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Outline:

e History of Cryptography and Quantum Cryptography

e Quantum Money: a scheme that doesn’'t work

e Quantum Money: a scheme that we hope works



The Enigma Machine

War II German Cryptographic Device



The Enigma machine computed a very complicated involution
fi(x), where x € {1...26}.

T he secret key was the starting point k.
An encoding of zgzq...x; iS yoy1 ...y;, where y; = fiyp(x;). Be-
cause f; is an involution, the decoding procedure is the same as

the encoding procedure.

Alan Turing helped design one of the first computers, which was
a special-purpose machine for breaking the enigma.



Traditional cryptography is called symmetric cryptography, where
each pair of parties who want to communicate have a secret key,
shared in advance.

The possibiity of doing cryptography done without secret keys
was raised by Ralph Merkle in 1974.

The first convincing truly example was Diffie and Hellman's key
exchange protocol. This lets two parties agree on a secret key
without any pre-existing secret knowledge.

This key can then be used for a symmetric cryptosystem, or as
a one-time pad.



Diffie-Hellman key exchange

Alice and Bob want to agree on a secret key. They decide (pub-
licly) on a large prime P and a generator g for the multiplicative

group mod P.

Alice and Bob each choose a random numbers, s and t < P — 2.

Alice sends g°(mod P) to Bob;
Bob sends ¢g!(mod P) to Alice.

They can then both compute g% (mod P).
An eavesdropper, Eve, knows P, g, g°, ¢'. Computing ¢% from

these appears to be as hard as discrete logarithms, for which no
efficient algorithm is known.



Quantum Cryptography

Two of the first two quantum cryptographic protocols were
Wiesner’'s protocol for quantum money, and the BB84 proto-

col for key exchange.

We will first explain some basic facts about quantum mechanics,
and then describe these two protocols.



The Superposition Principle:

If a quantum system can be in one of two mutually distinguish-
able states |A) and | B), it can be both these states at once.
Namely, it can be in the superposition of states

alA) + G| B)

where o and 8 are complex numbers and |a]? + |8]? = 1.

If you look at the system, the chance of seeing it in state | A) is
la|? and in state | B) is |5]2.



The Superposition Principle (in mathematics)

Quantum states are represented by unit vectors in a complex
vector space.

Multiplying a quantum states by a unit complex phase does not
change the essential quantum state.

Two quantum states are distinguishable if they are represented
by orthogonal vectors.

If one tests whether a quantum state is vector |v), a quantum
state | ¢) has probability |(¢|)|2 of passing the test.



A qubit is a quantum system with 2 distinguishable states, i.e.,
a 2-dimensional state space.

If you have a polarized photon, there can only be two distin-
guishable states, for example, vertical |]) and horizontal |«)
polarizations.

All other states can be made from these two.
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If you have two qubits, they can be in any superposition of the
four states

|00) |01) |10) |11)

This includes states such as
1
—— (101) — |10
75 (101) —[10))

where neither qubit is in a definite state. Such states are said to
be entangled.
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If you have n qubits, their joint state can be described by a
superposition of 2™ basis states.

T hese basis states can be taken to be:
|000...00) |000...01) 1111...11)

The high dimensionality of this space is one of the places where
quantum computing obtains its power.

12



No Cloning Theorem (1982)

There is no quantum transformation taking | ) |0) to |y) | ) for
an unknown state |).

Why not? This transformation isn’t unitary:
| ¢) | 0) would go to |¢)|¢).

But
a=(¢|¢)(0]0) > (¢|¥) (¢|¥) = a?

unless a =0 or a = 1.

Thus, angles are not preserved, and the cloning transformation

IS not unitary.
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One problem with money is that you can make copies.

Quantum states satisfy the no-cloning theorem, which says you
cannot make a copy of an unknown quantum state.

One might think this will immediately let us use quantum states
for money.

It's actually quite a bit harder than it sounds, but we give a
proposal for creating unforgeable quantum states.
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History of Quantum Money

One of the first pro-
posed quantum com-
puting ideas was quan-
tum money (Stephen
Wiesner, 1970, 1983).

In each Dbill, there is a sequence of quantum states in one of
two complementary bases (so one of |),|«<)| /),| \\)). By the
quantum no-cloning theorem, anyone who does not know the

polarizations of these states cannot copy them.
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How to check the money? The mint knows the polarizations,
and so can easily check it.

We want the merchant to be able to verify that the bill is legit
without sending it back to the mint.

If the merchant knows the quantization axis and eigenvalue of
each qubit, then the merchant can verify the money.

However, he could also make new bills exactly like the one he
got.

We would like a verification procedure that does not allow the
merchant to make fresh bills.
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The quantum money protocol inspired Charlie Bennett and Gilles
Brassard to come up with a BB84 protocol.
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BB84 Protocol

A) Alice sends random qubits in one of the four states.

S0 +11). —5(0) ~|1)

B) Bob measures them randomly in either the {|0),|1)} basis or
the %Q 0) + | 1)) basis

C) Alice and Bob reveal the sending and receiving bases, and
obtain a string of bits that they agree on.

D) These bits are the secret key.
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You can show that if Eve tries to gain any information about
qubits sent in one basis, she disturbs the qubits in the other
basis, causing errors.

If the channel is perfect, then proof of security is easy.

If the channel is noisy, then you have a problem of distinguishing
the errors that Eve introduces from the errors introduced by the
noisy channel.

You need to test some of the bits to determine the error rate.
Then add error correcting codes (to make Alice and Bob agree
on a key with no errors) and hashing (to reduce the amount of
information that Eve can acquire about the key).

First proof of security circa 1997.
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Cryptography Background and Motivation

For many years, cryptography was done with ad hoc cryptosys-
tems, many of which were eventually broken.

Over the last few decades, cryptography has become much more
mathematical, and theoretical computer scientists try to prove

security of cryptosystems.

There are two kinds of proofs of security in cryptography: secu-
rity through information and security through complexity.
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Definitions

Informationally Secure

No matter how powerful
a computer an adversary
has, he will not be able to
break the cryptosystem,
because he doesn’'t have
access to enough informa-
tion.

Computationally Secure

The security of the
cryptosystem relies on
the difficulty of solving
some computationally
hard problem
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Disadvantages

Informationally Secure

one-time pad, BB34

Many problems cannot be
solved with informationally
secure cryptosystems. For
example, an information-
ally secure cryptosystem
for encryption of messages
requires a key as long as
the message (achieved by
a one-time pad).

Computationally Secure

Diffie-Hellman, RSA

It is hard to prove any-
thing about the security
of computationally secure
cryptosystems. For ex-
ample, the only reason for
believing prime factoriza-
tion is hard is that nobody
has been able to solve it
yet.
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Quantum cryptography

The BB84 protocol for quantum key distribution can be proved
informationally secure, assuming the laws of quantum mechan-
ics. This solves a task which is impossible to perform with an
informationally secure protocol and classical computing.

One genesis for this research was wondering whether there were
any tasks that a quantum computer might perform with compu-
tational security, but which were impossible for a digital computer
to perform.

We believe we have identified one.
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Task: Unforgeable States

We would like to make quantum states that

a) can be verified.

b) cannot be duplicated.
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Task: Unforgeable States

That is, we would like one of the players in the protocol (we
will call her the mint) to be able to make a state |v;), and a
verification protocol P;, so that

a) |vy;) passes the test P;.

b) The test P, does not destroy |;).

C) a possible counterfeiter holding both the state | ;) and know-
ing the protocol P; cannot produce a state of two quantum
systems (possibly entangled) that both pass the test PB;.
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One-of-a-Kind States

In fact, in our protocol, we think that not even the mint can
efficiently make another copy of the state |;) that pases the
test P;.
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Uses for Unforgeable States: Quantum Money
The mint makes quantum states, and gets pairs |v;), P;.

The mint publishes a list of valid pairs ¢, P; somewhere secure
(so nobody can add an extra pair to the list).

Then anybody with |;) who knows i (and has a quantum com-

puter) can check that it is a valid quantum money state; i.e.,
that ¢ is on the list, and |;) passes the test P;.
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Uses for Unforgeable States: Quantum ID Cards
You could put a unforgeable quantum state into an ID card.
These ID cards could be stolen, but they could not be forged.

Of course, for both money and quantum ID cards, you need to
have long-lived quantum states.
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How does our quantum money protocol work?

We will

1. Give a failed protocol based on graph isomorphism. This
helps motivate our current protocol.

2. Give a current candidate for quantum money, created by
replacing graphs with diagrams of knots.
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Background on Graph Isomorphism

Two graphs are isomorphic if you can relabel the vertices of one
to obtain the other.
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Graph Isomorphism and Quantum Computing

Suppose we could take a graph (G and create the state

¢— > m(&))

Then we could solve graph isomorphism.

How? Given graphs G1 and G», we prepare the state

\/_ng | 7(G1)) ®\/——W§%|W(G2)

If the graphs are isomorphic, these are equal. We test whether
the state is a +1 eigenstate of the SWAP operator.
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Moral from Previous Slide

Creating the equal superpositions of a graph

1
ﬁwg% | 7(G))

seems to be hard.

It turns out that for lattices, if you could create the equal super-
position of vectors in a lattice
1
— > |v)
NUEL

then you could find short vectors in the lattice. This is also a
problem believed to be hard classically.
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Attempt using Graph Isomorphism
Now, consider the following algorithm.

The mint starts with the equal superposition of all graphs

1
on(n—1)/4 %: | G> '

This is easy, because you can put each edge in a superposition
of present and absent.

The mint then measures some property of graphs which is in-
variant under permutations of the vertices (e.g., the spectrum).
Suppose the spectrum is S. Then we are in the state

1

— 2 16
Ns G:Spec(G)=S

33



Testing this state

1
The quantum money is: |$g) = — > |G) .

VN G:Spec(G)=S

To test it, we check
1. that Spec(G) = S,
2. that the state is invariant under the relabeling of two of the
vertices.
Any state that passes these tests must be a superposition

> ag)y |m(@) =) agl$a)
G ™ G
for some set of graphs G with Spec(G) = S.
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Good News

We have the state:

1
[$s) = —= > | G)
VN G:Spec(G)=S
One thing we could do is measure this state, to get a graph with
Spec(G) = S. But then we can't create
1
1$6) = —= > |7G)

unless we can solve graph isomorphism.

35



Bad News
We can solve graph isomorphism for random graphs.

If constructing the isomorphism is easy for a graph G, we can
then create the state

1$a) = Z | G

We can do this by creating the superposition over all permu-
tations, applying the permutation, and then uncomputing the

permutation.
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What to do now?

To use graph isomorphism for qgquantum money, we need to start
with an equal superposition just over hard graphs. We don't
know how to do that.

The new idea: instead of graph isomorphism, use a similar prob-
lem which doesn’t have the drawback that it is easy for an av-
erage case.

Are there such problems?

We looked through a lot of candidates which didn’'t work before
identifying what we think is a good one.
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We propose using knots and knot invariants.

We have to vary the protocol somewhat to make them work.
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Knots

Knot diagram are similar enough to labelings of graphs that we
can use them in our money scheme.

A knot diagram is a drawing of a knot in the plane.

If you have a knot, then there are many different diagrams that
represent the same knot. Testing whether two knots are given
by the same diagram is believed to be a hard problem.
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A Trefoil Knot

40



Reidemester Moves

If you have two knot diagrams that do give the same knot, you
can move from one to the other using Reidemeister moves.

- A\ Z
X2

Our idea is thus to replace graph isomorphism with knot dia-
grams, and relabelings of vertices with Reidemeister moves.
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Knot Invariants

For our template, we need some function f mapping knot di-
agrams into values that depend only on the knot and not the
diagram (analogous to the spectrum of G for our failed attempt
with graph isomorphism). These function are called knot invari-
ants.

We need to choose one that is computable in polynomial time.
The Alexander polynomial is the best known of these, but there
are others. The Alexander polynomial maps a knot into a polyno-
mial with integer coefficients. For the trefoil knot, it is tQ—t+ 1.
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The Broad Outline of Our Proposal

The mint starts with the superposition of all diagrams of knots.
It then measures the Alexander polynomial of these knots (or
another polynomial time computable knot invariant) to get

apey 2. 1K)

A(K)=p(t)
T he verifier checks that the superposition given to him has the
correct Alexander polynomial, and that this superposition is in-
variant under Reidemeister moves. If the state passes these two
tests, he accepts it as valid quantum money.
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But Infinity ...

There are an infinite number of diagrams for the same knot.
Thus, we cannot use an equal superposition of all knot diagrams.

One way around this might be to use an equal superposition of
knots with the number of crossings between n; and no,. The
problem with this is that the vast majority of knot diagrams in
this superposition have nearly no crossings, and there could be
cases where any Reidemeister move will have to increase the
number of Ccrossings.
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Getting around infinity ...

What we do is to take knot diagrams with between n; and no
crossings, and weight them with some probabilities p, that de-
pend only on the number of crossings k, so that most of the
weight is at some k which is substantially less than no. We
then have to generalize our quantum money template to work
for non-uniform distributions on objects.

This can be done by using the weighting from reversible Markov
chains.
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Difficulties
Another difficulty we've introduced by replacing graphs with knot
diagrams is that it might be difficult to create the uniform super-

position over all knot diagrams with a given number of crossings.

(If we could create the uniform superposition over all planar
graphs with a given number of edges, we could do this.)

We can fix this by using grid diagrams of knots.
Reidemeister moves get replaced by grid moves.

Instead of weighting by the number of crossings, we weight by

the size of the grid.
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Grid Diagrams
@ Q
@ QO
For a grid diagram, you put 2n
points on an n X n grid, two in © ®
each row and column. You con- d ®

nect the points in the same row
and column, where vertical lines
go over horizontal lines.

Grid diagrams have the advantage that it is really easy to gen-
erate the superposition of all grid diagrams, and also fairly easy
to compute the Alexander polynomial of knots.

47



How could you break this protocol? The obvious way is to map
N N
doliy— > 1Gy)
i=1 i=1

where G, is the ith grid diagram associated with some knot.

For this, you need an efficient 1-1 reversible mapping from 2 to
grid diagrams of a give size associated with a given knot.

We can do this for graph isomorphism by numbering all the
permutations, and applying all n! permutation to our original
graph.
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For knots, mathematicians don't even know an efficient algo-
rithm to tell whether two grid diagrams are associated with the
same knot.

Even if they could (and for random knots, knot invariants may do
this), it still seems difficult to start with a given grid diagram,
and find an efficiently computable canonical order for all grid
diagrams representing the same knot.

Of course, there might be sneaker ways to break the cryptosys-
tem.
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Open Problems
Can we prove that our template (with a black-box set of objects
replacing knots and black-box transformations replacing Reide-

meister moves) is indeed secure?

Can we use the same template to produce other protocols for
quantum money?

Are there other ways to produce quantum money? (Scott Aaron-
son has recently proposed one).
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