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Abstract. The enterprise of comparing mathematical theorems according to
their logical strength is an active area in mathematical logic, with one of the

most common frameworks for doing so being reverse mathematics. In this set-

ting, one investigates which theorems provably imply which others in a weak
formal theory roughly corresponding to computable mathematics. Since the

proofs of such implications take place in classical logic, they may in principle

involve appeals to multiple applications of a particular theorem, or to non-
uniform decisions about how to proceed in a given construction. In practice,

however, if a theorem Q implies a theorem P, it is usually because there is

a direct uniform translation of the problems represented by P into the prob-
lems represented by Q, in a precise sense formalized by Weihrauch reducibility.

We study this notion of uniform reducibility in the context of several natural
combinatorial problems, and compare and contrast it with the traditional no-

tion of implication in reverse mathematics. We show, for instance, that for all

n, j, k ≥ 1, if j < k then Ramsey’s theorem for n-tuples and k many colors
is not uniformly, or Weihrauch, reducible to Ramsey’s theorem for n-tuples

and j many colors. The two theorems are classically equivalent, so our anal-

ysis gives a genuinely finer metric by which to gauge the relative strength of
mathematical propositions. We also study Weak König’s Lemma, the Thin

Set Theorem, and the Rainbow Ramsey’s Theorem, along with a number of

their variants investigated in the literature. Weihrauch reducibility turns out
to be connected with sequential forms of mathematical principles, where one

wishes to solve infinitely many instances of a particular problem simultane-

ously. We exploit this connection to uncover new points of difference between
combinatorial problems previously thought to be more closely related.

1. Introduction

The idea of reducing, or translating, one mathematical problem to another, with
the aim of using solutions to the latter to obtain solutions to the former, is a
basic and natural one in all areas of mathematics. For instance, the convolution
of two functions can be reduced to a pointwise product via the Fourier transform;

Dzhafarov was partially supported by an NSF Postdoctoral Fellowship. Hirst was partially
supported by grant ID#20800 from the John Templeton Foundation. (The opinions expressed

in this publication are those of the authors and do not necessarily reflect the views of the John

Templeton Foundation.) Shafer was supported by the Fondation Sciences Mathématiques de Paris
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the study of a linear operator over a complex vector space can be reduced to the
study of a matrix in Jordan normal form, via a change of basis; etc. In general, the
precise forms of such reductions vary greatly with the particular problems, but they
tend to be most useful when they are constructive or uniform in some appropriate
sense. Typically, such reductions preserve various fundamental properties and yield
more information, and they are usually easier to implement. These ideas have
materialized in many areas such as category theory, complexity theory, proof theory,
and set theory (see [3]). In this article, we investigate similar uniform reductions
between various combinatorial problems in the setting of computability theory,
reverse mathematics and computable analysis.

The program of reverse mathematics provides a unified and elegant way to com-
pare the strengths of many mathematical theorems. Its setting is second-order
arithmetic, which is a system strong enough to encompass most of classical math-
ematics. The formalism permits talking about natural numbers and about sets of
natural numbers, and hence readily accommodates countable analogues of math-
ematical propositions. The fundamental idea is to calibrate the proof-theoretical
strength of such propositions by classifying which set-existence axioms are needed
to establish the structures needed in their proofs. In practice, we work with frag-
ments, or subsystems, of second-order arithmetic, first finding the weakest one that
suffices to prove a given theorem, and then obtaining sharpness by showing that the
theorem is in fact equivalent to it. Each of the subsystems corresponds to a natural
closure point under logical, and more specifically, computability-theoretic, opera-
tions. Thus, the base system, Recursive Comprehension Axiom (RCA0), roughly
corresponds to computable or constructive mathematics; the system Weak König’s
Lemma (WKL0) corresponds to closure under taking infinite paths through infinite
binary trees; and the Arithmetical Comprehension Axiom (ACA0) corresponds to
closure under arithmetical definability, or equivalently, under applications of the
Turing jump. Other common subsystems, ATR0 and Π1

1-CA0, which we shall not
consider in this article, admit similar characterizations. The point is that there is a
rich interaction between proof systems on the one hand, and computability on the
other.

We refer the reader to Simpson [29] for background on reverse mathematics,
to Soare [30] for background on computability theory, and to Weihrauch [35] for
background in computable analysis. For background on algorithmic randomness,
to which some of our results in Sections 4 and 6 will pertain, we refer to Downey
and Hirschfeldt [13].

In the context of reverse mathematics, we can say that a theorem P “reduces”
to a theorem Q if there is a proof of P assuming Q over RCA0. Since these proofs
are carried out in a formal system, such a proof of P from Q may use Q several
times to obtain P, or may involve non-uniform decisions about which sets to use
in a construction. However, in many natural cases, a proof of P from Q uses
direct, computable, and uniform translations between problems represented by P
into problems represented by Q.

To describe these types of arguments more precisely, we restrict our focus to Π1
2

statements in the language of second-order arithmetic, i.e., statements of the form

(∀X)(∃Y )ϕ(X,Y ),
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where ϕ is arithmetical. Each such principle has associated to it a natural class of
instances, and for each instance, a natural class of solutions to that instance. The
following are a few important examples.

Statement 1.1 (WKL). Every infinite subtree of 2<ω has an infinite path.

Statement 1.2 (WWKL). Every subtree T of 2<ω such that

|{σ ∈ 2n : σ ∈ T}|
2n

is uniformly bounded away from zero for all n has an infinite path.

Statement 1.3 (Ramsey’s Theorem). Fix n, k ≥ 1. RTnk is the statement that for
every f : [ω]n → k, there exists an infinite set H (called homogeneous for f) such
that f is constant on [H]n.

Statement 1.4 (COH). For every sequence of sets 〈Ri : i ∈ ω〉, there exists an
infinite set C such that for all i, either C ∩Ri is finite or C ∩Ri is finite.

The idea of uniform direct translations alluded to above was made precise by
Weihrauch [33, 34] in the realm of computable analysis and has been widely studied
ever since (see [5, Section 1] for a partial bibliography). In this context, a Π1

2

statement (∀X)(∃Y )ϕ(X,Y ) as above is viewed as a function specification; a partial
realizer of such a specification is a function F such that ϕ(X,F (X)) holds for
all X in the domain of F . For this reason, it is traditional in this context to
understand the relation ϕ(X,Y ) as a partial multi-valued function where ϕ(X,Y )
holds exactly when Y is one of the possible values of the function at X. Weihrauch
then introduced a notion of computable reducibility between partial multi-valued
functions whereby there are computable processes that serve to uniformly translate
realizers of one partial multi-valued function into realizers of another partial multi-
valued function. We shall use here the following equivalent definition, which may
appear more familiar from perspectives outside of computable analysis, particularly
reverse mathematics. However, with a view towards encouraging more collaboration
between these two similary-motivated but thus far largely separate approaches, we
include an equivalence of the definitions in Appendix A.

Definition 1.5. Let P and Q be Π1
2 statements of second-order arithmetic. We

say that

(1) P is Weihrauch reducible to Q, and write P ≤W Q, if there exist Turing
reductions Φ and Ψ such that whenever A is an instance of P then B = Φ(A)
is an instance of Q, and whenever T is a solution to B then S = Ψ(A⊕ T )
is a solution to A.

(2) P is strongly Weihrauch reducible to Q, and write P ≤sW Q, if there exist
Turing reductions Φ and Ψ such that whenever A is an instance of P then
B = Φ(A) is an instance of Q, and whenever T is a solution to B then
S = Ψ(T ) is a solution to A.

In other words, Weihrauch reducibility differs from strong Weihrauch reducibility
only in that the “backwards” reduction Ψ takes as oracle not only the solution T
to the instance B = Φ(A) of Q, but also the original instance, A, of P. The two
notions thus agree on computable instances of problems, but not in general. (See
also [14, Section 1] for a discussion of the distinction between these approaches
in the non-uniform case; and [17, Section 2.2] for further discussion of (strong)
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Weihrauch and related reducibilities in the context of computable combinatorics.
We note that the notation in these sources differs from ours, with ≤u and ≤su being
used in place of ≤W and ≤sW, respectively.) For most of our results below (with the
notable exception of Theorem 3.1) it will not matter which of the two reducibility
notions we are working with, so to present the strongest possible results, we shall
prove reductions for ≤sW, and non-reductions for �W.

It is straightforward to see each of these reducibilities is reflexive and transitive
and thus defines a degree structure on Π1

2 statements.
One simple example of a strong Weihrauch reduction is that RTnj ≤sW RTnk when-

ever j ≤ k because given f : [ω]n → j, we may view f as a function g : [ω]n → k
(by ignoring the additional colors) and then every set homogeneous for g is ho-
mogeneous for f . (Thus, here Φ and Ψ can both be taken to be the identity
reduction.) A slightly more interesting example is that RTmk ≤sW RTnk when-
ever m ≤ n. To see this, given f : [ω]m → k, define g : [ω]n → k by letting
g(x1, . . . , xm, . . . , xn) = f(x1, . . . , xm) and notice that g is uniformly obtained from
f via a Turing functional, and that every set homogenous for g is homogeneous for
f .

There are also many examples of such reductions using more complicated Turing
functionals. Friedman, Simpson, and Smith [16] showed that if P is the statement
that every commutative ring with identity has a prime ideal, then RCA0 `WKL→
P. Adapting the proof of this result, one can show that it is possible to uniformly
computably convert a commutative ring R into an infinite tree T such that every
path of T is a prime ideal of R, and hence that P ≤sW WKL. For another exam-
ple, Cholak, Jockusch, and Slaman [9, Theorem 12.5] exhibit a strong Weihrauch
reduction of COH to RT2

2 via a non-trivial Φ.1

Despite the fact that many natural implications in reverse mathematics corre-
spond to Weihrauch reductions (even strong Weihrauch reductions), there are cer-
tainly examples where an implication holds in reverse mathematics but no Weihrauch
reduction exists. For example, building on work of Jockusch in [21], it is known
that RCA0 ` RTnk ↔ ACA whenever n ≥ 3 and k ≥ 2, and in particular that
RCA0 ` RT3

2 → RT4
2. However, RT4

2 �W RT3
2 because every computable instance

of RT3
2 has a ∅′′′-computable solution, but there is a computable instance of RT4

2

with no ∅′′′-computable solution (see [21, Theorems 5.1 and 5.6]). The underlying
reason why this implication holds in reverse mathematics is that ∅′ can be coded
into a computable instance of RT3

2, and by relativizing and iterating this result
(i.e., by using multiple nested applications of RT3

2), one can obtain the several
jumps necessary to compute solutions to instances of RT4

2.

1The same is not true if RT2
2 is replaced by the closely related principle D2

2, introduced in [9,

Statement 7.8]. This asserts that if f : [ω]2 → 2 is stable, i.e., if for each x the limit of f(x, y)
as y tends to infinity exists, then there is an infinite set consisting either entirely of numbers

for which this limit is 0, or entirely of numbers for which this limit is 1. A recent result by
Chong, Slaman, and Yang [10, Theorem 2.7] resolves a longstanding open problem by showing

that RCA0 0 D2
2 → COH. However, the model they construct to witness the separation is a

non-standard one, and so leaves open the question of whether every ω-model of RCA0 + D2
2 is

also a model of COH. A typical reason for this being the case would be if COH were uniformly

reducible to D2
2. However, by results of Dzhafarov [14, Theorem 1.5 and Corollary 1.10] it follows

that COH �sW D2
2, and more recently, Lerman, Solomon, and Towsner (unpublished) have shown

even that COH �W D2
2.
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There are also more subtle instances where no Weihrauch reduction exists de-
spite the fact that degrees of solutions to the problems correspond. For example,
Jockusch [22, Theorem 6] showed that for any k ≥ 2, the degrees of DNRk functions
(i.e., functions f : ω → k such that f(e) 6= Φe(e) for all e ∈ ω) are the same as the
degrees of DNR2 functions, but there is no Weihrauch reduction witnessing this.
More precisely, he showed that given k ≥ 2, there is no Turing functional Φ such
that Φ(g) ∈ DNRk for all g ∈ DNRk+1. If we let DNRk be the Π1

2 statement “for
every X, there exists a DNRk function relative to X”, then Jockusch’s theorem
shows that DNRk �W DNRk+1.

A motivating question for this article is what happens when one varies the num-
ber of colors in Ramsey’s Theorem. It is well known that if n ≥ 1 and j, k ≥ 2,
then RCA0 ` RTnj ↔ RTnk . For example, to see that RCA0 ` RTn2 → RTn3 , we can
argue as follows. Suppose that f : [ω]n → 3. Define g : [ω]n → 2 by letting

g(x) =

{
0 if f(x) ∈ {0, 1},
1 if f(x) = 2.

By RTn2 , we may fix a set H such that H is homogenous for g. Now if g([H]2) = {1},
then H is homogeneous for f . Otherwise, the function f � [H]2 is a 2-coloring of
[H]2, so we may apply RTn2 a second time to conclude that there is an infinite
I ⊆ H such that I is homogeneous for f . Notice that this proof requires two nested
applications of RTn2 to obtain a solution to RTn3 . However, there are no known
degree-theoretic differences between homogeneous sets of computable instances of
RTn2 and homogeneous sets of computable instances of RTn3 , so it is unclear whether
there is a proof of RTn3 using one uniform application of RTn2 . We prove below in
Theorem 3.1 that RTnk �sW RTnj when j < k.

Although the same basic idea of (strong) Weihrauch reducibility is used in the
contexts of computable combinatorics, computable analysis, and reverse mathemat-
ics, there are important differences beyond terminology that the reader should keep
in mind when translating back and forth.

• In [5], (strong) Weihrauch reduction is defined not only for partial multi-
valued functions but also for abstract collections of partial functions on
Baire space. This more general idea has no equivalent formulation in
second-order arithmetic and, moreover, only definable relations make sense
in the latter context. Thus, reverse mathematics has a limited view of the
(strong) Weihrauch degrees considered in computable analysis. In prac-
tice, this limitation only surfaces when considering the general structure of
(strong) Weihrauch degrees since these degrees, when considered for their
own sake, generally correspond to definable relations. In this paper, we
will only consider arithmetically-definable relations, which therefore make
sense in all contexts.
• Computable combinatorics and computable analysis work exclusively with

the standard natural numbers whereas reverse mathematics also considers
non-standard models. Since the base system RCA0 only postulates induc-
tion for Σ0

1 formulas, issues related to induction often occur in translation
and it is not the case that every reduction P ≤sW Q translates into a proof
that RCA0 ` Q → P. For example, a direct analysis of the reduction of
Cholak, Jockusch, and Slaman showing that COH ≤sW RT2

2 alluded to
above appears to use Σ0

2-induction in order to verify that homogenous sets
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for the transformed coloring are indeed cohesive for the given instance, and
some additional work is required to verify that the proof goes through RCA0

(see Mileti [27, Appendix A]).
• The typical use of oracles varies in the three contexts. In computable com-

binatorics, results are usually stated without any use of oracles and issues
of relativization are discussed where necessary. In computable analysis,
both the (strong) Weihrauch reduction above and its continuous analogue,
which permits the use of any oracle, are considered. In reverse mathe-
matics, it is customary to allow any oracle that exists in the model under
consideration. So the case of (strong) Weihrauch reduction corresponds
to the minimal standard model of RCA0 where the only sets are the com-
putable ones, and the continuous analogue corresponds to the case of the
full standard model of second-order arithmetic where all sets are present.

For these reasons, most of our results will be stated in a way that includes all
relevant translations, though our proofs will generally focus only on one point of
view, with the others left to the reader.

We use standard notations and conventions from computability theory and re-
verse mathematics. We identify subsets of ω with their characteristic functions,
and we identify each n ∈ ω with its set of predecessors. Lower-case letters such as
i, j, k, `,m, n, x, y, . . . denote elements of ω. Given a set A ⊆ ω, we let [A]n denote
the set of all subsets of A of size n. We use x,y, . . . to denote finite subsets of ω,
which we identity with the corresponding tuple listing the elements in increasing
order. We write x < y if max x < min y. Given a Turing functional Φ, we assume
that if Φ(A)(x) ↓, then Φ(A)(y) ↓ for all y ≤ x. We say that a Turing functional Φ
is total if Φ(A) is a total function for every A ∈ 2ω. Given sets A and B, we write
Φ(A,B) in place of Φ(A⊕B).

2. The Squashing Theorem and sequential forms

We can naturally combine two Π1
2 principles P and Q into one as follows. We

define the parallel product 〈P,Q〉 to be the Π1
2 principle whose instances are pairs

〈A,B〉 such that A is an instance of P and B is an instance of Q, and the solutions
to this instance are pairs 〈S, T 〉 such that S is a solution to A and T is a solution
to B. Obviously, this can be generalized to combine any number of Π1

2 principles,
even an infinite number. In particular, one of our interests will be in cases when P
and Q are the same principle. For α ∈ ω ∪ {ω}, we let α applications of P, or Pα,
refer to the Π1

2 principle whose instances are sequences 〈Ai : i < α〉 such that each
Ai is an instance of P, and the solutions to this instance are sequences 〈Si : i < α〉
such that each Si is a solution to Ai. The infinite case Pω is sometimes known as
the parallelization of P and is also denoted P̂.

Notice that we trivially have COH2 ≤sW COH because given two sequences of
sets 〈Ri : i ∈ ω〉 and 〈Si : i ∈ ω〉, we can uniformly computably interleave them
to form the sequence 〈Ti : i ∈ ω〉 where T2i = Ri and T2i+1 = Si, so that any set
cohesive for 〈Ti : i ∈ ω〉 is cohesive for each of 〈Ri : i ∈ ω〉 and 〈Si : i ∈ ω〉. In
fact, using a pairing function, it is easy to see that COHω ≤sW COH. For another
example, we have that WKL2 ≤sW WKL as follows. Given two infinite trees 〈T0, T1〉,
form a new tree S by letting σ ∈ S if the sequence of even bits from σ is an element
of T0 and the sequence of odd bits from σ is an element of T1. It is straightforward
to check that S is an infinite tree uniformly computably obtained from 〈T0, T1〉,
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and that given a path B through S, the even bits form a path through T0, and
the odd bits form a path through T1. Moreover, using a pairing function again,
we can interleave a sequence 〈Ti : i ∈ ω〉 of infinite trees together to form one
infinite tree such that from any path we can uniformly computably obtain paths
through each of the original trees, and hence WKLω ≤sW WKL. (This fact is also
a consequence of Theorem 8.2 of [5], which shows that WKL is strong Weihrauch
equivalent to LLPOω; see also Lemma 5 of Hirst [20] for a formalized version in
reverse mathematics.)

We have the following important example using distinct principles.

Proposition 2.1. If n, j, k ≥ 1, then 〈RTnj ,RT
n
k 〉 ≤sW RTnjk.

Proof. Given 〈f, g〉 where f : [ω]n → j and g : [ω]n → k, define h : [ω]n → jk by
h(x) = 〈f(x), g(x)〉 for all x ∈ [ω]n. Then h is uniformly computable from 〈f, g〉,
and any infinite homogeneous set for h is also homogeneous for both f and g. �

Given a Π1
2 principle P, if P2 ≤sW P, then it is straightforward to see (by

repeatedly applying the reduction procedures) that Pn ≤sW P for each fixed n ∈ ω.
For example, if n = 4 and we are given 〈A0, A1, A2, A3〉 where each Ai is an instance
of P, then

Φ(A0,Φ(A1,Φ(A2, A3)))

is an instance of P uniformly obtained from 〈A0, A1, A2, A3〉, and from any solu-
tion to this instance we can repeatedly apply Ψ to uniformly obtain a sequence
〈S0, S1, S2, S3〉 such that each Si is a solution to Ai. (The same is true if ≤sW

is replaced by ≤W.) It is not at all clear, however, whether this process can be
continued into the infinite, i.e., does P2 ≤sW P necessarily imply that Pω ≤sW P?
Given a sequence 〈Ai : i ∈ ω〉 where each Ai is an instance of P, the natural idea is
to consider

Φ(A0,Φ(A1,Φ(A2,Φ(A3, . . . )))).

Of course, this process clearly fails to converge and so does not actually define an
instance of P. In fact, we will see later that P2 ≤sW P does not always imply that
Pω ≤sW P.

However, if P2 ≤sW P and P is reasonably well-behaved, we will prove that
such a “squashing” of infinitely many applications of P into one application of
P is indeed possible. For example, consider P = RT2

2. The idea is to force some
convergence in the above computation by approximating the second coordinate of Φ
as follows. When attempting to simulate Φ(A0,Φ(A1,Φ(A2, . . . ))), we approximate
the unknown result of Φ(A1,Φ(A2, . . . )) by guessing that it starts as the all zero
coloring. By assuming this and hence that the second argument looks like a string of
zeros, we eventually force convergence of Φ(A0, 0

n) on 0, at the cost of introducing
some finite initial error in the true “computation” of Φ(A1,Φ(A2, . . . )). Since
removing finitely many elements from an infinite homogenous set results in an
infinite homogeneous set, these finitely many errors we have introduced into the
coloring will not be a problem.

More precisely, we will define a sequence 〈Bi : i ∈ ω〉 of instances of P (where
intuitively Bi = Φ(Ai,Φ(Ai+1, · · · )) beyond some finite error introduced to force
convergence), along with a uniformly computable sequence of numbers 〈mi : i ∈ ω〉,
such that

Bi(x) = Φ(Ai, Bi+1)(x) for all x ≥ mi.
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Now since we no longer have Bi = Φ(Ai, Bi+1) (due to the finite error), the Turing
functional Ψ may not convert a solution of Bi into a pair of solutions to Ai and
Bi+1. In order to deal effectively with these finite errors, to ensure that our Bi
are actually instances of P, and to ensure that sequence 〈mi : i ∈ ω〉 is uniformly
computable (and hence can be used as markers for cut-off points), we need to make
some assumptions about P.

Definition 2.2. Let P be a Π1
2 principle (or, more generally, any multi-valued

function with domain 2ω).

(1) P is total if every element of 2ω is (or codes) an instance of P.
(2) P has finite tolerance if there exists a Turing functional Θ such that when-

ever B1 and B2 are instances of P with B1(x) = B2(x) for all x ≥ m, and
S1 is a solution to B1, then Θ(S1,m) is a solution to B2.

Proposition 2.3. For each n, k ≥ 1, the principle RTnk is total and has finite
tolerance.

Proof. We can view every element of 2ω as a valid k-coloring through simple coding.
Define Θ as follows. Given m ∈ ω, compute the largest element ` of any tuple of
[ω]n coded by a natural number less than m, and let Θ(S,m) = {a ∈ S : a > `}.
Now if B1 and B2 are colorings of [ω]n using k colors such that B1(x) = B2(x) for
all x ≥ m, and S1 is an infinite set homogeneous for B1, then Θ(S1,m) is also an
infinite set and it is homogeneous for B2. �

Another simple example of a total principle with finite tolerance is COH, where
in fact we may take Θ(S,m) = S (because anything cohesive for a given family of
sets is also cohesive for any finite modification of that family).

Although we are certainly interested in the case where P2 ≤sW P, i.e., when
〈P,P〉 ≤sW P, we will need a slightly more general formulation below. As above,
when 〈Q,P〉 ≤sW P, it is straightforward to see that 〈Qn,P〉 ≤sW P for each fixed
n ∈ ω. When passing to the infinite case, however, our “squashing” never reaches
the initial instance of P, but in good cases we can conclude that Qω ≤sW P. Notice
that if Q = P, this reduces to the case discussed above.

Remark 2.4. As a rule, all results in this section about Π1
2 principles could be

formulated more generally for any multi-valued function with domain 2ω, as in
Definition 2.2. For brevity, we shall omit repeatedly stating this.

Theorem 2.5 (Squashing Theorem). Let P and Q be Π1
2 statements, and assume

that both are total and that P has finite tolerance.

(1) If 〈Q,P〉 ≤sW P then Qω ≤sW P.
(2) If 〈Q,P〉 ≤W P then Qω ≤W P.

Proof. We prove (1), the proof of (2) being virtually the same (in fact, the argu-
ment can be made somewhat simpler because the oracle has access to the original
problem). Throughout, if σ, τ ∈ 2<ω, we write στ for the concatenation of σ by τ ,
and σ_τ for the continuation of σ by τ , meaning

σ_τ(i) =

{
σ(i) if i < |σ|,
τ(i) if |σ| ≤ i < |τ |,

for all i < max{|σ|, |τ |}. For A ∈ 2ω, we similarly define σ_A.
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Fix functionals Φ and Ψ witnessing the fact that 〈Q,P〉 ≤sW P. Since P is total,
we may fix a computable instance C of P (one could take C to be the sequence of all
0s, but for some particular problems it might be more convenient or natural to use
a different C). Given a sequence 〈Ai : i ∈ ω〉 of instances of Q, we uniformly define
a sequence 〈Bi : i ∈ ω〉 of instances of P together with a uniformly computable
sequence 〈mi : i ∈ ω〉 of numbers so that

Bi = (C �mi)
_Φ(Ai, Bi+1)

for all i. In other words, we will have Bi(x) = C(x) for all x < mi, and Bi(x) =
Φ(Ai, Bi+1)(x) for all x ≥ mi. We will then use the instance B0 of P as our
transformed version of 〈Ai : i ∈ ω〉 and show how given a solution T0 of B0, we
can uniformly transform T0 into a sequence 〈Si : i ∈ ω〉 of solutions to 〈Ai : i ∈ ω〉.
One subtle but very important point here is that our sequence 〈mi : i ∈ ω〉 of
cut-off positions will need to be uniformly computable independent of the instances
〈Ai : i ∈ ω〉, so that we can use them to unravel a solution T0 of B0 without
knowledge of the initial instance.

Thus, our first goal is to define the uniformly computable sequence 〈mi : i ∈ ω〉.
We proceed in stages, initially letting m0 = 0. At stage s, we define ms+1. The
goal is to choose ms+1 large enough to ensure that all potential Bi for i ≤ s will
be defined on s. Intuitively, by placing enough of C down in column s+ 1 (i.e., at
the beginning of Bs+1), we must eventually see convergence on previous columns
through the cascade effect of the nested Φ. Since we do not have access to the
sequence 〈Ai : i ∈ ω〉, we make essential use of compactness and the fact that Q is
total to handle all potential inputs at once.

To this end, assume mt has been defined for each t ≤ s. First we claim there
exists an n ∈ ω such that for all σ0, . . . , σs ∈ 2n,

Φ(σs, C � n)(s) ↓,
Φ(σs−1, (C �ms)

_Φ(σs, C � n))(s) ↓,
Φ(σs−2, (C �ms−1)_Φ(σs−1, (C �ms)

_Φ(σs, C � n)))(s) ↓,

and for general i ≤ s,

(1) Φ(σi, (C �mi+1)_ · · ·_ Φ(σs−1, (C �ms)
_Φ(σs, C � n)) · · · )(s) ↓ .

Observe that the set of all such n is closed under successor. Thus, once the claim
is proved, we can define ms+1 to be the least such n that is greater than mt for all
t ≤ s and also greater than s (to ensure that Bs+1 will be defined on 0, 1, . . . , s as
well). This observation also implies that to prove the claim, it suffices to fix i ≤ s,
and prove that we can effectively find an n such that (1) holds for all σi, . . . , σs ∈ 2n.

To this end, let T be the set of all tuples 〈σi, . . . , σs〉 of binary strings with
|σi| = · · · = |σs| such that

Φ(σi, (C �mi+1)_ · · ·_ Φ(σs−1, (C �ms)
_Φ(σs, C � |σi|) · · · )(s) ↑ .

Since each of the computations here has a finite string as an oracle, T is a com-
putable set. Furthermore, if 〈τi, . . . , τs〉 is an initial segment of 〈σi, . . . , σs〉 under
component-wise extension, that is if τi � σi, . . . , τs � σs, then 〈τi, . . . , τs〉 belongs
to T if 〈σi, . . . , σs〉 does. Thus, T is a subtree in (2<ω)s under component-wise
extension.
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Now if T is infinite, then it must have an infinite path 〈Ui, . . . , Us〉, where
Ui, . . . , Us ∈ 2ω and 〈Ui � k, . . . , Us � k〉 ∈ T for all k. Then by definition of T ,

Φ(Ui, (C �mi+1)_ · · ·_ Φ(Us−1, (C �ms)
_Φ(Us, C)) · · · )(s) ↑ .

As P and Q are both total, each of Ui, . . . , Us are instances of Q, and each of the
second components of any Φ above are instances of P. In particular,

(C �mi+1)_ · · ·_ Φ(Us−1, (C �ms)
_Φ(Us, C))

is an instance V of P, as is Φ(Ui, V ). But then Φ(Ui, V )(s) cannot be undefined.
We conclude that T is finite, whence its height can clearly serve as the desired n.
To complete the proof, we note that an index for T as a computable tree can be
found uniformly computably from i and m0, . . . ,ms, and therefore so can n.

We now define our reduction procedures witnessing that Qω ≤sW P. Let 〈Ai :
i ∈ ω〉 be an instance of Qω. From this sequence, we uniformly computably define
a sequence 〈Bi : i ∈ ω〉 of instances of P as follows. Again, we proceed by stages,
doing nothing at stage 0. At stage s+ 1, we define Bi(s) for each i ≤ s and define
Bs+1 on 0, 1, . . . , s. If s < mi, we let Bi(s) = C(s). Otherwise, we let

Bi(s) = Φ(Ai, (C �mi+1)_ · · ·_ Φ(As−1, (C �ms)
_Φ(As, C �ms+1)) · · · )(s),

the right-hand of which we know to be convergent by definition of ms+1. That is,
we have defined

Bs(s) = Φ(As, C �ms+1)(s),
Bs−1(s) = Φ(As−1, (C �ms)

_Φ(As, C �ms+1))(s),
Bs−2(s) = Φ(As−2, (C �ms−1)_Φ(As−1, (C �ms)

_Φ(As, C �ms+1)))(s),

and so forth. (Each of the At in the computations above could also be replaced
by At �ms+1.) We also define Bs+1(j) = C(j) for all j ≤ s. Since, from the next
stage on, Bs+1 will be defined so that Bs+1 �ms+1 = C �ms+1, it is not difficult to
see that we do indeed succeed in arranging Bi = (C �mi)

_Φ(Ai, Bi+1), as desired.
Furthermore, 〈Bi : i ∈ ω〉 is defined uniformly computably from 〈Ai : i ∈ ω〉, and
each Bi is an instance of P because P is total. In particular, and there is a Turing
functional that produces B0 from 〈Ai : i ∈ ω〉.

Let Θ be a Turing functional witnessing that P has finite tolerance. We claim
that from any solution to the instance B0 of P, we can uniformly computably obtain
a sequence of solutions to 〈Ai : i ∈ ω〉. So suppose T0 is any such solution to B0.
The idea is to repeatedly apply the reduction Θ to deal with the finite errors,
followed up by Ψ to convert individual solutions to pairs of solutions. Indeed, since
B0(x) = Φ(A0, B1)(x) for all x ≥ m0, we have that Θ(T0,m0) is a solution to
Φ(A0, B1). Thus, Ψ(Θ(T0,m0)) = 〈S0, T1〉 is such that S0 is a solution to A0, and
T1 is a solution to B1. The first of these, S0, can serve as the first member of our
sequence of solutions. Since B1(x) = Φ(A1, B2)(x) for all x ≥ m1, we have that
Θ(T1,m1) is a solution to Φ(A1, B2). Thus, Ψ(Θ(T1,m1)) = 〈S1, T2〉 is such that
S1 is a solution to A1, and T2 is a solution to B2. Continuing in this way, we build
an entire sequence 〈Si : i ∈ ω〉 of solutions to 〈Ai : i ∈ ω〉, and since 〈mi : i ∈ ω〉 is
uniformly computable, we do this uniformly computably from T0 alone. The proof
is complete. �

The utility of the Squashing Theorem for our purposes, as we shall see in subse-
quent sections, is that in many cases it allows us to deduce that multiple applications
of a given principle cannot be uniformly reduced to one. This is because there is
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no (strong) Weihrauch reduction of ω instances of that principle to one, and in
general, showing this tends to be easier.

Corollary 2.6. Let P be a Π1
2 principle that is total and has finite tolerance.

(1) If P2 ≤sW P, then Pω ≤sW P.
(2) If P2 ≤W P, then Pω ≤W P.

Proof. Apply Theorem 2.5 with Q = P. �

Lemma 2.7. Let P and Q be Π1
2 principles.

• If both P and Q are total, then 〈P,Q〉 is total.
• If both P and Q have finite tolerance, then 〈P,Q〉 has finite tolerance.

Proof. Immediate. �

Corollary 2.8. Let P and Q be Π1
2 statements, assume that both are total and that

P has finite tolerance, and let m ≥ 1 be given.

(1) If 〈Q,Pm〉 ≤sW Pm then Qω ≤sW Pm.
(2) If 〈Q,Pm〉 ≤W Pm then Qω ≤W Pm.

Proof. Repeatedly applying Lemma 2.7, we see that Pm is total and has finite
tolerance. The result follows from the Squashing Theorem. �

Corollary 2.9. Let P be a Π1
2 principle that is total and has finite tolerance, and

let m ≥ 1 be given.

(1) If Pm+1 ≤sW Pm, then Pω ≤sW Pm.
(2) If Pm+1 ≤W Pm, then Pω ≤W Pm.

Proof. Since Pm+1 ≤sW Pm, we know that 〈P,Pm〉 ≤sW Pm, so the result follows
from the previous corollary. �

For the remainder of this article, we employ the following short-hand to avoid
excessive exponents and to give Pω a more evocative name.

Statement 2.10. For any Π1
2 principle P, we denote ω applications of P, or Pω,

by SeqP. We call SeqP the sequential version of P.

So, for instance, Corollary 2.6 says that that if P is total and has finite tolerance,
then P2 ≤sW P implies that SeqP ≤sW P. With this terminology, we have the
following simple result.

Proposition 2.11. Let P and Q be Π1
2 principles.

(1) If P ≤sW Q, then SeqP ≤sW SeqQ.
(2) If P ≤W Q, then SeqP ≤W SeqQ.

Proof. For (1), fix Φ and Ψ witnessing the reduction P ≤sW Q. Given an instance
〈Ai : i ∈ ω〉 of SeqP, we have that 〈Φ(Ai) : i ∈ ω〉 is an instance of SeqQ uniformly
computably obtained from it. Also, if 〈Ti : i ∈ ω〉 is a solution to 〈Φ(Ai) : i ∈ ω〉,
then 〈Ψ(Ti) : i ∈ ω〉 is a solution to 〈Ai : i ∈ ω〉. For (2), the proof is the same,
except we must take 〈Ψ(Ai, Ti) : i ∈ ω〉 as the solution. �
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3. Ramsey’s theorem for different numbers of colors

Throughout this section, let n ≥ 1 be fixed. Our goal is to work up towards a
proof of the following theorem.

Theorem 3.1. For all j, k ≥ 2 with j < k, we have RTnk �sW RTnj .

As pointed out above, we have that RCA0 ` RTnj → RTnk , but the obvious proof
uses multiple nested applications of RTnj . Theorem 3.1 says that it is impossible to
give a uniform proof of this implication using just one application of RTnj .

The key ingredients of the proof are Proposition 2.1, the Squashing Theorem,
and the fact that it is possible to code more into SeqRTnk than into RTnk alone. To
illustrate the last of these, consider RT1

2. Notice that every computable instance
of RT1

2 trivially has a computable solution because either there are infinitely many
0s or there are are infinitely many 1s (and each of these sets is computable), but
there is one non-uniform bit of information used to determine which of these two
statements is true. However, it is a straightforward matter to build a computable
instance of SeqRT1

2 such that every solution computes ∅′. The idea is to use each
column to code one bit of ∅′ by exploiting this one non-uniform decision. In fact,
for higher exponents this result can be made sharper, as we now prove. (See also
[24, Proposition 47] for a related result in the context of proof mining and program
extraction.)

Lemma 3.2. There is a computable instance of SeqRTn2 every solution to which
computes ∅(n).

Proof. We prove the result for n being odd; the case where n is even is analogous.
Fix a computable predicate ϕ such that

∅(n) = {i ∈ ω : (∃x0)(∀x1) · · · (∃xn−1) ϕ(i, x0, x1, . . . , xn−1)}.
Define a computable sequence of colorings 〈fi : i ∈ ω〉 by

fi(y) =

{
1 if (∃x0 < y0)(∀x1 < y1) · · · (∃xn−1 < yn−1) ϕ(i, x0, x1, . . . , xn−1),

0 otherwise,

for all y = 〈y0, y1, . . . , yn−1〉 ∈ [ω]n.
Let 〈Hi : i ∈ ω〉 be any sequence of infinite homogeneous sets for the fi. We

claim that ∅(n)(i) = fi([Hi]
n) for all i, and hence that ∅(n) ≤T 〈Hi : i ∈ ω〉. To

see this, suppose first that i ∈ ∅(n). Let 〈w2j : 2j < n〉 be Skolem functions for

membership in ∅(n), so that

(∀x1)(∀x3) · · · (∀xn−2) ϕ(i, w0(i), x1, w2(i, x1), x3, . . . , wn−1(i, x1, x3, . . . , xn−2)).

Now define an increasing sequence z0 < z1 < · · · < zn−1 of elements Hi as follows.
Start by letting z0 be the least z ∈ Hi that is greater than w0(i). Then, given j
with 1 ≤ j ≤ n − 1, suppose we have defined zk for all k < j. If j is odd, let
zj be the least z ∈ Hi that is greater than zj−1. If j is even, let zj be the least
z ∈ Hi that is greater than zj−1, and also greater than wj(i, x1, x3, . . . , xj−1) for
all sequences x1, x3, . . . , xj−1 with xk < zk for each odd k < j.

The sequence of zj so constructed now clearly satisfies

(2) (∃x0 < z0)(∀x1 < z1) · · · (∃xn−1 < zn−1) ϕ(i, x0, x1, . . . , xn−1).

So by definition of fi, we have that fi(z0, . . . , zn−1) = 1. And since the zj all belong
to Hi, it follows that f([Hi]

n) = 1, as desired.
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Now suppose that i /∈ ∅(n). We can similarly construct a sequence z0 < · · · < zn−1
of elements of Hi witnessing that f([Hi]

n) = 0. Let 〈w2j+1 : 2j+ 1 < n〉 be Skolem

functions for non-membership in ∅(n), so that

(∀x0)(∀x2) · · · (∀xn−1) ¬ϕ(i, x0, w1(i, x0), x2, . . . , wn−2(i, x0, x2, . . . , xn−3), xn−1).

Let z0 be the least element of Hi, and suppose we are given a j with 1 ≤ j ≤ n− 1
such that zk has been defined for all k < j. If j is even, let zj be the least z ∈ Hi

that is greater than zj−1. If j is odd, let zj be the least z ∈ Hi that is greater than
zj−1, and also greater than wj(i, x0, x2, . . . , xj−1) for all sequences x0, x2, . . . , xj−1
with xk < zk for each even k < j.

This sequence of zj satisfies the negation of (2) above, so fi(z0, . . . , zn−1) = 0
by definition. Since all the zj belong to Hi, the claim follows. �

After relativization and translation into the language of strong Weihrauch re-
ductions, we obtain from the above that TJn ≤sW SeqRTn2 . (See the discussion
following Corollary 5.21 for a definition of the iterated Turing jump, TJn.)

Lemma 3.3. For all n ≥ 1 and k ≥ 2, we have 〈RTn2 ,RT
n
k 〉 �W RTnk .

Proof. Suppose instead that 〈RTn2 ,RT
n
k 〉 ≤W RTnk . Since RTn2 and RTnk are both

total and have finite tolerance by 2.3, we may use the Squashing Theorem 2.5 to
conclude that SeqRTn2 ≤W RTnk . Fix Φ and Ψ witnessing the reduction, and let
f = 〈fi : i ∈ ω〉 be any computable instance of SeqRTn2 . Apply Φ to this sequence
to obtain an instance g of RTnk and notice that g is computable. By Theorem 5.6 of
Jockusch [21], we can find an infinite set H homogeneous for g such that H ′ ≤T ∅(n)
(since RT1

k is computably true, Jockusch’s Theorem 5.6 holds also when n = 1).
We then have that S = 〈Si : i ∈ ω〉 = Ψ(f,H) is a solution to f = 〈fi : i ∈ ω〉 with
S′ ≤T ∅(n).

But as the sequence f = 〈fi : i ∈ ω〉 was chosen as an arbitrary computable
instance of SeqRTn2 , this would imply that every computable instance of SeqRTn2
has a solution with jump computable in ∅(n). This contradicts Lemma 3.2, since
no such set can compute ∅(n). Therefore, we must have 〈RTn2 ,RT

n
k 〉 �W RTnk . �

We shall prove Theorem 3.1 by means of the following weaker version of the
theorem, which now follows easily.

Corollary 3.4. For all n ≥ 1 and k ≥ 2, we have RTn2k �W RTnk .

Proof. Suppose instead that RTn2k ≤W RTnk . We know from Proposition 2.1 that
〈RTn2 ,RT

n
k 〉 ≤W RTn2k. Hence, using transitivity of ≤W, we have 〈RTn2 ,RT

n
k 〉 ≤W

RTnk , contrary to Lemma 3.3. �

In order to use this corollary to handle all cases of Theorem 3.1, we use the
following result saying that we can fan out a strong Weihrauch reduction RTnk ≤sW

RTnj to obtain a strong Weihrauch reduction with a larger spread between the
number of colors used.

Lemma 3.5. Let n, j, k, s ≥ 1. If RTnk ≤sW RTnj , then RTnks ≤sW RTnjs .

Proof. Fix Φ and Ψ witnessing the fact that RTnk ≤sW RTnj . In what follows, define
e(b, a, i) for all b, a ∈ ω and all i < blogb ac to be the ith digit in the base b expansion
of a. Thus, for example, e(10, 25, 0) = 5 and e(2, 25, 0) = 1.
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Fix an arbitrary f : [ω]n → ks. We now convert f into s many colorings
f0, . . . , fs−1 : [ω]n → k by setting

fi(x) = e(k, f(x), i)

for all i < s and all x ∈ [ω]n. Then for any x, the expansion of f(x) in base k is
precisely f0(x) · · · fs−1(x). Hence, any set that is simultaneously homogeneous for
each of the fi is also homogeneous for f .

Now apply the reduction Φ to each fi to obtain colorings gi : [ω]n → j for each
i < s. We merge these m many colorings into one coloring g : [ω]n → js defined by

g =

s−1∑
i=0

jigi.

Notice that any infinite set H homogeneous for g is simultaneously homogeneous
for each of the gi. Hence, Ψ(H) is simultaneously homogeneous for each of the fi.
But then by the observation above, it follows that Ψ(H) is an infinite homogeneous
set for f . Since the reduction from f to g was uniformly computable, the lemma is
proved. �

We can now prove our main result.

Proof of Theorem 3.1. Seeking a contradiction, fix j < k and assume RTnk ≤sW

RTnj . Since k
j > 1, we may fix s ∈ ω with (kj )s > 4, so that 4js < ks. Let m ∈ ω be

least such that js ≤ 2m. We then have 2m−1 < js, so 2m+1 < 4js < ks, and hence

js ≤ 2m < 2m+1 < ks.

Since we are assuming RTnk ≤sW RTnj , we can use Lemma 3.5 to conclude that
RTnks ≤sW RTnjs . We therefore have

RTn2m+1 ≤sW RTnks ≤sW RTnjs ≤sW RTn2m

Since ≤sW is transitive, it follows that RTn2m+1 ≤sW RTn2m , contradicting Corol-
lary 3.4. �

It is worth pointing out that, in proving of Theorem 3.1, the proof of Lemma
3.5 was the only moment where it mattered that we were working with the strong
form of Weihrauch reducibility. Specifically, since Ψ there took solutions to gi to
solutions to fi for each i, in finding a simultaneous solution H for all the gi we found
a simultaneous solution Ψ(H) for all the fi. This would no longer be the case if
joining with original instances was permitted, since then we could not guarantee
that Ψ(gi, Hi) would be the same set for all i. We do not know how to overcome this
difficulty, and hence leave open the question of whether Lemma 3.5 and Theorem
3.1 also holds with ≤sW replaced by ≤W.

4. Weak Weak König’s Lemma

As discussed in Section 2, it is straightforward to see that SeqWKL ≤sW WKL
(and the reverse direction is obvious). However, the situation of WWKL is more
interesting. By performing the same interleaving process to show that WKL2 ≤sW

WKL, one checks that the resulting tree has positive measure if each of the two input
trees do (in fact, the measure of the interleaved tree is the product of the measures
of the original trees), and hence it follows that WWKL2 ≤sW WWKL. By iterating
this, it follows that given any finite sequence 〈Ti : i < n〉 of trees with positive
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measure many paths, one can interleave them to obtain a tree S whose measure
will be the product of the Ti (and hence also positive) such that from any path
through S, one can uniformly compute paths through the Ti. However, this idea
does not carry over to the case of an infinite sequence of trees of positive measure,
since then the interleaving process can produce a tree of measure 0. Indeed, this can
happen even if the measures of the trees in the sequences are uniformly bounded
away from 0.

Notice that we trivially have WWKL ≤sW WKL, so SeqWWKL ≤sW SeqWKL
by Proposition 2.11. As explained in Section 2, we have SeqWKL ≤sW WKL, and
hence SeqWWKL ≤sW WKL by transitivity of ≤sW. One can also show that this can
be formalized to give RCA0 ` WKL → SeqWKL → SeqWWKL. The next theorem
shows that the converses are also true, and hence SeqWWKL, even in this weaker
form, is in fact strictly stronger than WWKL.

Theorem 4.1.

(1) WKL ≤sW SeqWWKL.
(2) RCA0 ` SeqWWKL→WKL.

In fact, both of these statements hold even if we restrict SeqWWKL to infinite
sequences of subtrees of 2<ω of measure uniformly bounded away from 0.

Proof. We prove (2) in the stronger form in order to handle the formalized version
carefully, but our construction is completely uniform and hence can be turned into
a proof of (1).

Let S be an arbitrary infinite subtree of 2<ω. We define a sequence of trees
〈Tσ : σ ∈ 2<ω〉 indexed by finite binary strings σ ∈ 2<ω (which of course can be
put in bijection with ω). Intuitively, Tσ is constructed as follows. Put the empty
string ∅, 0, and 1 in Tσ. Keep building above both 0 and 1 putting in all possible
extensions as long as σ0 and σ1 both look extendible in S. If we discover that one
of σ0 or σ1 is not extendible in S, then stop building above 0 or 1 in Tσ accordingly,
and forever build above the other side (even if the other also ends up not extendible
in S). In this way, Tσ will always have measure either 1

2 or 1.
More formally, we define our sequence as follows. Given ρ ∈ 2<ω and k ∈ ω,

let ExtS(ρ, k) be the ∆0 predicate saying that either k ≤ |ρ|, or there exists an
element of S extending ρ of length k. Given σ ∈ 2<ω, define Tσ to be ∅ together
with the set of τ ∈ 2<ω\{∅} satisfying one of the following:

• τ(0) = 0 and ExtS(σ0, |τ |).
• τ(0) = 1 and ExtS(σ1, |τ |).
• τ(0) = 0 and (∃k < |τ |)[ExtS(σ0, k) ∧ ¬ExtS(σ1, k)].
• τ(0) = 1 and (∃k < |τ |)[ExtS(σ1, k) ∧ ¬ExtS(σ0, k)].
• (∃k < |τ |)[ExtS(σ0, k)∧ExtS(σ1, k)∧¬ExtS(σ0, k+1)∧¬ExtS(σ1, k+1)].

Note that the last condition handles the case when both sides die at the same level,
and in this situation we (arbitrarily) build the full tree.

Since S is tree, if k < m and ExtS(ρ,m), then ExtS(ρ, k). By Σ0
1-induction

and the fact that ExtS(ρ, 0) holds by definition, if ¬ExtS(ρ,m) then there exists a
unique k ∈ ω with k < m such that ExtS(ρ, k) and ¬ExtS(ρ, k + 1). Using these
facts, it is straightforward to check that each Tσ is a tree, and that for each m ∈ ω,
either every element of 2m is in Tσ or exactly half of the elements of 2m are in Tσ.

Applying SeqWWKL to the sequence 〈Tσ : σ ∈ 2<ω〉, we obtain a sequence
〈Bσ : σ ∈ 2<ω〉 of paths through the trees 〈Tσ : σ ∈ 2<ω〉. We now define a function
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C : ω → {0, 1} recursively by letting C(n) = BC�n(0), where C � n is the finite
sequence C(0)C(1) · · ·C(n−1). We claim that C is a path through S. To show this,
we prove the stronger fact that for each n ∈ ω, we have (∀m)ExtS(C � n,m). The
proof is by induction on n (using Π0

1-induction, which follows from Σ0
1-induction).

For n = 0, note that C � n = ∅, and we know that (∀m)ExtS(∅,m) because
S is an infinite tree by assumption. Suppose that we have a given n ∈ ω for
which (∀m)ExtS(C � n,m). In this case, at least one of (∀m)ExtS((C � n)0,m) or
(∀m)ExtS((C �n)1,m) must hold. Now if i ∈ {0, 1} is such that ¬ExtS((C �n)i,m),
then TC�n has no node extending i of length m (by definition of the Tσ), so it must
be the case that BC�n(0) = 1−i. Therefore, we must have (∀m)ExtS(C�(n+1),m).
This completes the induction, and the proof. �

Fact (1) above can also be derived from the result of Brattka and Gherardi [5,
Theorem 8.2] that WKL ≤sW SeqLLPO and the observation of Brattka and Pauly [7,
Figure 1] that that LLPO ≤sW WWKL. (See [5, Section 1] for a definition of LLPO.)

On the other hand, we have the following fact, which follows in this form from
more general results of Brattka and Pauly [7, Proposition 22], and also essentially
by the proof of Simpson and Yu [36] that WWKL 9 WKL over RCA0. We include
a proof for completeness.

Proposition 4.2. WKL �W WWKL.

Proof. By results of Jockusch and Soare [23, Theorem 5.3], there is a computable
instance of WKL for which only measure 0 many elements of 2ω compute a solu-
tion. However, every 1-random computes an infinite path through every infinite
computable instance of WWKL. (See, e.g., [1, Lemma 1.3].) �

Thus while WWKLn ≤sW WWKL for each n ∈ ω, we have that SeqWWKL �W

WWKL. Notice that the Squashing Theorem does not apply to WWKL because it is
not total (there is no clear way to view every real as coding an instance of WWKL).

We now turn to questions about uniformly passing back and forth between trees
of positive measure. Consider any such tree T of 2<ω. A question that seems
natural is whether from a positive rational q < 1, it is possible to build a tree
S of measure at least q, each path through which computes a path through T .
Intuitively, is it possible to blow up the measure of T without losing information
about its paths? It is not difficult to see that the answer is affirmative, and in
fact, that such an S can be obtained uniformly from q and an index for T . Indeed,
fix a universal Martin-Löf test {Ui : i ∈ ω} and let S = 2<ω − Ui for the least i
with q ≤ 1− 2−i. Every path through S is 1-random, and hence computes a path
through T , but not uniformly. The following lemma and proposition show that if
we allow S to be defined non-uniformly from T and q, then we can arrange for the
computations from paths to paths to be uniform.

Lemma 4.3. Given a tree T ⊆ 2<ω of positive measure p, and given ε > 0, there
is a tree S, each path of which uniformly computes a path through T , such that the
measure of the complement of S is at most (1 + ε)(1− p)2.

Proof. We may assume p < 1, since otherwise we can just take S = T . Fix a positive
δ < 1 such that 1−δp ≤ (1+ε)(1−p). Choose minimal, hence incompatible, strings
σ0, . . . , σn−1 /∈ T such that ∑

i<n

2−|σi| ≥ δ(1− p),
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and let

S = T ∪ (
⋃
i<n

σiT ),

where σiT = {σiτ : τ ∈ T}. Then the measure of the complement of S is

(1− p)−
∑
i<n

2−|σi|p ≤ (1− p)− δp(1− p) = (1− p)(1− δp) ≤ (1 + ε)(1− p)2.

Now let Φ be the functional that sends A ∈ 2ω to A(|σi|)A(|σi| + 1) · · · if σi � A
for some i < n, and to A otherwise. Clearly, Φ(A) is a path through T whenever
A is a path through S. �

Proposition 4.4. Given a tree T ⊆ 2<ω of positive measure p, and given a positive
rational q < 1, there is a tree S ⊆ 2<ω of measure at least q, each path of which
uniformly computes a path through T .

Proof. Given T , p, and q, choose ε0, . . . , εn−1 so that

(3) (1 + εn−1)(1 + εn−2)2 · · · (1 + ε0)2(n−1)(1− p)2n < 1− q.

Now iterate the lemma. Let S−1 = T , and given Si−1 obtain Si with complement
of measure at most (1+εi)(1−µ(Si−1))2 such that each path through Si computes
a path through Si−1. By induction, the complement of Sn−1 has measure bounded
by (3), and each path through it computes a path through T . �

Thus, we can either uniformly blow up the measure of a given tree T , and have
paths through the new tree non-uniformly compute paths through the old; or we
can non-uniformly blow up the measure of T , and have paths through the new
tree uniformly compute paths through the old. The following proposition, which
is a direct corollary of Theorem 4.1, shows that we cannot achieve both types of
uniformity simultaneously.

Proposition 4.5. There is no effective procedure that, given (an index for) a com-
putable subtree T of 2<ω of positive measure, and a positive rational q, produces
(an index for) a computable subtree S of 2<ω of measure at least q and an e ∈ ω
such that ΦAe is a path through T for every path A through S.

Proof. Suppose otherwise and fix any computable sequence 〈Ti : i ∈ ω〉 of (indices
for) subtrees of 2<ω of positive measure. We build a single tree S of positive
measure, every path through which computes a sequence of sets 〈Ai : i ∈ ω〉 such
that each Ai is a path through Ti. In particular, every 1-random set computes such
a sequence. Of course, this contradicts the proof of Theorem 4.1, as it follows from
what is shown there that there exists a sequence of trees for which only sets of PA
degree can compute a sequence of paths, but not every 1-random computes a set
of PA degree.

We obtain S by interleaving the members of a new sequence 〈Si : i ∈ ω〉 of
subtrees of 2<ω, constructed inductively as follows. By adding a tree to 〈Ti : i ∈ ω〉
if necessary, we may assume µ(T0) < 1, and fix a positive rational number r with
µ(T0) < r < 1. Define S0 = T0, choose q0 < 1 with r < q0, and let e0 be an index
for the identity reduction. Now suppose we have defined Si, qi, and ei. Choose
a rational qi+1 < 1 such that

∏
j≤i+1 qj ≥ r, which we may assume exists by

induction. Let Si+1 and ei+1 be as given by the hypothesized effective procedure
in the statement, with T = Ti+1 and q = qi+1.
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Clearly, the resulting sequences 〈Si : i ∈ ω〉 and 〈ei : i ∈ ω〉 are computable. It
follows that S is computable, and by construction, µ(S) =

∏
i∈ω µ(Si) ≥ r > 0.

Now suppose B is any path through S. By undoing the interleaving process along
B, we computably define a sequence 〈Bi : i ∈ ω〉 such that each Bi is a path
through Si. Setting Ai = ΦBi

ei for each i, it follows that 〈Ai : i ∈ ω〉 is the desired
sequence of paths through the Ti. �

The preceding results inspire the following restriction of WWKL. Let q < 1 be a
positive rational.

Statement 4.6 (q-WWKL). Every subtree T of 2<ω such that

|{σ ∈ 2n : σ ∈ T}|
2n

≥ q

for all n has an infinite path.

Note that Proposition 4.4 can be formalized to show that RCA0 ` WWKL ↔
q-WWKL, for each q. We conclude this section with the following contrasting result.

Proposition 4.7. For all positive rationals p < q < 1, p-WWKL �W q-WWKL.

Proof. Suppose not, and let Φ and Ψ witness a Weihrauch reduction from p-WWKL
to q-WWKL. We build a computable tree T of measure at least p such that Φ(T ) has
measure less than q, and thus obtain the desired contradiction. Intuitively, we use
the fact that Ψ must take paths through Φ(T ) to paths through T to successively cut
down larger and larger portions of Φ(T ) by cutting down larger and larger portions
of T . Although this results in the measures of both trees becoming smaller, we will
only cut down each tree finitely many times, and we will be able to control for how
much of the measure of T is left.

We shall regard each partial computable function as defining an initial segment
of a computable subtree of 2<ω, with each new convergence giving an entire new
level of the tree, and only strings of maximal length at the previous level being
extended. Then Φ in the construction can be viewed as a monotone map between
such initial segments. This will ensure that the construction of T will be uniform,
and so by the recursion theorem, we can fix an index for it ahead of time. This
permits us the convenience of not needing to consider T in the oracle for Ψ, by

replacing that functional, if necessary, by Ψ̂(X) = Ψ(T,X).

Construction. Fix a positive number a such that 2−a < q − p. At stage s of the
construction we shall define Ts = T ∩ 2≤s, starting with T0 = {∅}. That is, Ts will
have height s. Let ns be the height of Φ(Ts), and assume without loss of generality
that ns ≤ s for all s and that Φ(T0) = {∅}.

At stage s+ 1, choose the least a many numbers x0 < · · · < xa−1 that we have
not yet acted for, as defined below. Assume inductively that for each α ∈ 2a there
is a string σ ∈ Ts of length s with σ(xj) = α(j) for all j with xj < s. We consider
two cases.

Case 1. If any of the following apply:

• Φ(Ts) contains fewer than 2nsq many strings of length ns;
• xa−1 ≥ s;
• xa−1 < s but Ψ(τ)(xj) ↑ for some τ ∈ Φ(Ts) of length ns and some j < a;
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then we obtain Ts+1 from Ts by adding σ0 and σ1 for each σ ∈ Ts of length s.

Case 2. Otherwise, choose α ∈ 2a so that Ψ(τ)(xj) ↓= α(j) for all j < a for at
least 2−a many strings τ ∈ Φ(Ts) of length ns. Then, we obtain Ts+1 from Ts by
adding σ0 and σ1 for each σ ∈ Ts of length s with σ(xj) 6= α(j) for some j < a.
Say we have acted for x0, . . . , xa−1.

Verification. Clearly, T is a computable subtree of 2<ω. Note that the measure of
T is cut down only when the construction enters Case 2, at which point it is cut
down by a factor of precisely 2−a. Likewise, whenever the construction enters Case
2, the measure of Φ(T ) is cut down by at least a factor of 2−a. We claim there is a
stage s such that Φ(Ts) contains fewer than 2nsq many strings of length s, so that
the measure of Φ(T ) is less than q. Fix the least such s. Then as 2−a < q − p, it
follows that Ts contains at least 2sp many strings of length s. But the construction
can never enter Case 2 at any stage after s, so the measure of T is at least p.

It thus remains only to prove the claim. To this end, let t be any stage such that
Φ(Tt) contains at least 2ntq many strings of length nt. Fix the least x0 < · · · < xa−1
not yet acted for prior to stage t+ 1. For each path B through Φ(T ), we have that
Ψ(B)(xj) ↓ for all j < a, so by compactness, there is an s > max{t, xa−1} such that
Ψ(τ)(xj) ↓ for all j < a and all τ ∈ Φ(Ts) of length ns. Fix the least such s. Then
the construction never enters Case 2 strictly between stages t and s, so Ts contains
at least 2nsq many strings of length ns, so Case 2 applies at stage s. Hence, we
have shown that the construction continues to enter Case 2 until the measure of
Φ(T ) has been sufficiently cut down, from which the claim follows. �

5. The Thin Set Theorem

For all n ≥ 1 and k ∈ {2, 3, 4, . . . , ω}, say that a subset S of ω is thin for a
coloring f : [ω]n → k if there exists a c < k such that f(x) 6= c for all x ∈ [S]n. In
this section, we shall concentrate on the following combinatorial principle, known
as the Thin Set Theorem.

Statement 5.1 (TSnk ). Let n ≥ 1 and let k ∈ {2, 3, 4, . . . , ω}. Every f : [N]n → k
admits an infinite thin set.

The statement TSnω is the usual Thin Set Theorem as studied in [8].2 Note that
TSn2 is logically equivalent to RTn2 , i.e., the thin sets for 2-colorings are precisely
the homogeneous sets. Likewise, observe that whereas RTn1 is plainly true, TSn1 is
not even defined above, as it would be plainly false.

Implications between versions of the Thin Set Theorem for different numbers
of colors go opposite the way they do for Ramsey’s theorem. For the purpose
of viewing TSnk as a multi-valued function, it is important that a solution to an
instance of TSnk includes which color is omitted by the thin set since there is no
uniformly computable way to recover that information from the thin set alone.

Proposition 5.2. Let n ≥ 1.

(1) If j, k ≥ 2 with j < k, then TSnk ≤sW TSnj .

2This should not be confused with the principle TSn<∞, which, by analogy with Ramsey’s
theorem, should be defined as (∀k ≥ 2) TSnk . By contrast, TSnω is the statement of the Thin

Set Theorem for colorings f : [N]n → ω, i.e., colorings employing infinitely many colors. Using
Proposition 5.2, is not difficult to see that TSn<∞ is equivalent to TSn2 under strong Weihrauch

reducibility.
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(2) If j, k ≥ 2 with j < k, then RCA0 ` TSnj → TSnk .
(3) If j ≥ 2, then TSnω ≤sW TSnj .
(4) If j ≥ 2, then RCA0 ` TSnj → TSnω.

Proof. We prove (1) and (2) (the argument is uniform and can easily be formalized
in RCA0). Let j, k ≥ 2 with j < k. Fix f : [ω]n → k. Define g : [ω]n → j by letting

g(x) =

{
f(x) if f(x) < j − 1,

j − 1 otherwise

for all x ∈ [ω]n. Now suppose S ⊆ ω is an infinite thin set for g, say with c < j
such that g(x) 6= c for all x ∈ [S]n. If c < j − 1, then f(x) 6= c for all x ∈ S, while
if c = j − 1 then f(x) < j − 1 for all such x, so in particular f(x) 6= j − 1 = c.
Either way, c witnesses that S is an infinite thin set for f . The proof of (3) and (4)
similarly proceeds by collapsing all colors greater then j − 1 to be j − 1. �

Thus, we have the following chain for any n:

TSnω ≤sW . . . ≤sW TSn4 ≤sW TSn3 ≤sW TSn2 = RTn2 ≤sW RTn3 ≤sW RTn4 ≤sW . . .

By Theorem 3.1, none of the reductions to the right of the equals sign reverse. We
shall see in Theorem 5.27 that the same is true of the left side when n = 1.

5.1. General reverse mathematics results. Before discussing uniform impli-
cations and sequential forms, we prove several results about the principles TSnk .
General questions about the strength of TSnk were asked by J. Miller at the Reverse
Mathematics: Foundations and Applications Workshop in Chicago in November,
2009. Another recent investigation of these principles appears in Wang [32].

Proposition 5.3. For each m,n, k ≥ 1, we have RCA0 ` TSmn+1
kn → TSm+1

k .

Proof. The result is trivial for n = 1, so we may assume n ≥ 2. Let f : [N]m+1 → k
be a coloring. Define g : [N]mn+1 → kn by

g(x,y0, . . . ,yn−1) = 〈f(x,y0), . . . , f(x,yn−1)〉

for all x ∈ ω and y0, . . . ,yn−1 ∈ [ω]m with x < y0 < · · · < yn−1.
Suppose H is an infinite set that avoids the color 〈a0, . . . , an−1〉 < kn for the

coloring g. Choose the greatest i < n for which there are infinitely many x ∈ H
such that

(4) f(x,y0) = a0, . . . , f(x,yi) = ai

for some y0, . . . ,yi ∈ [H]m with x < y0 < · · · < yi. By assumption on the color
avoided by H, it must be that i < n− 1.

By choice of i, we can remove finitely many elements from H if necessary to
ensure that if x < y0 < · · · < yi satisfy (4) above, then there is no y > yi such
that f(x,y) = ai+1. Let H ′ be H with these finitely many elements deleted.

Now using ∆0
1 comprehension, we can define a sequence 〈xj : j ∈ ω〉 of elements

of H ′ so that for each j, (4) holds for some y0, . . . ,yi ∈ [H ′]m with

(5) xj < y0 < · · · < yi < xj+1.

Let R ⊆ H ′ be the range of this sequence, which exists because the sequence is
increasing. We claim that R avoids the color ai+1 for f . Indeed, suppose f(x,y) =
ai+1 for some x ∈ R and y ∈ [R]m with x < y. Let y0, . . . ,yi ∈ [H ′]m be the
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witnesses for having chosen x to belong to our sequence. Then by (5), it follows
that yi < y, which contradicts the definition of H ′. �

Setting k = 2, we obtain:

Corollary 5.4. For each m,n ≥ 1, we have RCA0 ` TSmn+1
2n → RTm+1

2 .

The proof of Proposition 5.3 is not entirely uniform. Indeed, one assumes Σ0
2-

induction in order to prove that ∀n(TSmn+1
kn → TSm+1

k ). Similarly, the proof does

not give a Weihrauch reduction of TSm+1
k to TSmn+1

kn .

Since RT3
2 is equivalent to arithmetic comprehension, we also get that TS2n+1

2n

implies arithmetic comprehension for each n ∈ ω. However, we can do better by
carefully choosing the coloring.

Proposition 5.5. For each n ≥ 1, we have RCA0 ` TSn+2
2n → ACA.

Proof. We will show how to reduce finding the range of an injection f : N→ N to
an instance g : [N]n+2 → 2n of TSn+2

2n . Namely, for each i < n, define the coloring
gi : [N]n+2 → 2 by

gi(x0, . . . , xn+1) =

{
1 (∃z)[xi < z < xi+1 ∧ f(z) < x0],

0 (∀z)[xi < z < xi+1 → f(z) ≥ x0],

and let g = 〈g0, . . . , gn−1〉. Let H be an infinite set that avoids at least one color
b = 〈b0, . . . , bn−1〉 < 2n. Let m < n be the largest index for which there are
x0 < · · · < xn+1 in H with gi(x0, . . . , xn+1) = bi for all i < m, and assume without
loss of generality that such x0, . . . , xn+1 can be found in every tail of H.

To determine whether some number y is in the range of f , choose some elements
x0 < · · · < xn of H with y < x0 and gi(x0, . . . , xn) = bi for i < m. Note that
f(z) ≥ x0 for all z > xm, otherwise we could pick y0 = x0 < · · · < ym = xm <
ym < · · · < yn+1 in H to realize at least m+ 1 bits of b, contradicting the choice of
m. Therefore, y is in the range of f if and only if y ∈ {f(0), . . . , f(xm)}. �

By contrast, Wang [32, Theorem 3.1] has shown that for every n, there is a k
such that TSnk does not imply ACA over RCA0. Thus, the number of colors above
is important.

Proposition 5.6 (RCA0). For all n ≥ 1, we have RCA0 ` TSn+1
3n → RT1

<∞.

Proof. By Proposition 5.3, it suffices to show that TS23 implies RT1
<∞. Given

f : N→ k, define g : [N]2 → 3 by

g(x, y) =


0 if f(x) = f(y),

1 if f(x) > f(y),

2 if f(x) < f(y),

for all x < y. Suppose that H is an infinite set that avoids one of the three colors.
Note that H cannot avoid the color 0, since otherwise the restriction of f to H

would be an injection, which is impossible since H is infinite. So suppose H avoids
the color 1, so that the restriction of f to H is then non-decreasing. Any bounded
non-decreasing function on an infinite set eventually stabilizes to a maximal value
m. Then f−1(m) is an infinite homogeneous set for f . The case when H avoids
color 2 is symmetric. �
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5.2. Results for triples. In order to properly state the strong Weihrauch reduc-
tion form of the next few results, we introduce an operation on Π1

2 statements that
essentially corresponds to composition of partial multi-valued functions in the con-
text of computable analysis. Given Π1

2 statements P and Q and a Turing functional
Θ, we define Q •P to be the Π1

2 principle whose instances are instances A of P and
whose solutions are pairs 〈B,C〉 where B is a P-solution for A and C is a Q-solution
for the instance Θ(A,B) of Q. In other words, Q • P first takes an instance A of P
and seeks a solution B, then uses A and B to construct an instance Θ(A,B) of Q
and seeks a solution C. The Turing functional Θ is only a matter of convenience
in order to translate the output of P into an input for Q and it is usually obvious
from the context what Θ needs to be. (The notion here essentially corresponds to
function composition from the context of computable analysis, although because of
the use of the functional Θ, and because solutions here are pairs, the two are not
formally the same. Compare this with the compositional product in the Weihrauch
lattice, as defined in [6, Definition 4.1].)

To illustrate this definition, consider for example the implication of RT2
2 by

SRT2
2 + COH from Cholak, Jockush and Slaman [9, Theorem 12.5]. Their proof

that SRT2
2 + COH implies RT2

2 breaks into three steps, as follows. A given coloring
f : [ω]2 → 2 is first transformed into the instance 〈Rx : x ∈ ω〉 of COH given by
Rx = {y : y > x ∧ f(x, y) = 0}; a solution C = {c0 < c1 < . . .} to this instance
is then transformed, along with f , into the stable coloring g : [ω]2 → 2 given by
g(x, y) = f(cx, cy); and finally, a homogeneous set G for g is transformed into the
homogeneous set H = {cx : x ∈ G} for f . Thus, by letting Θ be the functional
that defines g from C and f as here, we see that this argument corresponds to a
reduction RT2

2 ≤sW SRT2
2 •COH. The key property used here is that the restriction

of a computable coloring to a cohesive set is stable, and thus keeping the output C
of COH in the composition is essential.

We know that TS32 implies arithmetic comprehension, and Corollary 5.4 shows
that TS34 implies RT2

2. This leaves a gap around TS33. Wang [32, Corollary 3.2] has
shown that TS33 does not imply ACA. The next result gives a little more information.

Proposition 5.7. RCA0 ` TS33 → RT2
<∞.

Proof. Let f : [N]2 → k be any finite coloring. Let g : [N]3 → 3 be defined by

g(x, y, z) = |{f(x, y), f(x, z), f(y, z)}| − 1.

By TS33 there is an infinite set H that omits one of the three possible colors.
Since every infinite set contains at least one homogeneous triangle for f , the set

H cannot omit color 0 for g. If H omits color 1 for g, then pick x ∈ H and consider
the sets Hi = {y ∈ H : y > x ∧ f(x, y) = i} for i < k. Since H omits triples which
take exactly two f -colors, each Hi is homogeneous with color i. By BΠ0

1, which
follows from RT2

2 and hence from TS33, one of these sets must be infinite. Thus we
have an infinite homogeneous set for f .

The only remaining case is when H omits color 2 for g. In that case, consider
the coloring

h(x, y, z) =


0 if f(y, z) = f(x, y) = f(x, z),

1 if f(y, z) 6= f(x, y) = f(x, z),

2 if f(x, z) 6= f(x, y) = f(y, z),

3 if f(x, y) 6= f(x, z) = f(y, z),
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where x < y < z are elements of H. Since H omits color 2 for g, these four cases
are exhaustive. By TS33, there is an infinite set G ⊆ H that omits two colors for h.

Since every infinite set contains a homogeneous triangle, color 0 cannot be among
the colors omitted by G. If 1 is among the two colors omitted by G, then pick x ∈ G
and consider the sets Gi = {y ∈ G : y > x ∧ f(x, y) = i} for i < k. Since G omits
color 1 for h, each Gi is homogeneous of color i. By BΠ0

1, one of these sets Gi must
be infinite and thus we have an infinite homogeneous set for f .

The only remaining case is when G omits both colors 2 and 3 for h. In that case,
G is min-homogeneous for f , i.e., f(x, y) = f(x, z) for all x < y < z in G. We may
then unambiguously define the coloring f̄ : N → k by f̄(x) = f(x, y) where x < y
in G. By BΠ0

1, one of the sets Gi = {x ∈ G : f̄(x) = i} must be infinite, and this
Gi is an infinite homogeneous set for f of color i. �

Because this argument compounds multiple uses of TS33 and its consequences,
Proposition 5.7 does not lead a direct reduction of RT2

<∞ to TS33. Carefully go-
ing through the proof and using the • composition described above, we obtain the
following cumbersome reduction:

RT2
k ≤sW RT1

k • TS
3
3 • TS

3
3 • RT

1
k • TS

3
3.

It is also unclear how strong TS3k is for k ≥ 4. The next three results give some
non-trivial lower bounds for k = 6, 7, 8.

For these results, we use the following related notions:

Definition 5.8. A coloring f : [N]2 → k is transitive if for all i < k and all
x < y < z, whenever f(x, y) = f(y, z) = i then f(x, z) = i. A coloring is semi-
transitive if this property holds for all but possibly one i < k.

A coloring f : [N]2 → k is semi-hereditary if for all i < k except possibly one,
whenever x < y < z and f(x, z) = f(y, z) = i then f(x, y) = i.

A coloring f : [N]2 → k is semi-trivial if for all i < k except possibly one, the
set {y ∈ N : x < y ∧ f(x, y) = i} is homogeneous for f for each x (in a possibly
different color).

These are associated with restrictions of RT2
2.

Statement 5.9 (ADS). Every transitive coloring f : [N]2 → 2 has an infinite ho-
mogeneous set.

Statement 5.10 (CAC). Every semi-transitive coloring f : [N]2 → 2 has an infinite
homogeneous set.

Statement 5.11 (SHER). Every semi-hereditary coloring f : [N]2 → 2 has an
infinite homogeneous set.

Statement 5.12 (STRIV). Every semi-trivial coloring f : [N]2 → 2 has an infinite
homogeneous set.

The restrictions CAC and ADS were studied by Hirschfeldt and Shore [19], who
showed that ADS is implied by CAC over RCA0, and that both are strictly weaker
than RT2

2. Recently, Lerman, Solomon and Towsner [26, Section 2] have shown that
ADS does not imply CAC over RCA0. (The usual definitions of these principles, as
given in Section 1 of [19], are equivalent to the ones above by Theorems 5.2 and 5.3
of [19], respectively.) The restriction SHER was studied by Dorais (unpublished),
who showed that it follows from ADS. It is unknown whether SHER implies ADS



24 DORAIS, DZHAFAROV, HIRST, MILETI, AND SHAFER

over RCA0. The last restriction, STRIV, is equivalent to the infinite pigeonhole
principle RT1

<∞ over RCA0. However, the proof of STRIV from RT1
<∞ is not uniform

and hence there does not appear to be a strong Weihrauch equivalence between
STRIV and RT1

<∞. CAC, ADS, SHER all imply STRIV over RCA0 and none of those
implications reverse.

We now prove a number of implications between Π1
2 principles in RCA0 that

can also be presented as strong Weihrauch reductions between compositions of
Π1

2 principles. To properly state the relevant reductions, we need the alternative
product [P,Q] of Π1

2 principles P and Q. An instance of [P,Q] is a either a pair
〈0, A〉 where A is an instance of P or a pair 〈1, B〉 where B is an instance of Q;
a corresponding solutions are, respectively, solutions to the instance A of P or
solutions to the instance B of Q. This is indeed a product since P,Q ≤sW [P,Q]
but it is not always equivalent to the parallel product 〈P,Q〉. In fact, [P,Q] is the
least upper bound of P and Q in the strong Weihrauch preordering. In particular,
[P,P] is always strong Weihrauch equivalent to P. (See Blass [3] for a discussion
of these two products in a broader setting. The alternative product is called the
co-product in the Weihrauch lattice, and was originally introduced in this context
by Pauly [28].)

Proposition 5.13. RT2
2 ≤sW [STRIV,CAC,SHER] • TS38 and RCA0 ` (TS38 +

CAC)→ RT2
2.

Proof. We argue in RCA0. Let f : [N]2 → 2 be a coloring. Define the coloring
g : [N]3 → 8 by

g(x, y, z) = 〈f(y, z), f(x, z), f(x, y)〉,
for all x < y < z. By TS38, we know that there is an infinite set H that avoids one
of the eight possible colors for g.

The proof now divides into cases according to which color is avoided. Call this
color c.

Case 1. If c = 〈0, 0, 0〉 or c = 〈1, 0, 0〉, then for every x ∈ H, the set Hx = {y ∈
H : y > x ∧ f(x, y) = 0} is homogeneous for f (with color 1 or 0, respectively).
If c = 〈1, 1, 1〉 or c = 〈0, 1, 1〉, then for every x ∈ H, the set Hx = {y ∈ H : y >
x∧ f(x, y) = 1} is homogeneous for f (with color 0 or 1, respectively). In all these
cases, appliying STRIV gives an infinite homogeneous set for f .

Case 2. If c = 〈0, 1, 0〉 or c = 〈1, 0, 1〉, then f is semi-transitive on H. Applying
CAC gives an infinite homogeneous set for f .

Case 3. If c = 〈0, 0, 1〉 or c = 〈1, 1, 0〉, then f is semi-hereditary on H. Applying
SHER gives an infinite homogeneous set for f . �

Proposition 5.14. RT2
2 ≤sW [STRIV,ADS,SHER] • TS37 and RCA0 ` (TS37 +

ADS)→ RT2
2.

Proof. The construction is basically the same as that of Proposition 5.13, with the
exception that the dual pair of colors 〈0, 1, 0〉 and 〈1, 0, 1〉 are merged into one. Any
infinite set H that avoids both of these colors is transitive for f , so ADS suffices to
give an infinite homogeneous set for c. �

Proposition 5.15. RT2
2 ≤sW [STRIV,SHER] • TS36 and RCA0 ` (TS36 + SHER) →

RT2
2.
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Proof. The construction is basically the same as that of Proposition 5.13, with
the exception that the pairs of colors 〈0, 1, 0〉, 〈1, 1, 0〉 are merged into one, and
similarly for the dual pair 〈1, 0, 1〉, 〈0, 0, 1〉. Then SHER suffices to give an infinite
homogeneous set for f these two cases. �

5.3. Sequential forms. From TSnk we can, in accordance with Statement 2.10,
form the sequential version SeqTSnk . Surprisingly, the sequential forms of these
weaker thin set principles can still code ∅(n) just as SeqRTnk did in Lemma 3.2. We
need the following theorem of Kummer.

Theorem 5.16 (Kummer [25], p. 678). Fix k ≥ 2, and let A,B ⊆ ω be arbitrary.
Suppose g is a computable function such that, for all x ∈ [ω]k−1, the B-c.e. set
WB
g(x) is a proper subset of k and contains |x ∩A|. Then A is computable in B.

Corollary 5.17. For all n ≥ 1 and all k ≥ 2, there is a computable instance of
SeqTSnk , every solution to which computes ∅(n).

Proof. The proof is somewhat similar to that of Lemma 3.2, but our argument here
is slightly more delicate on account of needing to fit the rather unique conditions
of Kummer’s theorem. We define a computable sequence 〈fx : x ∈ [ω]k−1〉 of k-
colorings of [ω]n to serve as the desired instance of SeqTSnk . Let h be a {0, 1}-valued
computable function such that

∅(n) = {i ∈ ω : lim
y0
· · · lim

yn−1

h(i, y0, . . . , yn−1) = 1},

and for each x ∈ [ω]k−1 set

fx(y) = |{i ∈ x : h(i, y0, . . . , yn−1) = 1}|

for all y = 〈y0, . . . , yn−1〉 ∈ [ω]n.

Suppose we are given ~H = 〈Hx : x ∈ [ω]k−1〉 such that each Hx is an infinite

thin set for fx. That is, ~H is a solution to the instance 〈fx : x ∈ [ω]k−1〉. Let g be
a computable function such that for all x ∈ [ω]k−1,

W
~H
g(x) = {c < k : (∃y ∈ [Hx]n)[fx(y) = c]}.

Since it is thin, Hx necessarily avoids some c < k, so W
~H
g(x) is a proper subset of

k. We claim that |x ∩ ∅(n)| ∈ W ~H
g(x), whence it will follow by Theorem 5.16 that

∅(n) ≤T ~H, as desired.
To prove the claim, fix x ∈ [ω]k−1. For each i ∈ x, we have that

(∃s0)(∀y0 > s0) · · · (∃sn−1)(∀yn−1 > sn−1) [h(i, y0, . . . , yn−1) = ∅(n)(i)]

by definition of the limit. Let w0, . . . , wn−1 be Skolem functions for this definition,
so that for each i,

(∀y0 > w0(i)) · · · (∀yn−1 > wn−1(i, y0, . . . , yn−2)) [h(i, y0, . . . , yn−1) = ∅(n)(i)].

We define a sequence s0 < y0 < s1 < y1 · · · < sn−1 < yn−1 with each sj ∈ ω and
each yj ∈ Hx, as follows. Let s0 = maxi∈x{w0(i)}, and suppose sj has been defined
for some j < n. Let yj be the least element of Hx greater than sj , and if j < n− 1,
let sj+1 = maxi∈x{wj+1(i, z0, . . . , zj) : (∀k ≤ j)[zk ≤ yk]}.

By construction, we have that h(i, y0, . . . , yn−1) = ∅(n)(i) for all i ∈ x. Hence,
by definition, fx(y0, . . . , yn−1) = |x∩ ∅(n)|. But as the yj were all chosen from Hx,
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this means that |x ∩ ∅(n)| is not a color omitted by Hx. This is what was to be
shown. �

Unfortunately, the proof of Kummer’s theorem is not uniform and hence Corol-
lary 5.17 does not lead to a Weihrauch reduction.

Since each TSnk is clearly total and has finite tolerance, we may now apply the
Squashing Theorem to obtain the following consequence.

Corollary 5.18. For all n ≥ 1 and j, k ≥ 2, we have 〈TSnk ,TS
n
j 〉 �W TSnj .

Proof. By Proposition 5.2, TSnj ≤sW TSn2 ≤sW RTn2 . Hence, as described in the
proof of Lemma 3.3, every computable instance of TSnk has a solution H with
H ′ ≤T ∅(n). As there is a computable instance of SeqTSnk all of whose solutions
compute ∅(n) by Corollary 5.17, it follows that SeqTSnk �W TSnj . The result follows
by applying Theorem 2.5. �

We have shown that for each k ≥ 2, we can code ∅(n) into a computable instance
of SeqTSnk . However, ∅(n) is not able to solve all computable instances. We first
prove this in the case when n = 1.

Theorem 5.19. For each k ≥ 2, there exists a computable instance of SeqTS1k with
no ∅′-computable solution.

Proof. Using the Limit Lemma, we may fix a computable g : ω4 → 2 such that for
every ∆0

2 set D ⊆ ω2, there exists an e ∈ ω such that:

• for all 〈i, a〉 ∈ D, we have lims g(e, i, a, s) = 1;
• for all 〈i, a〉 /∈ D, we have lims g(e, i, a, s) = 0.

Concretely, we may let

g(e, i, a, s) =

{
1 if ΦKs

e,s(i, a) ↓ = 1,

0 otherwise.

We now define our computable instance 〈fi : i ∈ ω〉 of SeqTS1k. We build our
sequence so that each fi is defined independently of the others in such a way that
fe defeats the eth potential ∆0

2 solution D = 〈Di : i ∈ ω〉 by ensuring that De is
not an infinite thin set for fe.

Construction. For a given i, we define fi(s) recursively in stages based on s. Fix
i ∈ ω, and suppose that we are at stage s so that we have defined fi(t) for all
t < s. Let Ai,s be the approximation to those elements in the ith column of the ith
possible ∆0

2 set at stage s, i.e.,

Ai,s = {b ∈ ω : b < s and g(i, i, b, s) = 1}
Let Ci,s = {fi(b) : b ∈ Ai,s} be the set of colors used by the elements of this
approximation. We have two cases.

Case 1. Suppose that there exists n < k such that n /∈ Ci,s, i.e., suppose that some
color is not used on the approximation. We then define fi(s) to be the least n < k
such that n /∈ Ci,s.
Case 2. Suppose that Ci,s = {0, 1, . . . , k− 1}. For each n < k, let bn,s < s be least
such that fi(bn,s) = n, i.e., bn,s is the first place where color n occurs. Fix ` < k
such that b`,s = max{bn,s : n < k}, i.e., pick the color whose first occurrence is as
late as possible. Define fi(s) = `.
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Verification. We now verify that there is no ∆0
2 solution for 〈fi : i ∈ ω〉. Suppose

that D = 〈Di : i ∈ ω〉 is a ∆0
2 set. Fix e ∈ ω such that:

• for all 〈i, b〉 ∈ D, we have lims g(e, i, b, s) = 1;
• for all 〈i, b〉 /∈ D, we have lims g(e, i, b, s) = 0.

In particular, we have the following:

• for all b ∈ De, we have lims g(e, e, b, s) = 1;
• for all b /∈ De, we have lims g(e, e, b, s) = 0.

If De is finite, then 〈Di : i ∈ ω〉 is not a solution to 〈fi : i ∈ ω〉 by definition.
Assume then that De is infinite. Let Ce = {fe(b) : b ∈ De} be the set of colors that
occur on De. We claim that Ce = {0, 1, . . . , k− 1}. Suppose not. For each n ∈ Ce,
let bn be the least element of De such that fe(bn) = n. Let m = max{bn : n ∈ Ce}.
Fix t > m such that the approximation to each element of the eth column below
m has settled down, i.e., such that:

• for all b ∈ De with b ≤ m, we have g(e, e, b, s) = 1 whenever s ≥ t;
• for all b /∈ De with b ≤ m, we have g(e, e, b, s) = 0 whenever s ≥ t.

Now take any s ≥ t. Notice that Ae,s ∩ {0, 1, . . . ,m} = De ∩ {0, 1, . . . ,m}, hence
Ce ⊆ Ce,s and bn,s = bn for all n ∈ Ce. Furthermore, if ` /∈ Ce and b`,s is defined,
then we must have b`,s > m. Now if Ce,s 6= {0, 1, . . . , k − 1}, then we enter Case 1
of the construction and define fe(s) /∈ Ce,s, so fe(s) /∈ Ce. On the other hand, if
Ce,s = {0, 1, . . . , k − 1}, then since bn,s = bn ≤ m for all n ∈ Ce and bn,s > m for
all n /∈ Ce, it follows that the ` chosen in Case 2 of the construction must satisfy
` /∈ Ce, so fe(s) /∈ Ce.

We have therefore shown that fe(s) /∈ Ce for all s ≥ t. Since De is infinite,
we may fix b ∈ De with b ≥ t. We then have have fe(b) /∈ Ce, contradicting the
definition of Ce. �

Corollary 5.20. For each n ≥ 1 and k ≥ 2, there exists a computable instance of
SeqTSnk with no ∅(n)-computable solution.

Proof. We prove the following stronger claim: For each n ≥ 1, k ≥ 2, and X ∈
2ω, there exists an X-computable instance of SeqTSnk with no X(n)-computable
solution. We fix k and prove this result by induction on n. The base case of
n = 1 is given by the relativized version of Theorem 5.19. Suppose that we know
the result for a fixed n ≥ 1. Let X ∈ 2ω be arbitrary. By induction, we may
fix an X ′-computable instance 〈gi : i ∈ ω〉 of SeqTSnk with no X(n+1)-computable
solution. By the relativized Limit Lemma, we may fix an X-computable sequence
〈fi : i ∈ ω〉 such that gi(x) = lims fi(x, s) for all i and all x. We may assume that
fi : [ω]n+1 → k for each i, and hence that 〈fi : i ∈ ω〉 is an X-computable instance
of SeqTSn+1

k . Now if 〈Ti : i ∈ ω〉 is a solution to 〈fi : i ∈ ω〉, then each Ti is an
infinite thin set for fi, so each Ti is an infinite thin set for gi, and hence 〈Ti : i ∈ ω〉
is a solution to 〈gi : i ∈ ω〉. Therefore, 〈fi : i ∈ ω〉 has no X(n+1)-computable
solution. This completes the induction. �

After relativization and translation into the language of Weihrauch reducibility, we
obtain the following.

Corollary 5.21. For each n ≥ 1 and k ≥ 2, SeqTSnk �W TJn.

Here and henceforth, TJn denotes the multi-valued function that sends each set
X to its Turing jump X(n). From the perspective of reverse mathematics, the
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corresponding Π1
2-principles TJn for standard n ≥ 1, are all equivalent to arithmetic

comprehension and hence indistinguishable from each other.

5.4. Infinitely Many Colors. Although the principles SeqTS1k for k ∈ ω appear
to behave similarly with regards to diagonalizing and coding, the situation for
SeqTS1ω is very different. We first prove the following result that contrasts with
Theorem 5.19.

Proposition 5.22. Every computable instance of SeqTS1ω has a ∅′-computable so-
lution.

Proof. Let 〈fi : i ∈ ω〉 be a computable instance of SeqTS1ω. Using ∅′ as an oracle,
we compute a sequence of thin sets 〈Ai : i ∈ ω〉. We define each Ai = {ai,m : m ∈ ω}
independently by using ∅′ to compute an increasing sequence ai,0 < ai,1 < . . . .
Given i, start by asking ∅′ if there exists b ∈ ω such that fi(b) 6= 0. Let ai,0 be the
least such b if one exists, and otherwise let ai,0 = 0. Suppose that we have defined
ai,n. Ask ∅′ if there exists b > ai,n such that fi(b) 6= 0. Let ai,n+1 be least such b
if one exists, and otherwise let ai,n+1 = ai,n + 1. Let

Ai = {ai,n : n ∈ ω}

and notice that 〈Ai : i ∈ ω〉 is ∅′-computable.
Let i ∈ ω. We claim that Ai is thin for fi. If the set {b ∈ ω : fi(b) 6= 0} is

infinite, then Ai ⊆ {b ∈ ω : fi(b) 6= 0}, so Ai is thin for fi. On the other hand, if
{b ∈ ω : fi(b) 6= 0} is finite, then range(fi) is finite, so Ai is trivially thin for fi.
Therefore, 〈Ai : i ∈ ω〉 is a ∅′-computable solution to 〈fi : i ∈ ω〉. �

After relativization and translation into the language of Weihrauch reducibility, we
obtain the following.

Corollary 5.23. SeqTS1ω ≤sW TJ1.

Finally, we have a strong non-coding result for infinitely many colors to contrast
with Corollary 5.17. Recall that given two degrees a and b, the notation a � b
means that every infinite subtree of 2<ω of degree b has an infinite path of degree
at most a. (See [9, pp. 10–11] for some of the basic properties of this relation.)

Theorem 5.24. Every computable instance of SeqTS1ω has a low2 solution. In
fact, if d � 0′, then every computable instance of SeqTS1ω has a solution A such
that deg(A)′ ≤ d.

Proof. Let f = 〈fi : i ∈ ω〉 be a computable instance of SeqTS1ω, and fix d � 0′.
We obtain the solution A = 〈Ai : i ∈ ω〉 generically for the following notion of
forcing, P = (P,≤). An element of P is a pair 〈σ, τ〉 where σ ∈ 2<ω and τ ∈ ω<ω,
such that:

• for all i and all x, if σ(〈i, x〉) ↓= 1 and τ(i) ↓, then σ(〈i, x〉) 6= τ(i);
• for all i, if τ(i) ↓, then the set {x ∈ ω : fi(x) 6= τ(i)} is infinite.

We think of σ as being broken into columns σ = 〈σi : i ∈ ω〉 and as being a finite
initial segment of the resulting A = 〈Ai : i ∈ ω〉. Thus, σ(〈i, x〉) = σi(x), and σi is
a initial segment of Ai. The finite sequence τ says which colors are being omitted
on a given column, i.e., if τ(i) ↓, then the resulting Ai will have the property that
fi(a) 6= τ(i) for all a ∈ Ai. We define 〈σ∗, τ∗〉 ≤ 〈σ, τ〉 if both σ � σ∗ and τ � τ∗.
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From a sufficiently generic sequence of conditions

(6) 〈σ0, τ0〉 ≥ 〈σ1, τ1〉 ≥ · · ·
we can compute the set A =

⋃
i∈ω σi and B =

⋃
i∈ω τi, and A will clearly be

a solution to f . The appropriate level of genericity corresponds to meeting the
following requirements for all e, i ∈ ω:

Qe,i : |Ai| ≥ e;
Ri : B(i) is defined.

We wish to obtain such a sequence with jump of degree at most d, so we also have
the requirement:

Se : A′(e) is forced.

It thus suffices to show that these requirements are d-effectively dense, i.e., that
we can use d to extend a given condition 〈σ, τ〉 to meet a given one of the above
requirements.

First, suppose we wish to meet Qi,e. If τ(i) ↑, we effectively extend σ to σ∗ by
adding e many 1s in the ith column, and only 0s in the other columns. Then 〈σ∗, τ〉
is the desired extension. If τ(i) ↓, we can computably find distinct x0, . . . , xe−1 >
|σi| with fi(x0) 6= τ(i), . . . , fi(xe−1) 6= τ(i). (This is possible because 〈σ, τ〉 is a
condition, so {x ∈ ω : fi(x) 6= τ(i)} is infinite.) We effectively extend σ to σ∗ so
that σ∗i (x0) = · · · = σ∗i (xe−1) = 1, and all other new bits of σ∗ are 0. We then take
〈σ∗, τ〉 for the extension. Clearly, in either case, if A extends σ∗ then A satisfies Qe.

Next, suppose we wish to meet Ri. If τ(i) ↓, we can just keep 〈σ, τ〉, so suppose
otherwise. Since the set F = {x ∈ ω : σi(x) ↓= 1} is finite, so is the set C =
{c ∈ ω : (∃x ∈ F )fi(x) = c}, and we can find a canonical index for it effectively
from i and 〈σ, τ〉. Fix c0, c1 /∈ C with c0 6= c1. Now at least one of the two sets
{x ∈ ω : fi(x) 6= c0} or {x ∈ ω : fi(x) 6= c1} must be infinite. Since these are
two effectively given Π0

2 sets, Lemma 4.2 of [9] implies that we can d-effectively
determine a k ∈ {0, 1} such that {x ∈ ω : fi(x) 6= ck} is infinite. If we let τ∗ be τ
extended so that τ∗(i) = ck, then 〈σ, τ∗〉 is a condition by choice of k, and so we
can take it to be our extension. Clearly, if B extends τ∗ then B(i) is defined.

Finally, suppose we wish to meet Se. Notice that the set of σ∗ � σ that respect
τ , i.e., the set of σ∗ � σ such that 〈σ∗, τ〉 is a condition, is computable and we can
find an index for it as such effectively from e and 〈σ, τ〉. Since d � 0′, we have
that d ≥ 0′, and hence d can determine if there exists such a σ∗ with Φσ

∗

e (e) ↓. If
so, we extend to the condition 〈σ∗, τ〉, and otherwise we keep 〈σ, τ〉. Notice that
so long as A extends σ∗, then in the former case we will have e ∈ A′, while in the
latter we will have e /∈ A′.

The argument is now put together in the usual way. We let 〈σ0, τ0〉 = 〈∅, ∅〉,
and then repeatedly use the density of the requirements to d-effectively produce
the sequence in (6). �

After relativization and translation into the language of Weihrauch reducibility, we
obtain the following.

Corollary 5.25. TJ1 • SeqTS1ω ≤sW WKL • TJ1.

Using the uniform low basis theorem of Brattka, de Brecht, and Pauly [4], we also
obtain the following.

Corollary 5.26. SeqTS1ω ≤sW L2.
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Where the low2 principle L2 is the composition of the inverse function of TJ2 with
the iterated limit operator lim2 in a manner similar to the definition of L in [4].

By looking for splittings instead of forcing the jump, one can also prove a cone-
avoidance theorem saying that if 〈Cj : j ∈ ω〉 is a sequence of non-computable sets,

then every computable instance of SeqTS1ω has a solution A such that Cj �T A for
all j. As in [15, Theorem 3.4], it is also possible to combine these arguments to
produce low2 cone-avoiding solutions to computable instances in the case that the
sequence 〈Cj : j ∈ ω〉 is ∅′-computable. We omit the details, which are standard.

5.5. Weihrauch Reductions for Thin Sets. We are not able to prove an analog
of Theorem 3.1 for TSnk using the Squashing Theorem because we lack an analog of
Proposition 2.1 for thin sets. However, we can give a direct proof that TS1j �W TS1k
when j < k.

Theorem 5.27. For all j, k ≥ 2 with j < k, we have TS1j �W TS1k.

Proof. Suppose instead that TS1j ≤W TS1k, and fix reductions Φ and Ψ witnessing
this fact. We shall build a computable coloring f : ω → j and an infinite thin
set T ⊆ ω for Φ(f) : ω → k such that Ψ(T ) cannot be an infinite thin set for
f . For convenience, we assume that for any finite F ⊆ ω, if Ψ(F )(x) ↓ for some
x ∈ ω then the use of the computation is bounded by maxF . As the construction
will be uniformly computable, we may use the recursion theorem as in the proof of
Proposition 4.7 so as to not have to consider the instance f in the oracle for Ψ.

The idea of the proof is to start by defining f arbitrarily, monitoring the coloring
Φ(f) as it forms alongside, and waiting to find a finite homogeneous set F0 for Φ(f)
that is large enough so that Ψ(F0) contains some number x0. Once this happens,
we change how we define f so that all future numbers have a different color from x0.
In this way, we force any sufficiently large set extending Ψ(F0) to contain numbers
of at least two different colors. We then repeat the process, looking for a finite
homogeneous set F1 > F0 for Φ(f) large enough so that Ψ(F0 ∪ F1) contains some
number x1 colored differently from x0. We then change how we define f again so
that all future numbers have a different color from x0 and from x1. In this way, we
force any sufficiently large set extending Ψ(F0 ∪F1) to contain numbers of at least
three different colors.

Continuing in this way, we build F0 < · · · < Fj−2 such that any sufficiently large
set extending Ψ(

⋃
i<j−1 Fi) contains numbers of all j many colors. Thus, to define

the desired set T , we have only to produce an infinite set extending
⋃
i<j−1 Fi that

is thin for Φ(f). But since each Fi was chosen to be homogeneous for Φ(f), this
coloring assumes at most j − 1 many colors on

⋃
i<j−1 Fi. So, if we let H > Fj−2

be any infinite homogeneous set for Φ(f), then Φ(f) assumes at most j many colors
on

⋃
i<j−1 Fi ∪H, which we take to be T . Then T is thin for Φ(f) since j < k.

We proceed to the formal details.

Construction. We proceed by stages. At stage s, we define an initial segment fs
of f on [0, s]. During the construction, we also define j − 1 many sets F0, . . . , Fj−2
that will be used in the definition of T .

At stage s = 0 we set f0 = ∅, and declare all colors c < j valid.
At stage s > 0, let l ∈ ω be such that we have already defined Fi for each i < l.

Call s an action stage if l < j− 1, and if there exists a finite set F ≤ s and number
x ≤ s such that
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•
⋃
i<l Fi < F ;

• F is homogeneous for Φ(fs−1);
• fs−1(x) is some currently valid color;
• Ψ(

⋃
i<l Fi)(x) ↑ and Ψ(

⋃
i<l Fi ∪ F )(x) ↓= 1.

In this case, let Fl and xl be the least such F and x, respectively, and declare the
color fs−1(x) to no longer be valid. By induction, this leaves at least one valid
color.

Regardless of whether s is an action stage or not, we extend fs−1 to fs by
choosing the least color c < j that is still valid, and letting fs(y) = c for all y ≤ s
on which fs−1 has not yet been defined.

Verification. It is clear that f =
⋃
s fs is a computable j-coloring. We begin with

an observation. Note that there can be no more than j − 1 many action stages,
since the number of Fi defined at the start of such a stage must be fewer than j−1,
and a new Fi is then defined. So, let l ≤ j−1 be the total number of action stages;
we claim that l = j−1. Since the number of valid colors is reduced by one at every
action stage, this implies that there is precisely one color that is permanently valid.

Before proving the claim, we define T . Since each Fi for i < l is homogeneous
for Φ(f), it follows that Φ(f) assumes at most l many colors on

⋃
i<l Fi. Thus if

H > Fl−1 is any infinite homogeneous set for Φ(f), then Φ(f) assumes at most
l + 1 ≤ j < k many colors on

⋃
i<l Fi ∪H. It follows that T =

⋃
i<l Fi ∪H is thin

for Φ(f).
Now to see the claim, let t be 0, or any action stage before the (j−1)st. Seeking

a contradiction, suppose there is no action stage greater than t. In particular, all
the Fi for i < l are defined at or before stage t. If c < j is the least color still valid
at the end of stage t, then all sufficiently large numbers are colored c by f . Thus,
since T is an infinite thin set for Φ(f), it follows that Ψ(T ), being an infinite thin
set for f , contains some number x colored c by f on which Ψ(

⋃
i<l Fi) diverges. But

now if F is a sufficiently long initial segment of H so that Ψ(
⋃
i<l Fi ∪F )(x) ↓= 1,

then any stage s > t with s ≥ F and s ≥ x will be an action stage. The proof is
complete. �

Since the circulation of a pre-print of the present article, Hirschfeldt and Jockusch
have extended the above argument to all n > 1. Their proof will appear in [18].

Theorem 5.28 (Hirschfeldt and Jockusch [18]). For all n > 1 and all j, k ≥ 2 with
j < k, we have TSnj �W TSnk .

6. The Rainbow Ramsey’s Theorem and measure

For our final results, we turn to the rainbow Ramsey’s theorem and further
connections with randomness.

Definition 6.1. Fix n, k ≥ 1.

(1) A coloring f : [ω]n → ω is k-bounded if for each c ∈ ω, there are at most k
many x ∈ [ω]n such that f(x) = c.

(2) A set S ⊆ ω is a rainbow for f if f is injective on [S]n.

Statement 6.2 (Rainbow Ramsey’s Theorem). Given n, k ≥ 1, let RRTnk denote
the statement every k-bounded f : [ω]n → ω has an infinite rainbow. Let RRTn<∞
denote (∀k ≥ 1) RRTnk .



32 DORAIS, DZHAFAROV, HIRST, MILETI, AND SHAFER

Just as for RT1
k and TS1k, every computable instance of RRT1

k has a computable
solution. However, in contrast to the situations for SeqRT1

k and SeqTS1k, every
computable instance of SeqRRT1

k also has a computable solution. In fact, we have
the following stronger fact.

Proposition 6.3. Every computable instance of SeqRRT1
<∞ has a computable so-

lution.

Proof. Let 〈fi : i ∈ ω〉 be a computable instance of SeqRRT1
<∞. We then have that

for each i and each c, the set {x ∈ ω : fi(x) = c} is finite. From this it follows that
for each i and each finite set C ⊆ ω, the set {x ∈ ω : fi(x) ∈ C} is finite. We can
now define a computable sequence 〈Ai : i ∈ ω〉 by choosing the elements of each Ai
recursively so that the color of a new element is distinct from all previous elements
already chosen to be Ai. �

Theorem 6.4 (Csima and Mileti [12], Theorem 3.10). For all k ≥ 1, if X ⊆ ω
is 2-random then every computable k-bounded coloring f : [ω]2 → ω has an infinite
X-computable rainbow.

The proof of this theorem proceeds by constructing a ∅′-computable subtree T
of 2<ω of positive measure, each infinite path through which computes an infinite
rainbow for f . This proof is very nearly uniform. The tree T can be obtained
uniformly ∅′-computably from an index for f , and the reduction from the infinite
paths through T to the infinite rainbows for f is uniform as well. The only non-
uniformity stems from the way 2-random sets pick out infinite paths through T .
We begin by showing that this non-uniformity is essential.

For each i ∈ ω and each bounded coloring f : [ω]2 → ω, let

Sf,i = {S ⊆ ω : Φi(S) is an infinite rainbow for f}.
Let µ denote the uniform measure on Cantor space.

Proposition 6.5. There is no computable function h such that for all i ∈ ω and
all 2-random R ⊆ ω, if Φi is a 2-bounded coloring [ω]2 → ω then Φh(i)(R) is an
infinite rainbow for f .

Proof. First, fix any i ∈ ω. Let w(i) be the least σ ∈ 2<ω, if one exists, such that

(7) Φi(σ)(x) ↓= Φi(σ)(y) ↓= 1

for some x < y. Then, define a coloring fi : [ω]2 → ω by stages, as follows. At stage
s, we define fi on [0, s)×{s}. If w(i) has not yet converged, let fi(z, s) = 〈z, s〉 for
all z < s. Otherwise, choose the least x < y < s satisfying (7) above for σ = w(i),
and define

fi(z, s) =

{
〈x, s〉 if z = x or z = y,

〈z, s〉 else,

for all z < s.
Clearly, fi is 2-bounded for each i. Moreover, if there exists an S ⊆ ω such that

Φi(S) is an infinite rainbow for fi, then w(i) is defined. Say w(i) = σ. Then for the
least x < y satisfying (7), we have fi(x, s) = fi(y, s) for all sufficiently large s, so
x and y cannot belong to any infinite rainbow for fi. In particular, if S � σ then
Φi(S) is not such a rainbow for fi. It follows that

(8) µ(Sfi,i) ≤ 1− 2−|σ| < 1.
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Now note that fi is uniformly computable in i. So let g be a computable function
such that fi = Φg(i) for all i. Seeking a contradiction, suppose a function h as
in the statement exists. By the recursion theorem, we may fix an i ∈ ω such
that Φh(g(i))(S) = Φi(S) for all S ⊆ ω. In particular, Sfi,h(g(i)) = Sfi,i, so by
assumption, Sfi,i contains all 2-random subsets of ω. But since the set of all 2-
random subsets of ω has measure 1, this contradicts (8). �

We wish to know whether Theorem 6.4 carries over to ω applications, i.e.,
whether every computable instance of SeqRRT2

k also has a solution computable
in each 2-random. By the preceding proposition, the most direct way of obtaining
this fails, as the theorem cannot be proved uniformly. Nevertheless, we are able to
give an affirmative answer to the question.

Theorem 6.6. If k ≥ 1 and X ⊆ ω is 2-random, then every computable instance
of SeqRRT2

k has an X-computable solution.

Proof. This is a small adaptation of the proof of Theorem 3.10 in [12], and we refer
to results in that article. Let f = 〈fi : i ∈ ω〉 be a computable instance of SeqRRT2

k,
so fi : [ω]2 → ω is k-bounded for all i. The proof of Proposition 3.3 is uniform, so
we may assume that each fi is normal. When defining ϕf and Tf in Definition 3.7
and Definition 3.8, instead interleave the process of working on the various fi across
the levels of the tree, i.e., at level 〈i, n〉, work on the function fi. Proposition 3.9
still applies so that any 2-random X will compute a path through this combined
tree, and any such path computes a solution to 〈fi : i ∈ ω〉. �

To translate the above result into the language of Weihrauch reducibility or
the language of reverse mathematics, we first need to isolate the assertion of the
existence of 2-randoms as a Π1

2 principle. To do so in a formal setting takes some
care, since this is intrinsically a statement about paths through non-computable
trees. A detailed account of this and associated difficulties in the specific context
of second-order arithmetic is presented in Avigad, Dean, and Rute [2, Section 3],
where they also introduce the principle 2-WWKL as one possible formalization (not
to be confused with the principle q-WWKL discussed in Section 4). Here we shall
content ourselves with the informal definition below (which agrees with theirs in
ω-models) and refer the reader to their paper for technical details.

Statement 6.7 (2-WWKL). For every set X, there is a 2-random set relative to
X.

Thus, after relativization and translation into the language of Weihrauch re-
ducibility, we obtain from Theorem 6.6 the following:

Corollary 6.8. For each k ≥ 1, SeqRRT2
k ≤W 2-WWKL and RCA0 ` 2-WWKL→

SeqRRT2
k.

The following consequence complements a result of Conidis and Slaman [11,
Theorem 2.1 and Corollary 4.2] that RRT2

k does not imply BΣ0
2 over RCA0.

Corollary 6.9. For each k ≥ 1, RT1
2 �W RRT2

k.

Proof. Suppose instead that RT1
2 ≤W RRT2

k. By Proposition 2.11, this would imply
that SeqRT1

2 ≤W SeqRRT2
k. By Lemma 3.2, there is a computable instance of

SeqRT1
2 such that every solution computes ∅′. By Theorem 6.6, every 2-random
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X ⊆ ω computes a solution to every computable instance of SeqRRT2
k. This is

a contradiction because there is 2-random that does not compute ∅′ (in fact, no
2-random computes ∅′). �

For our final result, we exhibit a degree-theoretic difference between SeqRRT2
k

and SeqRRT2
<∞. This contrasts with the situation between SeqRT2

k and SeqRT2
<∞,

i.e., the sequential forms of Ramsey’s Theorem for k many colors and finitely many
colors. Specifically, it is not difficult to see that if X is a set with deg(X) � 0′′

then every computable instance of either of these principles has an X-computable
solution. That this bound is sharp follows by recent work of Wang [31, Section 3.1].

Lemma 6.10. For each rational number q > 0 and each i ∈ ω, there exists a
bounded coloring f : [ω]2 → ω such that µ(Sf,i) < q. Moreover, an index for f as a
computable function can be found uniformly computably from q and i.

Proof. The idea is to elaborate on the proof of Proposition 6.5. For all i, n ∈ ω, we
inductively define w(i, n) to be the least canonical index of a finite subset F of 2<ω

such that

(1) [[F ]] ∩
⋃
m<n[[Dw(i,m)]] = ∅;

(2) µ([[F ]]) ≥ q;
(3) for each σ ∈ F , there exist x < y such that Φi(σ)(x) ↓= Φi(σ)(y) ↓= 1,

and x and y are not used by Dw(i,m) for any m < n, as defined below.

For each σ in F , choose the least x and y satisfying condition 3, and say these are
used by σ and by F .

The coloring f is now defined by stages. At stage s, we define f on [0, s)× {s}.
Choose the least n such that w(i, n) has not yet converged. For each m < n, and
each σ ∈ Dw(i,m), choose the x < y used by σ, and define f(x, s) = f(y, s) = 〈x0, s〉
for the least x0 used by Dw(i,m). (We may assume that if w(i,m) has converged by
stage s then all numbers used by Dw(i,m) are smaller than s.) For z < s not used
by any Dw(i,m), let f(z, s) = 〈z, s〉.

Clearly, f is computable. We claim that it is bounded. To this end, observe that
w(i, n) is defined for only finitely many n, since otherwise

Dw(e,0), . . . , Dw(e,d1/qe)

would determine d1/qe + 1 many disjoint subsets 2ω, each of measure at least q.
So let n be least such that w(i, n) is undefined, and for each m < n, let km be the
number of elements used by Dw(i,m). The only colors used more than once by f
are of the form 〈x0, s〉, where x0 is the least number used by some Dw(i,m), and
in this case, f(x, t) = 〈x0, s〉 only if s = t and x is used by Dw(i,m). Thus, f uses
each such color 〈x0, s〉 at most km many times, implying that f is k-bounded for
k = supm<n km.

Now with n as above, notice that if an S ⊆ ω extends some σ ∈ Dw(i,m) for
m < n, then Φi(S)(x) ↓= Φi(S)(y) ↓= 1 for the x < y used by σ. By construc-
tion, f(x, s) = f(y, s) for all sufficiently large s, so Φi(S) cannot be an infinite
rainbow for f . Thus, any S such that Φi(S) is such a rainbow must lie outside
of

⋃
m<n[[Dw(i,m)]]. But this means that the measure of all such S is less than q,

because otherwise we could find a finite set F satisfying conditions 1, 2, and 3 in
the definition of w, and w(i, n) would be defined. �

Proposition 6.11. There exists a computable instance of SeqRRT2
<∞ such that

not every 2-random X ⊆ ω computes a solution.
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Proof. Let g be a computable function such that

Φg(e,j)(S)(x) = Φe(S)(〈x, 〈e, j〉〉)

for all e, j ∈ ω and all S ⊆ ω. In other words, Φg(e,j)(S) is the restriction of Φe(S)
to the 〈e, j〉th column. For all e, j ∈ ω, apply Lemma 6.10 to get a computable
bounded coloring f〈e,j〉 : [ω]2 → ω such that

µ(Sf〈e,j〉,g(e,j)) < 2−j .

Then 〈fi : i ∈ ω〉 is a computable sequence of colorings, and further, for all e ∈ ω
and S ⊆ ω, if Φe(S) is a sequence of infinite rainbows for the fi, then Φg(e,j)(S) is
an infinite rainbow for f〈e,j〉. Thus for each e, it must be that

µ({S ⊆ ω : Φe(S) is a sequence of infinite rainbows for the fi}) = 0,

for if this measure were at least 2−j then so would µ(Sf〈e,j〉,g(e,j)), which cannot
be. Since the measure of the 2-randoms is 1, it follows that there is a 2-random
X ⊆ ω that computes no sequence of infinite rainbows for the fi. �

After relativization and translation into the language of Weihrauch reducibility, we
obtain the following.

Corollary 6.12. SeqRRT2
<∞ �W 2-WWKL.

7. Questions

We close by listing a few questions left open by our work. Chief among these is
whether the analogue of Theorem 3.1 holds for (general) Weihrauch reducibility.

Question 7.1. If n, j, k ≥ 2 and j < k, is it the case that RTnk �W RTnj ?

Though not our focus here, our results naturally lead to questions about non-
uniform reductions as well. In particular, we can ask the following about a non-
uniform version of Theorem 3.1, which is closely related to Question 5.5.3 of [27].

Question 7.2. If n, j, k ≥ 2 and j < k, does every f : [ω]n → k compute a
g : [ω]n → j, such that every infinite homogeneous set for g computes an infinite
homogeneous set for f?

We also have the following question about thin sets and rainbows.

Question 7.3. Are there analogues of Proposition 2.1 for TSnk and RRTnk?

Appendix A. Equivalence of definitions

In this section, we provide a proof of the equivalence of Definition 1.5 with
the definition of (strong) Weihrauch reducibility employed in computable analysis,
in the limited context of where both reductions make sense. We do not include
here the technicalities particular to that field, and instead focus on the following
primary definition that is used to extend the notion of Weihrauch reducibility to
more specific settings.

Our discussion below will be limited to functions from Cantor space to Cantor
space, but nothing would be lost by considering instead functions on Baire space.

Definition A.1. Let F and G be sets of partial functions 2ω → 2ω.
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(1) F is Weihrauch reducible to G, written F ≤W G, if there exist Turing
functionals Φ and Ψ such that

(∀G ∈ G)(∃F ∈ F) F = Ψ ◦ 〈id, G ◦ Φ〉.

(2) F is strongly Weihrauch reducible to G, written F ≤sW G, if there exist
Turing functionals Φ and Ψ such that

(∀G ∈ G)(∃F ∈ F) F = Ψ ◦G ◦ Φ.

The order of quantifiers here may at first appear to be reversed from that used in
our definition of ≤W and ≤sW. In order to explain this, we shall use the following
notation.

(1) Given a Π1
2 principle P of second-order arithmetic, let FP be the set of all

partial F : 2ω → 2ω whose domain includes the set of instances of P, and
F (A) for each instance A of P is a solution to the that instance.

(2) Given an arithmetically-definable set F of partial functions 2ω → 2ω, let
PF be the Π1

2 principle of second-order arithmetic whose instances are the
members of the intersection of the domains of the functions in F , and the
solutions to any such instance A are the sets F (A) for F ∈ F .

We begin with the following general Galois connection.

Proposition A.2. Let P be a Π1
2 principle of second-order arithmetic, and let F be

an arithmetically-definable set of partial functions 2ω → 2ω with common domain.
Then:

(1) P ≤W PF if and only if FP ≤W F ;
(2) P ≤sW PF if and only if FP ≤sW F .

Proof. We prove (1), the proof of (2) being analogous. First, suppose P ≤W PF
via Φ and Ψ. We claim that Φ and Ψ also witness that FP ≤W F . Indeed, fix any
G ∈ F , and define F = Ψ ◦ 〈id, G ◦ Φ〉. We have only to verify that F ∈ FP. If
A is an instance of P, then Φ(A) is an instance of PF , meaning an element of the
intersection of the domains of the members of P, and so in particular, a member
of the domain of G. Thus, G(Φ(A)) is defined, and by definition of PF , this is a
solution to the instance Φ(A), meaning Ψ(A,G(Φ(A))) is a solution to A. Thus, A
is in the domain of F , and F (A) = Ψ(A,G(Φ(A))) is a solution to A, as needed.

In the other direction, suppose FP ≤W F via Φ and Ψ. Let A be any instance of
P, and so a member of the intersection of the domains of the functions in FP. By the
definition of≤W above, Φ(A) is an element of the domain of every function in F , and
so an instance of PF . Let S be any solution to this instance, so that S = G(Φ(A))
for some G ∈ F , and then let F ∈ FP be as given for G by the definition of ≤W.
We have that F (A) is a solution to A, and F (A) = Ψ(A,G(Φ(A))) = Ψ(A,S). This
completes the proof. �

The proposition allows us to translate results employing Definition 1.5 into re-
sults employing Definition A.1.

Corollary A.3. Let P and Q be Π1
2 principles of second-order arithmetic. Then:

(1) P ≤W Q if and only if FP ≤W FQ;
(2) P ≤sW Q if and only if FP ≤sW FQ.
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Proof. By the proposition, we have that P ≤W PFQ
if and only if FP ≤W FQ.

But it is easily checked that PFQ
= Q. This gives us (1), and the proof of (2) is

analogous. �

Translations in the reverse direction require an additional assumption.

Corollary A.4. Let F and G each be an arithmetically-definable set of partial
functions 2ω → 2ω with common domain. If FPF = F then:

(1) F ≤W G if and only if PF ≤W PG;
(2) F ≤sW G if and only if PF ≤sW PG.

Proof. Again, we only prove (1). By the proposition, we have that F = FPF ≤W G
if and only if PF ≤W PG , as desired. �

The additional assumption above is natural, as it encompasses most results from
computable analysis. Indeed, the primary objects of study in that context are not
reductions between arbitrary sets of functions, but rather, reductions between sets
of realizers of multi-functions. For completeness, we include definitions of these
concepts (see [5, Definition 2.2] for a more technical version better suited for work
with represented spaces).

Definition A.5. Let f : 2ω → 2ω be a partial multi-valued function. A partial
single-valued function F : 2ω → 2ω is a realizer for f , written F ` f , if F (A) ∈ f(A)
for each A in the domain of f .

Notice now that if f : 2ω → 2ω is a partial multi-valued function, then the set
F = {F : F ` f} satisfies FPF = F .
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