from Chapter 5 of Discrete Mathematical Models  
By Fred Roberts 

 
Introduction 
Stochastic Process:  A sequence of events in which the outcome of the nth event (also called a stage 
or trial) depends on some chance element and perhaps also outcomes from some set of the previous 
stages.  If the number of possible outcomes at each stage is finite, the process is considered to be 
finite.   
 
Memory-less Processes:  Stochastic processes in which no information from previous stages is 
needed for the next stage.  Example: coin tossing. 
 
Markov Chains:  Processes in which the outcomes at any stage depend upon the previous stage 
(and no further back).  
 
Markov Chain Example 1:  Weather – A study of the weather in Tel Aviv showed that the 
sequence of wet and dry days could be predicted quite accurately as follows. 
 If the current day is dry then there is a 
  .250 probability of having a wet day the next day 
  .750 probability of having a dry day the next day 
 If the current day is a wet day there this is a 
  .662 probability of having a wet day the next day 
  .338 probability of having a dry day the next day 
 
Markov Chain Example 2:  Russian Roulette – There is a gun with six cylinders, one of which has 
a bullet in it.  The barrel is spun and then the gun is fired at a person’s head.  After each firing, the 
person is either dead or alive.  If the person survives, the barrel is spun again and fired again.  This is 
repeated until the person is dead. 
 
Representing Markov Chains 
Here is a formal definition: 
 
A Markov Chain is a sequence of events for which 

(1) There is a finite set of outcomes, which includes all possible outcomes – more commonly 
called “states” –  for all possible stages:  U = {u1, u2, …, un}. 

(2) The probability that outcome ui will occur at trial t+1 is known if we know the outcome of 
trial t, but is independent of t, i.e., the same for trial 2 as for trial 10. So we can consider the 
set of probabilities pi,j as the probability that if the outcome on any trial is uj then the 
outcome on the next trial is ui. 

 
In other words, information about trials other than the current one or the trial number itself doesn’t 
affect the probabilities of future events. 
 
Weather Example (1):  The set of outcomes is U = {wet, dry}, and the probabilities can be put in a 
transition matrix: 
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wet now dry now
wet later
dry later

.662    .250

.338    .750
! 

" 
# 

$ 

% 
& 

 

 
This matrix is a really nice way to characterize Markov chains.  There is no ambiguity in the 
definition, provided one remembers that the i,j entry is the probability of going from state uj to state 
ui.  Note also that the columns sum to 1, since each column lists probabilities for all possible future 
outcomes for a given current state. Be aware that the fact that the probabilities are listed column-
wise is not always used; other references may list the entries in rows, which would change the matrix 
calculations that are described in what follows. 
 
We can also draw a graph of the process: 
 

 
Russian Roulette Example (2):  The set of outcomes is U = {alive, dead}, and the probabilities are: 

 

alive now dead now
alive later
dead later

5
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6                1

! 

" 
# 

$ 

% 
& 

 

 

 
Making Predictions with Markov Chains 
The main question we want to answer eventually is, “what happens over the long term?”  In the 
weather example, what is the long-term probability of a dry or wet day?  To do this we need to be 
able to calculate the probability of a wet or dry day two days, three days, four days, etc., after a wet 
or dry day.  These are called higher order transition probabilities and are denoted Pi,j

(k). 
 
Theorem 1:  If P is the transition matrix for a Markov chain, then Pi,j

(k) is the i, j entry of Pk, i.e., the 
kth power of the matrix. 
 
Weather Example (1):  The probability that a dry day will occur 3 days after a wet day is  .53463 
from entry 2,1 in the matrix: 
 

 

.662 .250

.338 .750
! 

" 
# 

$ 

% 
& 
3

=
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.53463 .60456
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Raising this matrix to different powers can answer many questions about the situation being 
modeled. 

wet dry

.662 .75

.338

.25

alive dead

5/6 1

1/6
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Using Initial Conditions 
Sometimes we know the initial state or the initial probability distribution, and we want to learn what 
happens in the future based upon that starting information.  We can use matrix calculations to find 
the probability of being in a certain state several stages later.   
 
Theorem 2:  If P is the transition matrix for a Markov chain and v0 is a vector of initial probabilities 
for being in the states (in the same order as in the matrix), then the matrix multiplication vk = Pk v0 
gives the probabilities of being in the states after k stages. 
 
Russian Roulette Example (2):  Initially (assuming the person is alive), the probability vector is 
(alive, dead) = (1,0)T.  After 20 rounds, the probability vector becomes: 
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So, we have .02608 probability of being alive after 20 rounds. 
 
With the information at our disposal we can answer quite a few questions about what happens in the 
future based upon current events.  However, in certain instances we can say a lot more. We will look 
at two kinds of Markov Chains with interesting properties. 
 
Regular Markov Chains 
Chains that have the property that there is an integer k such that every state can be reached from 
every other state in exactly k steps are called regular chains.   These chains have two interesting 
properties: 
 
Theorem 3:  In a regular chain, some power of the transition matrix has all of its entries positive. 
 
Theorem 4:  The powers of the transition matrix approach a matrix with all columns the same.  More 
over, this column vector – called the fixed-point probability vector – contains the long-term 
probabilities of being in each state.   
 
In addition to the usual question, “if we start in state i, what is the probability we get to j in k steps?” 
we will ask the following question about regular chains: 

What is the long term probability of being in state i? 
 
Weather Example (1):  The weather example is a regular chain.  Let’s look at some high powers of 
the transition matrix: 
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We appear to be converging to a probability of having a wet day of .425 and a probability of having 
a dry day of .575. 
 
Absorbing Markov Chains 
A state that cannot be left is called an absorbing state.  Chains that have at least one absorbing state 
and from every non-absorbing state it is possible to reach an absorbing state are called absorbing 
chains.   
 
Theorem 5: As the number of stages approaches infinity in an absorbing chain, the probability of 
being in a non-absorbing state approaches 0. 
 
Russian Roulette (2):  Russian Roulette is an example of an absorbing chain.  Note that very high 
powers of the matrix give: 
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We will be interested in the following questions related to absorbing chains: 
 
(1)  What is the probability of ending up in absorbing state i when starting in state j? 
(2)  What is the expected number of times we will be in state j before being absorbed? 
(3)  What is the expected number of stages before being absorbed? 
 
These can all be answered by studying the transition matrix. 
 
For any absorbing Markov chain, the transition matrix can be rewritten in the following form: 

 

absorbing nonabsorbing
absorbing

nonabsorbing
I                      R
0                     Q
! 
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$ 
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& 

 

 
where I is the identity matrix, 0 is the matrix of zeros, R and Q are submatrices that give the 
probabilities of going from nonabsorbing to absorbing states and the probabilities of staying in 
nonabsorbing states respectively. 
 
The key ideas are listed in the following theorem: 
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Theorem 6:  In an absorbing Markov chain, the matrix N = (I – Q)-1 exists, and  
(1) the expected number of times we are in state i given that we start in state j is given by the i,j 

entry of N; 
(2) the expected number of steps before absorption given that the process starts in row i is the 

sum of column i of N; 
(3) the probability of absorption in state i given that the process starts in state j is given by the i,j 

entry of the matrix RN. 
 
Russian Roulette (2):  The Russian roulette problem gives matrices: 
 

 

R = 1
6[ ],Q = 5

6[ ] 
 
This overly simple example gives:   

 

I !Q( ) = 1! 5
6[ ] = 1

6[ ]
N = I !Q( )!1 = 6[ ]
RN = 1[ ]

 

 
Interpreting these numbers gives us:   

(1) We expect to be alive 6 stages given that we start out alive. 
(2) We expect to be alive 6 stages before dying. 
(3) The probability of dying given that we start out alive is 1. 

 
Other Kinds of Markov Chains 
These two special cases are not the only situations we could encounter.  Chains can cycle between 
two sets of states, chains can have parts that act like regular chains and parts that act like absorbing 
chains.  There is a rich theory behind the behaviors of Markov chains, and they remain a topic of 
interest to researchers today. 
 
Problems 
1.  A rat is dropped into chamber 1 in the maze, and wanders through 
the chambers at random until it finds the cheese in chamber 5.  
Assuming that at any stage the rat chooses a door out of any chamber 
at random, what is the expected number of stages before the rat finds 
the cheese?  What is the expected number of times that each chamber 
is entered?  If the rat is particularly stupid and only sees the cheese 
half the time when entering chamber 5, how do these answers 
change?   
 
2. Consider the maze from problem (1) again, this time assuming that there is no cheese, i.e., the 
mouse will wander at random indefinitely.  Build the transition matrix, and investigate the process 
for this situation.  Is it an absorbing chain?  Is it regular?  Answer all of the questions one can pose 
about this sort of chain. 
 
3.  A particle moves on a circle through points that have been marked 0, 1, 2, 3, 4 (in a clockwise 
order).  The particle starts at 0.  At each stage the particle moves one step clockwise (0 follows 4) 

1

2 3

4

5

1

2

3

4

5
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with probability q or one step counterclockwise with probability 1-q.  Let the position of the particle 
be the states of a Markov chain.  Find the transition matrix and the equilibrium probabilities.   
 
4.  Consider the game of ping pong with the following states and transition 
matrix as pictured on the right: 

1.  Player A hits the ball toward B’s side. 
2.  Player B hits the ball towards A’s side. 
3.  Play is dead because A hit the ball out or hit the net. 
4.  Play is dead because B hit the ball out or hit the net. 

 
The game starts with player 1 hitting the ball.  What is the expected 
number of times the ball will be hit without error before play is dead?  
What is the probability that A will win the point (i.e., B will be the one to make an error)? 
 
5.  Play the games snakes and ladders on the board to the right as follows:  
Start on square 1, toss a fair coin and move 1 if heads and 2 if tails.  On 
squares where a ladder is based, slide immediately up to the square at the top 
of the ladder.  On squares where a snake rests its head, slide immediately 
down to the square at the tail end of the snake.  Find the expected number of 
tosses to completion of the game.  What is the probability that a person on 
the middle square completes the game without sliding back to 1? 

 
6.  Consider the following gambling game.  A coin is tossed, with a bet placed on the outcome.  Each 
person must start with $2, and the first one with $10 wins.  The allowed bets are:  Stake all if current 
cash is $5 or less, stake enough to get to $10 otherwise.  What is the probability that a player gets to 
$10?  What is the expected number of tosses to losing ($0) or winning ($10)? 
 
7.  Three tanks are engaged in a battle.  Tank A, when it fires, hits its target with probability 1/2.  B 
hits its target with probability 1/3, and C will hit with probability 1/6.  Initially, B and C fire at A and 
A fires at B.  Once one tank it hit, the remaining tanks aim at each other.  The battle ends when there 
is one or no tanks left.  Analyze the outcomes of this battle.  (Hint:  Let the states be the possible 
subsets of tanks in action at any one time.) 
 
8.  Suppose an urn contains 2 unpainted balls to start.  We choose a ball at random and flip a coin.  If 
the ball is unpainted and the coin is heads we paint the ball red.  If the ball is unpainted and the coin 
is tails, we paint the ball black.  If the ball is already painted, we change the color of the ball 
(regardless of the coin toss) from red to black or black to red.  Analyze this process.  After 2 balls 
are painted, what is the probability that there will be 2 red balls?  2 black balls?  1 red and 1 black? 
 
9.  Consider an inventory system in which the sequence of events during each period is as follows:  
(1) We observe the inventory level i at the beginning of each period.  (2) If i ≤ 1, (4-i) units are 
ordered.  If i ≥ 2, 0 units are ordered.  The probability of demand in any period has been observed 
over time to be equal for 0, 1, or 2 units.  Analyze the ordering process. 
 
10.  A company has 2 machines.  During any given day, each machine that is working has a 1/3 
chance of breaking down.  If a machine breaks down during the day, it is sent to a repair facility and 
will be working 2 days after it breaks down.  (Thus if a machine breaks during day 3, it will be 
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working again during day 5.)  Analyze this system from the point of view of number of machines 
working at the beginning of any given day. 
 
11.  Each American family is classified as living in an urban, rural or suburban location.  During a 
given year, 15% of all urban families move to a suburban location, and 5% move to a rural location.  
6% of all suburban families move to an urban location, and 4% move to a rural location.  4% of all 
rural families move to an urban area and 6% move to a suburban area.  If a family now lives in an 
urban location, what is the probability that it will live in an urban area 2 years from now?  In a rural 
area?  In a suburban area? 
 
12.  A college admissions office has modeled the path of a student through his or her college career 
as a Markov chain.  Each state is observed as the start of the fall semester.  If a student enters as a 
freshman how many years can he or she expect to spend as a student?  What is the probability that a 
freshman graduates?  If the college works really hard on freshman retention, reducing the number 
who quit down to 5%, how much does the probability that a freshman graduates increase? 

 
Estimated percentages: Freshmen:  10% stay freshmen and 10% quit 

  Sophomores:  10% stay sophomores and 5% quit 
  Juniors:  15% stay juniors and 5% quit 
  Seniors:  10% stay seniors and 5% quit 

 
13.  A baseball team consists of 2 stars, 13 starters, and 10 substitutes.  For tax purposes the owner 
must "value" the players.  The value of a player is defined as the total salary that a player will earn 
while on the team.  Determine the value of the teams players.  At the beginning of each season the 
non-retired players are classified into one of three categories: 
 

1:  Star -- earns $1 million per year 
2:  Starter -- earns $400,000 per year 
3:  Substitute -- earns $100,000 per year 
 

Here is the transition matrix as estimated from past data: 
 

 1 2 3 ret 
1 .5 .3 .15 .05 
2 .2 .5 .2 .1 
3 .05 .15 .5 .3 

 
14.  The manager of a factory claims that of the wastes from his plant, which are emptied into a 
nearby river, the majority are carried out to sea.  Specifically, for a given molecule of mercury found 
the wastes, its probability of being swept out to sea within a day is .999.  If that molecule is still 
around after a certain number of days, its probability of being swept out to sea on the next day is still 
.999.  Once it is swept out to sea, we assume it cannot return.  Suppose a particular molecule of 
mercury can be tagged and on the “t” th day we could record its location.  Would this sequence of 
observances form a Markov chain?  If so, build the transition matrix. Is it an absorbing chain?  Is it 
regular?  Answer all of the questions one can pose about this sort of chain. 
 
15.  Here is a graphical representation of a simple model for passage of a phosphorus molecule 
through a pasture ecosystem.  Build the transition matrix, and investigate the process.  Is it an 
absorbing chain?  Is it regular?  Answer all of the questions one can pose about this sort of chain. 
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16.  Sociologists are concerned with the movement between different occupational classes from one 
generation to the next.  Below is the transition matrix for such a situation modeled as a Markov 
chain, where the occupations have been classified as U (upper), M (middle) and L (lower) 
socioeconomic.  The entries are the probabilities that the son of a man in occupation level j has 
occupation i. Build the graph, and investigate the process.  Is it an absorbing chain?  Is it regular?  
Answer all of the questions one can pose about this sort of chain. 

 

U   M    L
U
M
L

.448 .054 .011

.484 .699 .503

.068 .247 .486
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17. Three armies are engaged in a battle.  The British will win a battle with probability 1/3.  The 
Russians win with probability 1/4, and the French will win with probability 1/2.  Initially, there is an 
alliance between the British and the Russians, i.e., the British and Russians will not engage each 
other in battle.  Once one army is defeated the other two engage each other.  The war ends when 
there is one or no army left.  Analyze the outcomes of this war. 
 
18. A college’s faculty consists of assistant, associate, and full professors.  The provost wants to get 
a feel for the overall salary structure of the university.  At the beginning of each year the faculty who 
haven’t retired or left are classified into: 
 

1. assistant professor year 1 – earns $43000 per year on average 
2. assistant professor year 2 – earns $44000 per year on average 
3. assistant professor year 3 – earns $45000 per year on average 
4. assistant professor year 4 – earns $46000 per year on average 
5. assistant professor year 5 – earns $47000 per year on average 
6. assistant professor year 6 – earns $48000 per year on average 
7. assistant professor post tenure – earns $50000 per year on average 
8. associate professor – earns $54000 per year on average 
9. full professor – earns $68000 per year on average 

 

soil grass
2/5

3/10

gone cattle

1 1/5

3/5

1/10

3/4
1/2

1/20

1/10
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Here is the transition matrix as estimated from past data: 
 

 1 2 3 4 5 6 7 8 9 leave retire 
1  .9        .1  
2   .9       .1  
3    .8    .01  .19  
4     .8   .02  .18  
5      .8  .03  .17  
6       .05 .65  .30  
7       .04 .93  .01 .02 
8        .61 .31 .04 .04 
9         .81 .02 .17 

 
What is the expected number of years at each salary level for an entry-level assistant professor? 
What is the expected total earnings potential for an entry level assistant professor if 12% of the 
salary is set aside for savings? 
 
19. A major problem for a hospital is managing the database containing patient records.  The 
General Hospital has considered two different policies and needs help with its decision: 

• policy 1: dispose of a patient’s records if he or she has not reentered the hospital in the last 5 
years 

• policy 2: dispose of a patient’s records is he or she has not reentered the hospital in the last 
10 years. 

 
The following information is available: If a patient has been hospitalized in the last year, there is a 
30% chance that he or she will reenter the hospital during the next year. For each passing since 
hospitalization, chances go down: 
 

number of years since hospitalization 1 2 3 4 5 6 or more 
percent chance of hospitalization  20 10 5 3 2 1 

 
Assume that the hospital admits an average of 10000 patients to the hospital in any given year. 
Estimate the number of patient records that will be in the system under each policy.  
 
20. At the beginning of each day a patient in a hospital is classified into one of three conditions:  
good, fair or critical.  At the beginning of the next day, a patient will be discharges in one of three 
conditions: improved, unimproved or dead. The transition probabilities are: 
 

 Good Fair Critical   Improved Unimproved Dead 
Good .65 .20 .05  Good .06 .03 .01 
Fair .5 .3 .12  Fair .03 .02 .03 
Critical .51 .25 .20  Critical .01 .01 .02 

 
Consider a patient who enters the hospital in good condition.  On average, how many days does this 
person spend in the hospital?  What is the probability that he or she will die?  What fraction of the 
patients who enter the hospital in critical condition leave the hospital in improved condition? On 
average, the hospital’s daily admissions are 20 patients in good condition, 10 in fair condition and 10 
in critical condition.  How many patients of each type would you expect to see in the hospital?  
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21. Freezco, Inc., sells refrigerators. The company has issued a warranty on all refrigerators that 
requires free replacement of any refrigerator that fails before it is three years old.  We know the 
following: 
 

• 3% of all new refrigerators fail during the first year of operation 
• 5% of all one year old refrigerators fail during the second year of operation 
• 7% of all two year old refrigerators fail during the third year of operation 
• A replacement refrigerator is not covered by the warrantee. 

 
Predict the fraction of all refrigerators that Freezco will have to replace. Suppose that it costs 
Freezco $500 to replace a refrigerator that fails and that Freezco sells approximately 10000 
refrigerators per year.  If the company reduced the warranty period to 2 years, how much money in 
replacement costs will it save? 
 
22. A taxi company has divided the city into 4 zones: Northside, Downtown, Uptown and Southside.  
Their data indicate that: 
 

• of Northside fares, 10% stay in Northside, 40% go Downtown, 40% go Uptown and the 
rest go to Southside. 

• of Downtown fares, 60% stay in Downtown, 10% go to Uptown, and the rest are equally 
likely to go to either of the other two zones. 

• of the Southside fares, 40% stay in Southside, 15% go to Uptown, 15% go to Downtown, 
and the rest go to Northside 

• of the Uptown fares, 55% stay in Uptown, and the rest are evenly divided between the 
other three zones. 

 
a.  If a taxi starts Downtown, what is the probability that it will be Downtown after 5 fares? 
b.  Where should a taxi start to maximize the chances that it will be Uptown after 4 fares? 
c.  If the taxi company starts with 25% of the taxis in each zone, what happens by the end of the day 
(assuming approximately 20 fares per day)? 
d.  What is the long term distribution of taxis? 
 
23. The 1980 census yielded the following information about occupations of fathers and sons: 
 

• Of the fathers who were in professional jobs, 63% of their sons were in professional jobs 
and 25% were in service jobs. 

• Of the fathers who were in service jobs, 30% of their sons were in professional jobs and 
45% were in service jobs. 

• Of the fathers who were in manufacturing jobs, only 18% of their sons followed their 
profession and 41% went into service jobs. 

 
a. What is the probability that a man’s great grandson will be in the same profession as he is? 
b. If the population was distributed as 32% in manufacturing and 27% in service in 1980 and these 
trends hold, what is the long-term distribution of professions for men? 
 
24. After farmland has been abandoned, various species of grass arrive to reclaim the land.  Based on 
a study of 30 old fields in Oklahoma, a succession of five dominant or co-dominant grass species 
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were identified.  Helianthus annus (sunflower) and Digitaria sanguinalis identify the first stage, 
Aristida oligantha (three-awn grass) the second stage, Aristada basiramea (red three-awn) the third 
stage, Eragrostis secundiflora (lovegrass) the fourth stage and Andropogen scoparius (little 
bluestem) and Bouteloua curtipendula (sidecoats grama) the final, climax stage. We wish to model 
the percent of area dominated by each type of grass for a period of 10 years.  Initially, 85% of the 
field is in the first successional stage, 10% in the second stage, and 5% in the third stage.  For each 
time step, the flow rate is as follows: 
 

 From 1 From 2 From 3 From 4 
To 2 0.8 -- -- -- 
To 3 0.2 1.0 -- -- 
To 4 -- -- 0.7 -- 
To 5 -- -- -- 0.8 

 
 
25. (A slightly different kind of problem: Leslie population models) Consider the table below, giving 
the birth and death rates by age group for a population of small woodland animals, where the age 
ranges are given in months. 
 

 0-3 3-6 6-9 9-12 12-15 15-18 
Birth rate 0 .3 .8 .7 .4 0 
Death rate .4 .1 .1 .2 .4 1 

 
What is the average life expectancy for one of these critters? If the current population is distributed 
as below, what will the distribution be in 1 month?  6 months? 1 year? 20 years? 
 

 0-3 3-6 6-9 9-12 12-15 15-18 
Population 14 8 12 4 2 1 

 
What is the long-term population growth rate the population? What is the long-term age distribution 
(as a percent of the total population) of the animals?  Determine a uniform harvesting rate that will 
ensure a stable population distribution. 
 
26. (Investigate the background theory) Expand upon this treatment of Markov Chains by writing up 
proofs of the six theorems stated in this document. 
 
 


