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Abstract

We extend a study by Lempp and Hirst of infinite versions of some
problems from finite complexity theory, using an intuitionistic version
of reverse mathematics and techniques of Weihrauch analysis.

An early article of Hirst and Lempp [4] was motivated by the following
example. The problem of determining if a finite graph has a Hamiltonian
path is NP complete, while the problem for Eulerian paths is in the class P.
In reverse mathematics, the problem of selecting which infinite graphs in an
infinite sequence have Hamiltonian paths is equivalent to Π1

1-CA0, while the
corresponding problem for Eulerian graphs is equivalent to ACA0. While very
evocative, Hirst and Lempp showed that this parallel does not generally hold.
In conjunction with an AMS special session in honor of Lempp’s birthday,
we revisited these early results using the tools of Weihrauch analysis in two
ways.

In the next section we concentrate on formalized Weihrauch reductions
for graph theoretic problems. This approach is limited to problems that can
be expressed with particularly simple formulas, having certain subformulas
that are ∃-free. The process yields both reverse mathematical and Weihrauch
reducibility results from a single argument. More importantly, it facilitates
the use of techniques from Weihrauch analysis, like parallelization, in reverse
mathematics proofs. Additionally, the intuitionistic formal systems used
admit proof mining [10], so terms corresponding to the reduction functionals
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could be extracted from formal proofs. If we view the proofs as a form of
verification, formal Weihrauch reduction could offer a framework for finding
verified extensions of a trusted library of routines.

The final section addresses Weihrauch analysis of stronger results, with
parallelizations at the Π1

1-CA0 level. The formulas describing the problems
are too complicated for formal analysis techniques, so we turn to tradi-
tional Weihrauch analysis. The results extend the currently small catalog
of Weihrauch problems at this level, for example like those in [7]. Weihrauch
analysis at the level of Π1

1-CA0 appears to parallel familiar reverse mathemat-
ics closely, in contrast to recent results related to ATR0 by Kihara, Marcone,
and Pauly [8].

1 Formalized Weihrauch analysis

The following development of formalized Weihrauch reducibility draws from
work of Hirst and Mummert [6]. Like them, we work in iRCAω0 , Kohlen-
bach’s [9] higher order axiomatization for reverse mathematics, restricted to
intuitionistic logic. Informally, we may view iRCAω0 as an axiomatization of
intuitionistic arithmetic that can prove the existence of computable functions
and computable functionals. For more details of the axiomatization, see [6].

We formalize a Weihrauch problem with a formula ∀x(p1(x)→ ∃y p2(x, y))
where p1(x) indicates that x is an accepted input and p2(x, y) indicates that
y is a solution of x. Here y may be a function, set, or number, depending on
the problem. For total problems, that is, those problems accepting all sets
as inputs, we can use the more simple representation ∀x∃y p(x, y).

Some of the results connecting provability and formalized Weihrauch re-
ducibility are restricted to a family of formulas called Γ1 by Troelstra [13].
A formula is ∃-free if it is built from atomic formulas using only universal
quantification and the connectives ∧ and →. (Troelstra includes ⊥ as an
atomic formula, so ¬P abbreviates P → ⊥.) The collection Γ1 consists of
those formulas defined inductively by the following:

• All atomic formulas are elements of Γ1.

• If A and B are in Γ1, then so are A ∧B, A ∨B, ∀xA, and ∃xA.

• If A is ∃-free and B is in Γ1 then ∃xA→ B is in Γ1, where ∃x denotes
a block of zero or more existential quantifiers.
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Definition. Suppose P:∀x(p1(x)→ ∃y p2(x, y)) and Q:∀u(q1(u)→ ∃v q2(u, v))
are problems. The reduction prenex formula for Q ≤W P is the formula:

SP
Q : ∀u∃x∀y∃v(q1(u)→ (p1(x) ∧ (p2(x, y)→ q2(u, v))))

If the problems are total, we can write P as ∀x∃y p(x, y), Q as ∀u∃v q(u, v)
and SP

Q as ∀u∃x∀y∃v(p(x, y)→ q(u, v)).

The implication SP
Q → (P → Q) is provable in intuitionistic predicate

calculus, though the proof of the converse requires classical logic. If the
constituent formulas p1, p2, q1, and q2 are all ∃-free, then the matrix of SP

Q

is also ∃-free and SP
Q is in Γ1. This also holds for total problems.

If P and Q are Weihrauch problems, we can formalize Q ≤W P by asserting
the existence of Skolem functions for the existential quantifiers of SP

Q. Using
P and Q as in the definition, the relation Q ≤W P can be translated into the
language of iRCAω0 as:

∃Φ∃Ψ∀u∀y(q1(u)→ (p1(Φ(u)) ∧ (p2(Φ(u), y)→ q2(u,Ψ(y)))))

Here the functionals Φ and Ψ are of type 1 → 1, which is our primary
motivation for working in higher order subsystems.

Using the preceding notation, we can present the following slightly mod-
ified version of Theorem 1 of Hirst and Mummert [6].

Theorem 1. Suppose P and Q are problems and the reduction prenex formula
SP
Q is in Γ1. Then iRCAω0 ` SP

Q if and only if iRCAω0 ` Q ≤W P.

Proof. The result follows from the application of Kohlenbach’s [10] proof
mining technology to extract terms corresponding to the Skolem functions.
Only one modification to the proof of Theorem 1 of Hirst and Mummert [6]
is needed. The hypothesis of their theorem specifies that the matrix of SP

Q is
in Γ1, which by the definition of Γ1 is equivalent to SP

Q ∈ Γ1.

The following theorem is the intuitionistic analog of a conservation result
of Kohlenbach [9].

Theorem 2. The system iRCAω0 is conservative over iRCA0 for second order
formulas.
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Proof. Kohlenbach’s conservation result for RCAω0 over RCA0 appears as
Proposition 3.1 in his article on higher order reverse mathematics [9]. Kohlen-
bach’s proof is based on the formalization of the extensional model of the
hereditarily continuous functionals (ECF) as presented in Section 2.6.5 of
Troelstra’s book [13]. The arguments of Troelstra (e.g. 2.6.12 and 2.6.20 of
[13]) are carried out in intutionistic systems. Similarly, Kohlenbach’s proof
holds for iRCAω0 and iRCA0. For other related discussion, see Theorem 2.7
and Theorem 2.8 of Hirst and Mummert [5].

1.1 Local graph coloring

The following encoding of graphs is useful in exploring graph coloring prob-
lems. We can view a countable infinite graph as having N as its vertex
set. Fix a primitive recursive bijective pairing function, p, mapping N onto
{(a, b) | a < b}, the subset of N × N consisting of increasing pairs. Both
p and p−1 can be defined in such a way that iRCAω0 proves their existence
and salient properties. Using this pairing function, any function e : N → N
can be viewed as a characteristic function for the edge set of a graph G. If
e(n) 6= 0 then the edge p(n) is in G, and if e(n) = 0 then p(n) is not in G. We
will conflate G with the set of codes for the edges of G and write (a, b) ∈ G
as a shorthand for e(p−1(a, b)) 6= 0.

For any graph G and any m, let Gm denote the finite subgraph with
vertices {0, . . . ,m} and edge set {(a, b) | a < b ≤ m ∧ (a, b) ∈ G}. We say
that Gm has a k-coloring if there is a finite function f : m→ k such that for
all a < b ≤ m, (a, b) ∈ G implies f(a) 6= f(b). Informally, vertices connect by
an edge must have distinct colors. The existence of k-colorings for (initial)
finite subgraphs can be formulated as a problem.

LGk (Local k-coloring for graphs): Fix k. For a graph G (encoded by a
characteristic function for its edge set), there is a value LGk(G) such that
LGk(G) = 0 implies that for every m the subgraph Gm has a k-coloring,
and LGk(G) = m > 0 implies that Gm has no k-coloring and Gm−1 has a
k-coloring.

Let c(G,m) denote a primitive recursive function such that c(G,m) = 1
if Gm has a k-coloring and c(G,m) = 0 if Gm has no k-coloring. Using this
function, we can formalize the predicate LGk(G) = n as the following ∃-free
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formula,

(n = 0→ ∀m(c(G,m) = 1))∧
(n > 1→ (c(G, n) =0 ∧ ∀t(t < n→ c(G, t) = 1)))

and note that LGk is a total problem of the form ∀G∃n(LGk(G) = n). We
will compare LGk to a version of the limited principle of omniscience.

LPO (Limited principle of omniscience): For every p : N→ N there is a value
LPO(p) such that LPO(p) = 0 implies that ∀k p(k) > 0, and LPO(p) = m > 0
implies that p(m− 1) = 0 and for all t < (m− 1), p(t) > 0.

We can formalize the predicate LPO(p) = n as the following ∃-free for-
mula,

(n = 0→ ∀k(p(k) > 0))∧(n > 0→ (p(n−1) = 0∧∀t(t < (n−1)→ p(t) > 0)))

and note that LPO is a total problem of the form ∀p∃n(LPO(p) = n). This
version of LPO differs from that presented in the survey by Brattka, Gherardi,
and Pauly [1]. It is Weihrauch equivalent to their version, but not strongly
Weihrauch equivalent, as the range of their version includes only {0, 1} and
the range of this version includes all of N. However, for our purposes it is
desirable to have the underlying predicate be ∃-free.

Lemma 3. (iRCAω0 ) For each k ≥ 1, both SLGk
LPO and SLPO

LGk hold.

Proof. Because both LPO and LGk are total, we can use the simple form of
the reduction prenex formula. Thus SLGk

LPO is

∀p∃G∀y∃v(LGk(G) = y → LPO(p) = v).

To prove this in iRCAω0 , fix an instance p of LPO. Define the graph G as
follows. For each m, if p(m) = 0, add the edges {(s, t) | m ≤ s < t ≤ m+ k}
to G. These edges form a complete subgraph on k + 1 vertices, precluding
any k-coloring of Gm+k. If p(m) 6= 0, add no new edges to G. By this
construction, if LGk(G) = 0, then for all m, p(m) > 0, so LPO(p) = 0. On
the other hand, if LGk(G) = m > 0, then m = n + k for some n ≥ 0, and
p(n) = 0, so LPO(p) = n+ 1 = m− k + 1.

To show that SLPO
LGk , fix a graph G. Define an instance p of LPO as follows.

For each m, if the subgraph Gm has a k-coloring, let p(m) = 1. If Gm has
no k-coloring, let p(m) = 0. The truncated subtraction LPO(p) · 1 yields a
correct output for LGk(G).
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By formalizing the transitivity of Weihrauch reduction we can extract
additional results from the preceding lemma.

Lemma 4. (iRCAω0 ) If P ≤W Q and Q ≤W R, then P ≤W R.

Proof. This is a formalization of the well-known property for Weihrauch re-
ductions. The system iRCAω0 can prove that compositions of given functionals
exist, so the usual proof holds.

Theorem 5. (iRCAω0 ) For any j ≥ k ≥ 1, LPO ≡W LGk ≡W LGj.

Proof. By our formalization of LPO and LGk, the corresponding predicates
are ∃-free. Consequently, both SLGk

LPO and SLPO
LGk are in Γ1. Applying Theorem 1

to the implications of Lemma 3 yields proofs in iRCAω0 that LPO ≤W LGk,
LGk ≤W LPO, and so LPO ≡W LGk. This holds for all j and k, so by Lemma
4 we have LGk ≡W LGj.

One noteworthy consequence of the preceding theorem is the provability
of the Weihrauch equivalence of LG2 and LG3 in iRCAω0 . The finite com-
binatorial analogs of these problems are 2-colorability and 3-colorability of
finite graphs, which are respectively polynomial time computable and NP
complete. As was the case in the traditional reverse mathematics and com-
putability theoretic analysis of Hirst and Lempp [4], formal Weihrauch anal-
ysis of the related infinite problems does not distinguish between these prob-
lems. The current setting does allow us to apply techniques of Weihrauch
analysis, like the application of Lemma 4 in the preceding proof to obtain
formal equivalences, and then to translate these into proofs of implications
in weak subsystems, as in the following corollary.

Corollary 6. (iRCAω0 ) For every pair of problems P and Q from the list in
Theorem 5, SP

Q holds. Furthermore, the implication P→ Q holds.

Proof. As noted above, the formulas SP
Q of Theorem 5 are in Γ1. Applying

the reverse implication Theorem 1 to the equivalences of Theorem 5 proves
SP
Q. To justify the final sentence, note that these are total problems and can

be written as Π1
1 formulas. Over intuitionistic predicate calculus, SP

Q implies
P→ Q.

If P is a problem, the parallelization of P, denoted by P̂ is the problem
that accepts as input any infinite sequence of inputs for P, and outputs the
associated infinite sequence of solutions for the input instances. The following
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lemma is a formalization of a portion of part 3 of Proposition 3.6 of Brattka,
Gherardi, and Pauly [1].

Lemma 7. (iRCAω0 ) P ≤W Q implies P̂ ≤W Q̂.

Proof. Suppose that Φ and Ψ are the functionals witnessing P ≤W Q. If
~u = 〈ui〉i∈N is an input for Q̂, define Φ̂ by Φ̂(~u) = 〈Φ(ui)〉i∈N. Define Ψ̂
similarly. Note that iRCAω0 suffices to prove the existence of Φ̂ and Ψ̂, and

also proves that they witness P̂ ≤W Q̂.

Theorem 8. (iRCAω0 ) For every k ≥ 1, L̂PO ≡W L̂Gk.

Proof. Apply Lemma 7 to Theorem 5.

If 〈fi〉i∈N is a sequence of input functions for L̂PO, we can define a type 1
function on (codes of pairs of) natural numbers by f(i, n) = fi(n) and think

of f as a type 1 input for L̂PO. This modification allows us to think of L̂PO
as a Π1

2 formula of second order arithmetic. Similarly, we will conflate L̂Gk
with its second order analog.

Corollary 9. (iRCA0) The following are equivalent:

(1) ACA0.

(2) L̂PO

(3) L̂Gk, where k ≥ 1.

Proof. The equivalence of parts (2) and (3) follows from the application of
Theorem 1 to the Weihrauch reductions included in Theorem 8, and the
fact that SP

Q → (P → Q). To show that (1) implies (2), let 〈fi〉i∈N be an

input for L̂PO. Arithmetical comprehension asserts the existence of the set
{i | ∀n fi(n) 6= 0} and the corresponding characteristic function, which is a

solution of the instance of L̂PO.
To show that (2) implies (1), we adapt the familiar application of Lemma

III.1.3 of Simpson [12]. In iRCA0 it suffices to find the range of an arbitrary
function that is injective, except for possibly repeatedly taking the value 0.
(This broader class of almost injective functions avoids a use of classical logic
in the proof of Lemma II.3.7, used by Simpson [12] to prove the reversal.) Let
f be such a function. Define the sequence of functions 〈fi〉i∈N by fi(m) = 1 if
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∀t < m(f(t) 6= i) and fi(m) = 0 otherwise. The solution to the L̂PO problem
〈fi〉i∈N is the characteristic function of the range of f .

Finally, the formulas of Corollary 9 are all second order, so by Theorem 2
the equivalences are provable in the second order system iRCA0.

Summarizing, we used higher order formalized Weihrauch techniques in
Lemma 7 and extracted traditional second order reverse mathematics results
in Corollary 9.

1.2 Colorings as outputs

We can reformulate the graph coloring problems so that the outputs are
infinite graph colorings. We will continue to use the notation of the previous
subsection. In particular, Gm denotes the finite subgraph of G consisting of
the first m+ 1 vertices and their edges in G.

GCk (k-coloring of graphs): If e : N → N codes the edge set for a graph
G and every finite subgraph Gm has a k-coloring, then there is a function
f : N→ k that is a k-coloring of G.

The predicate asserting that Gm is k-colorable can be written using
bounded quantifiers, with G, k, and m as parameters. The system iRCAω0
proves the existence of the primitive recursive characteristic functional for
this predicate, so the assertion that every Gm has a k-coloring can be for-
malized with a ∃-free formula. Note that f is a k-coloring of G if and only
if for each i 6= j, if (i, j) is an edge in G then f(i) 6= f(j), which is also
∃-free. Thus we can write an ∃-free formula GCk(G, f) asserting that f is
the solution to the GCk problem for G.

In our study of problems involving infinite trees, we will use the the
following encoding. Fix a suitable bijective coding function seq mapping
N onto 2<N, the set of finite sequences of zeros and ones. Any function
t : N → N can be viewed as a code for a binary tree T using the following
convention. The finite sequence seq(n) is in T if and only if t(n) > 0 and for
every initial segment σ of seq(n), t(seq−1(σ)) > 0. Informally, the function t
is the characteristic function for a set that includes the sequences of T and
omits the immediate successors of any leaves of T . Using this encoding, we
have the following formalization of Weak Königs’s Lemma as a total problem.
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WKL (Weak König’s Lemma): If T is a binary tree and for every m there
is a sequence σ ∈ T of length m, then there is a function p that codes an
infinite path through T .

In the previous formalization, p can be viewed as a code for a subtree P
of T such that each node in P has precisely one immediate successor. Using
our standard techniques for representing primitive recursive functionals, it is
easy to formalize the assertion that for every m the tree T contains a binary
sequence of length m as an ∃-free formula. Note that the bound on the
labels is essential for this. The claim that p is an infinite path is a universal
statement, so we can write an ∃-free formula WKL(T, f) asserting that f is
a solution to the WKL problem for T .

For values of n greater than 2, we can use a bijective coding seqn of
sequences of numbers less than n, and formulate a corresponding version of
WKL.

WKLn (Weak König’s Lemma for trees in n<N): If T is a tree with nodes
labeled with numbers less than n, and for every m there is a sequence σ ∈ T
of length m, then there is a function p that codes an infinite path through
T .

Note that WKL and WKL2 denote the same problem. As with WKL, we
can formalize WKL2 in the language of iRCAω0 with an ∃-free formula.

Lemma 10. (iRCA0) For each n ≥ 2, SWKL
WKLn and SWKLn

WKL hold.

Proof. For n ≥ 2, every binary tree is an n-ary tree, so SWKLn
WKL holds trivially.

To prove SWKL
WKLn, let T be an n-ary tree. Any sequence of m values less

than or equal to n can be mapped to a binary sequence of length m · n
in the manner of the following example. Consider 〈2, 0, 3〉 as a sequence
of numbers less than or equal to 3. Replace each value k with a block of
length 3 consisting of k ones padded on the right with zeros. In our example
〈2, 0, 3〉 becomes 〈1, 1, 0, 0, 0, 0, 1, 1, 1〉. This process transforms any n-ary
tree T into a binary tree that is well-founded if and only if T is. Furthermore,
summing successive length n blocks of any infinite path through the binary
tree yields a path through T .

We will use the following formalization of LLPO, which is defined for all
functions from N into N. Näıvely, if a function p has a positive value, then
LLPO returns the flip of the parity of that first positive value.
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LLPO (Lesser limited principle of omniscience): For any p : N→ N there is a
value LLPO(p) such that LLPO(p) = 0 implies if p(j) 6= 0 and ∀t < j(p(j) =
0) then j is odd, and LLPO(0) 6= 0 implies LLPO(p) = 1 and if p(j) 6= 0 and
∀t < j(p(j) = 0) then j is even.

Our definition is chosen so that for functions p with ranges that are non-
zero in at most one place, the value of LLPO(p) matches the definition of
Brattka, Gherardi, and Pauly [1, §7.2]. By mapping functions from N to N
to the characteristic function for the least element of their domain taking a
positive value, routine verification shows that our total version of LLPO is
strongly Weihrauch equivalent to their version.

The predicate “j is odd” can be formalized by ∀m(j 6= 2m). Similarly, “j
is even” can be formalized by ∀m(j 6= 2m+ 1). Consequently, LLPO(p) = n
can be formalized by the ∃-free formula:

(n = 0→ ∀j([p(j) 6= 0 ∧ ∀t(t < j → p(t) = 0)]→ ∀m(j 6= 2m)))∧
(n 6= 0→ (n = 1 ∧ ∀j([p(j) 6= 0 ∧ ∀t(t < j → p(t) = 0)]→ ∀m(j 6= 2m+ 1))))

The problem LLPO can be parallelized, resulting in a problem that is
Weihrauch equivalent to WKL, as noted in part of Theorem 7.23 of Brattka,
Gherardi, and Pauly [1]. The following results lead to a formalization of a
fragment of their theorem, and its connection to graph colorings.

Lemma 11. (iRCA0) S
L̂LPO
WKL holds.

Proof. To prove S L̂LPO
WKL , suppose T is a binary tree. For every σ ∈ 2<N, define

the instance pσ of LLPO as follows. If σ /∈ T , then for each n, p(n) = 0. For
σ ∈ T , let pσ(0) = pσ(1) = 0. For n > 0, define pσ(2n) and pσ(2n + 1) as
follows. If σa0 has an extension of length n in T and σa1 has no extension
of length n in T , let pσ(2n) = 0 and pσ(2n+ 1) = 1. If σa1 has an extension
of length n in T and σa0 has no extension of length n in T , let pσ(2n) = 1
and pσ(2n+ 1) = 0. Otherwise, let pσ(2n) = pσ(2n+ 1) = 0.

If σa0 extends to an infinite path, but σa1 does not, then there is a first
n > 0 such that σa1 has no extensions of length n. In this case, LLPO(pσ) =
0. Similarly, if σa1 extends to an infinite path but σa0 does not, LLPO(pσ) =
1. Thus, if T is infinite, the sequence constructed by setting σ(0) = LLPO(〈 〉)
and σ(n+1) = σ(n)aLLPO(σ(n)) for n ≥ 0 is an infinite path through T .

Lemma 12. (iRCA0) S
GC2

L̂LPO
.
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Proof. Suppose pi is an instance of LLPO. Construct a subgraph Gi with ver-
tices ui and {vi,0, vi,1, . . . } as follows. For all k, include the edge (vi,k, vi,k+1).
If j is the least natural number such that pi(j) 6= 0, add the edge (ui, vi,j).
For any 2-coloring of Gi, if ui and vi,0 differ in color, then 1 is a correct
output for LLPO. If ui and vi,0 agree in color, then 0 is a correct output.
For a sequence of instances of LLPO, let G consist of the disjoint union of
the graphs for each sequence. Any two coloring of G yields a solution to the

instance of L̂LPO.

Lemma 13. (iRCA0) For n ≥ 2, SGCn
GC2 .

Proof. Suppose G is a locally 2-colorable graph. For n > 2, create a single
copy of the complete graph on n−2 vertices, and connect each of its vertices
to every vertex of G. The new graph is locally n-colorable, and the restriction
of any n-coloring to the vertices of G yields a 2-coloring of G.

Lemma 14. (iRCA0) For n ≥ 2, SWKLn
GCn holds.

Proof. For any locally n-colorable graph G, iRCA0 can prove that the tree
of sequences corresponding to n-colorings of the finite subgraphs Gm is an
instance of WKLn.

We can concatenate the lemmas to yield our main theorem on Weihrauch
equivalences related to graph colorings.

Theorem 15. (iRCAω0 ) For n ≥ 2, we have:

WKLn ≡W WKL ≡W L̂LPO ≡W GCn ≡W GC2

Proof. Applying Theorem 1 to Lemma 10 and Lemma 11, we have WKLn ≤W
WKL ≤W L̂LPO. Applying Theorem 1 to Lemma 12, Lemma 13, and

Lemma 14 yields L̂LPO ≤W GC2 ≤W GCn ≤W WKLn. The theorem fol-
lows by transitivity as provided by Lemma 4.

Given the formal Weihrauch reductions, we can extract the reverse math-
ematics consequences.

Corollary 16. (iRCA0) The formula SP
Q holds for every problem P and prob-

lem Q appearing in Theorem 15. Furthermore the implication P→ Q holds.

Proof. Imitate the proof of Corollary 6.
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Corollary 17. (iRCA0) For k ≥ 2, the following are equivalent:

(1) WKL.

(2) L̂LPO.

(3) WKLk

(4) GCk.

Proof. Immediate from Corollary 16.

Parallelization of GCk results in a Weihrauch equivalent problem. This
arises from the well-known idempotence of the parallelization operator, which
can be verified in the formal setting.

Lemma 18. (iRCAω0 ) The hat operator is idempotent, that is, for any prob-

lem P, P̂ ≡W
̂̂
P. Consequently, for k ≥ 2, GCk ≡W ĜCk.

Proof. In iRCAω0 , we can use the bijective pairing function to match each
pair (i, j) with an integer code. Given a sequence of sequences of problems
〈〈pi,j | j ∈ N〉i ∈ N〉, we match each problem with an element of the sequence

〈p(i,j) | (i, j) ∈ N〉. Thus
̂̂
P ≤W P̂. The reverse reduction is trivial.

From Theorem 15 we know that GCk ≡W L̂LPO. By Lemma 7, ĜCk ≡W
̂̂
LLPO. From the preceding paragraph,

̂̂
LLPO ≡W L̂LPO, so the desired equiv-

alence follows by transitivity.

In combination with Theorem 15 we see that ĜC2 ≡W ĜC3. These prob-
lems correspond to reverse mathematical statements about infinite sequences
of 2-colorings and 3-colorings reminiscent of those of Hirst and Lempp [4].
The corresponding reverse mathematical results can be extracted in the usual
fashion, yielding the following corollary.

Corollary 19. (iRCA0) For k ≥ 2, WKL is equivalent to the assertion that
for any sequence 〈Gi〉i∈N of infinite locally k-colorable graphs, there is a func-
tion f : N× N→ N such that for each i, the function f(i, n) is a k-coloring
of Gi.

The k-coloring problem defined at the beginning of this subsection does
not accept inputs which are not locally k-colorable. The following alternative
definition extends the possible inputs to all graphs.
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TGCk (Total k-coloring of graphs): Given a graph G, there is a function
f : N → N such that f(0) = 0 implies f is a k-coloring of G and f(0) > 0
implies Gf(0) has no k-coloring.

The predicate asserting that f solves TGCk for G can be formalized as a
∃-free formula in the parameters k, f , and G. Altering the problem affects
the Weihrauch analysis.

Theorem 20. (iRCAω0 ) For k ≥ 2, LPO ≤W TGCk ≤W L̂PO.

Proof. For the first reduction, fix k and suppose p is an instance of LPO.
Let G be the graph which is completely disconnected except for a completely
connected subgraph on the vertices {m,m + 1, . . . ,m + k} if p(m) = 0 and
∀t < m(p(m) 6= 0), if such an m exists. The characteristic function for the
edges of G is uniformly computable from p. Suppose f is a solution of TGCk
for G. Then f(0) = 0 if and only if ∀k(p(k) 6= 0). Also, if there is a least
m such that p(m) = 0, then Gm+k is the first initial subgraph of G with no
k-coloring. In this case, f(0) = m+ k and the solution to the LPO problem
p is obtained by subtracting the fixed value k.

For the second reduction, suppose G is a graph. Let p0(n) = 1 if for all
t ≤ n the initial subgraph Gk has a k-coloring, and let p0(n) = 0 otherwise.
For i > 0, define pi as follows. Let σ1, σ2, . . . be the finite sequences in k<N

that start with 0 and occur in the tree of initial segments of k colorings of
G. If there are only finitely many such sequences, pad the list with copies of
the empty sequence. Let pi(m) = 1 if σi extends to a k-coloring of Gm, and

let pi(m) = 0 otherwise. Given a solution to the L̂PO problem 〈pi〉i∈N, we
can compute a solution f to TGCk for G as follows. Let f(0) = LPO(p0). If
f(0) > 0, let f(n) = 0 for all n > 0. Otherwise, use the values of LPO(pn) for
n > 0 to enumerate the nodes in a path through the tree of partial colorings
and assign the values of f to match the nodes in the path. This enumeration
is computable because if LPO(pn) = 0, then the tree of partial k-colorings
extending σn is infinite, and there is a least m such that there is a j < k with
σm = σ_n j and LPO(pm) = 0.

Corollary 21. (iRCAω0 ) For k ≥ 2, T̂GCk ≡W L̂PO and ĜCk ≡W L̂LPO.

Proof. Apply parallelization and idempotence to the reductions in Corollary
21 and Corollary 17.
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Because the associated predicates are ∃-free, the Weihrauch results of
Corollary 21 can be converted to a reverse mathematics result after the fash-
ion of Corollary 19.

Corollary 22. (iRCA0) For k ≥ 2, ACA0 is equivalent to the assertion that
for any sequence 〈Gi〉i∈N of graphs, there is a function f : N × N → N such
that for each i, either f(i, 0) = m > 0 and the mth initial subgraph of Gi is
not k-colorable or f(i, 0) = 0 and the function f(i, n) is a k-coloring of Gi.

The previous corollary again demonstrates the use of formal Weihrauch
techniques to derive reverse mathematical results. We close this section by
illustrating a limitation of the formal approach. In traditional Weihrauch
analysis, we can show that P 6≤W Q by showing that there are no computable
functionals witnessing the reduction. The formal setting does not distinguish
between computable witnesses and other functionals, so there is no analogous
argument. Consequently, results about strict Weihrauch reducibility are not
amenable to formalization in iRCAω0 .

Corollary 23. For k ≥ 2, iRCAω0 proves GCk ≤W TGCk. In the non-formal
setting, GCk <W TGCk.

Proof. iRCAω0 proves that GCk ≤W TGCk using the identity functionals as
witnesses. To prove the strict inequality of the second sentence, we may use
classical logic and results from the Weihrauch reducibility literature. Suppose
by way of contradiction that TGCk ≤W GCk. Parallelization preserves the

reduction. By Corollary 21 and transitivity, L̂PO ≤W L̂LPO, contradicting
widely known results (e.g. Theorems 7.23, 7.40, and 7.42 in [1]).

2 Weihrauch analysis related to Π1
1-CA0

In this section, we apply more traditional techniques of Weihrauch analysis to
problems from [4]. The underlying formulas are not ∃-free, so the techniques
of the preceding section are not applicable. The problems are all related to
Π1

1-CA0. The first is based on Lemma VI.1.1 of Simpson [12].

WF (Well founded trees): Given a tree T in N<N as input, output 0 if T
contains an infinite path and 1 if it does not.

The next two problems are based on principles included in Theorem 3.4
of Hirst and Lempp [4].
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S (Isomorphic subgraph): Given inputs of graphs G and H, output 1 if H is
isomorphic to a subgraph of G and 0 if it is not.

Let L denote the linear graph with vertex set V = {vi | i ∈ N} and edges
E = {(vi, vi+1) | i ∈ N}.

SL (L as a subgraph): Given a graph G as input, output 1 if L is isomorphic
to a subgraph of G and 0 if it is not.

Theorem 24. WF ≡sW SL ≡sW S.

Proof. First we will show that WF ≤sW SL. Any tree T in N<N can uniformly
be converted to a corresponding graph, with the nodes of the tree as vertices
and edges between neighboring nodes. Note that the tree T contains an
infinite path if and only if the linear graph L is isomorphic to a subgraph
of the graph of T . The output 1 − SL(T ) is equal to WF(T ), so the post-
processing does not depend on T and the reduction is strong.

The problem SL is a special case of S, so it only remains to show that
S ≤sW WF. Suppose G and H are input graphs with vertices {gi | i ∈ N}
and {hi | i ∈ N}. We can uniformly compute the tree T of initial segments
of isomorphisms between H and subgraphs of G, where nodes correspond to
sequences gi0 , . . . , gin such that the pairing of nodes gij and hj for j ≤ n is
an isomorphism of the induced subgraph of H with a subgraph of G. Any
infinite path through T is an isomorphism between H and a subgraph of G.
Thus 1 − WF(T ) is equal to S(G,H), yielding the final strong Weihrauch
reduction.

Theorem 3.4 of [4] discusses sequences of graphs and trees. Similar
Weihrauch reductions follow by parallelization.

Corollary 25. ŴF ≡sW ŜL ≡sW Ŝ.

Proof. As noted in Proposition 3.6 part 3 of [1], parallelization is a strong
closure operation with respect to strong Weihrauch reducibility. The par-
allelized equivalences follow immediately from the equivalences in Theorem
24.

The proof of Theorem 3.4 of [4] indicates that an instance of ŴF can be
related to isomorphic subgraph problems for a single target graph G. Let Ln
denote the linear graph L with a cycle of size n + 3 appended to the first
vertex. For example, L0 is a copy of L with a triangle attached as a tag to
the first vertex.
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S~L (Tagged linear subgraphs of a fixed graph): Given a graph G as input,
output a function s : N→ 2 such that s(n) = 1 if and only if Ln is a subgraph
of G.

Theorem 26. ŴF ≡sW S~L.

Proof. Note that an inputG for S~L corresponds exactly to the input 〈G,Li〉i∈N
for Ŝ. Thus S~L ≤sW Ŝ ≡sW ŴF. To show that ŴF ≤sW S~L, we adapt the

reversal from Theorem 3.4 of [4]. Let 〈Ti〉i∈N be an input for ŴF. For each i,
let Gi be the graph of Ti with a cycle of size i+ 3 attached to the root node.
The graph G consisting of the disjoint union of the Gi graphs is uniformly
computable from 〈Ti〉i∈N. Note that Li is isomorphic to a subgraph of G if
and only if Li is isomorphic to a subgraph of Gi, which occurs exactly when
Ti is not well founded. If s : N→ 2 is a solution to S~L for this graph G, then

w(n) = 1 − s(n) is a solution of ŴF for 〈Ti〉i∈N, completing the proof that

ŴF ≤sW S~L.

Many other graphs could be substituted for the linear graph L in the
preceding discussion. However, not all graphs yield the same results. For
example, while SL ≡sW WF, finite graphs yield a weaker Weihrauch problem.

Theorem 27. Suppose that F is a finite graph with at least two vertices.
Then SF ≡W LPO.

Proof. We will prove the result for the version of LPO from section §1.1. For
other versions of LPO, the result can be strengthened to strong Weihrauch
reduction. Fix a finite graph F . To show that SF ≤W LPO, let G be an
input graph and construct an input for LPO as follows. For each n, if F
is not isomorphic to a subgraph of G restricted to the first n vertices of G,
set p(n) = 1. If F is isomorphic to such a subgraph, set p(n) = 0. Thus
SF (G) = 1 if and only if LPO(p) > 0.

To prove that LPO ≤W SF , we will consider two cases. First suppose
that F is a finite graph with j vertices and at least one edge. Let p be an
instance of LPO. Let G be the graph with vertices {vi | i ∈ N}, and with
edges corresponding to a copy of F on vertices vm, . . . , vm+j−1 if m is the
least value such that p(m) = 0. If no such m exists, then G is completely
disconnected. Note that each edge of G depends only on an initial segment of
the values of p, so G is uniformly computable from p. If SF (G) = 0, output 0
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for LPO(p). If SF (G) = 1, then the search for the least m such that p(m) = 0
will succeed and the appropriate value of LPO(p) can be output.

The case when F is completely disconnected is similar, using complemen-
tary graphs. All possible edges are added to G until a zero of p is discovered,
at which point no additional edges are added.

The fact that SF ≡W LPO and SL ≡W WF motivates the following ques-
tion: Is there a graph H such that LPO <W SH <W WF? Arno Pauly
says yes, if we switch from isomorphism to subgraph embedding (SE). For
the graph H consisting of infinitely many copies of K3, SEH ≡W LPO′ [11].
Switching to embeddings does not change Theorem 24, for example. Reed
Solomon has asked what other reductions differ in strength for various no-
tions of embedding.

We can also consider the problem SG for a fixed graph G, asking whether
or not an input graph is isomorphic to a subgraph of G. For the complete
graph K and the totally disconnected graph D it is easy to show that SK and
SD are both Weihrauch equivalent to LPO. Theorem 3.2 of [4] shows that
there is a computable graph G such that the set of indices of computable
graphs that are isomorphic to a subgraph of G is Σ1

1 complete. This prompts
us to ask: Is there a graph G such that SG ≡sW WF? Indeed, is there even
a graph G such that LPO <W SG?

Theorem 2.6 of [4] shows a connection between sequential versions of the
following problems. For a graph G with vertex set V , we say c : V → N is a
coloring of G if whenever (v1, v2) is an edge of G, c(v1) 6= c(v2).

RC (Repeated color): Given a graph G as an input, output 1 if there is a
coloring of G that uses one color infinitely often and output 0 if there is no
such coloring.

D (Disconnected subgraph): Given a graph G as an input, output 1 if G has
an infinite completely disconnected subgraph and output 0 otherwise.

Theorem 28. RC ≡sW D ≡sW WF.

Proof. Any graph G has a coloring as required by RC if and only if it has a
subgraph as in D. Thus RC ≡sW D. Overloading notation and using D to
denote the totally disconnected graph, we have D ≡sW SD. The problem SD
is a special case of S, so D ≤sW S ≡sW WF.

To show that WF ≤sW SD, given a tree T as input, define a graph G as
follows. The vertices of G will consist of the nodes of T . A pair (v1, v2) is
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an edge in G if and only if the corresponding nodes of T are incomparable.
(Nodes of T are comparable if one extends the other in the tree.) G is
uniformly computable from T . The completely disconnected graph D is
isomorphic to a subgraph of G if and only if T contains an infinite collection
of pairwise comparable nodes, that is, if and only if T is not well founded.
For T and G as described above, WF(T ) = 1 − SD(G), so WF ≤sW SD, as
desired.

Appending a triangle to each tree node in the previous construction yields
a proof that WF is Weihrauch equivalent to SG for the graph G consisting
of infinitely many disconnected triangles. (This was proven independently
by Arno Pauly [11].) Thus the graph from Pauly’s embedding observation
does not answer our question about isomorphic subgraphs. Parallelizing the
previous theorem yields Weihrauch equivalences mirroring the reverse math-
ematics of Theorem 2.6 of [4].

Corollary 29. R̂C ≡sW D̂ ≡sW ŴF.

Proof. Immediate from Theorem 28 by Proposition 3.6 part 3 of [1].

The application of Weihrauch analysis to the problems of this section
yields no new insights into the corresponding finite complexity theoretic re-
lationships. However, it does raise some new Weihrauch analysis questions.
Analyzing infinite versions of other statements from finite complexity theory
might lead to additional interesting Weihrauch reductions.
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