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Abstract

We consider two combinatorial principles, ERT and ECT. Both are
easily proved in RCA0 plus Σ0

2 induction. We give two proofs of ERT
in RCA0, using different methods to eliminate the use of Σ0

2 induction.
Working in the weakened base system RCA∗0, we prove that ERT is
equivalent to Σ0

1 induction and ECT is equivalent to Σ0
2 induction.

We conclude with a Weihrauch analysis of the principles, showing
ERT ≡W LPO∗ <W TC∗N ≡W ECT.

In their logical analysis of vertex colorings of hypergraphs, Davis, Hirst,
Pardo, and Ransom [5] isolate the combinatorial principle ERT, and relate
it to the nonexistence of finite conflict-free colorings for a particular hyper-
graph. The principle asserts that for any finite coloring of the natural num-
bers N there is a tail of the coloring such that every color appearing in the
tail appears at least twice in the tail. ERT stands for eventually repeating
tail, and can be formulated as follows.

ERT. If f : N → k for some k ∈ N, then there is a b ∈ N such that for all
x ≥ b, there is a y ≥ b such that x 6= y and f(x) = f(y).

The principle ERT is an immediate consequence of the principle ECT
introduced by Hirst [6]. ECT stands for eventually constant palette tail, and
asserts that for any finite coloring of N there is a tail of the coloring such
that the colors appearing in any final segment of the tail are exactly those
appearing in the entire tail. A more formal version follows.
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ECT. If f : N → k for some k ∈ N, then there is a b ∈ N such that for all
x ≥ b, there is a y > x such that f(x) = f(y).

Both Davis et al. [5] and Hirst [6] work in the usual framework of reverse
mathematics. In particular, they prove equivalences over the subsystem of
second order arithmetic RCA0. This axiom system includes basic natural
number arithmetic axioms, an induction scheme restricted to Σ0

1 formulas
(denoted IΣ0

1), and a recursive comprehension axiom that essentially asserts
that computable sets of natural numbers exist. See Simpson’s book [11] for
more about RCA0 and reverse mathematics. Theorem 6 of Hirst [6] shows that
over RCA0, ECT is equivalent to IΣ0

2, an induction scheme for Σ0
2 formulas.

RCA0 can prove that ECT implies ERT, so RCA0 proves that IΣ0
2 implies ERT.

As we will see in the next section, IΣ0
2 is not necessary in this proof.

1. RCA0 proves ERT

Davis et al. [5] show that IΣ0
2 is not needed in the proof of ERT by deriving

ERT from a restricted form of Ramsey’s theorem and applying a result of
Chong, Slaman, and Yang [3]. There, Ramsey’s theorem is restricted to
stable colorings of pairs, that is to functions f : [N]2 → k such that for all
x, limy→∞ f(x, y) exists. Stable Ramsey’s theorem for pairs and two colors
is denoted by SRT2

2 and can be formalized as follows.

SRT2
2. If f : [N]2 → 2 is stable, then there is an infinite set H ⊂ N and a

color c ∈ {0, 1} such that for all (x, y) ∈ [H]2, f(x, y) = c.

The next result appears as Theorem 11 in Davis et al. [5]. The RCA0 in
parentheses indicates that the proof can be carried out in the formal system
RCA0. For completeness, we give a minimal sketch of the proof.

Lemma 1. (RCA0) SRT2
2 implies ERT.

Proof. Working in RCA0, let f : N→ k be a coloring of N as in the statement
of ERT. Define a coloring of pairs, g : [N]2 → 2 by g(a, b) = 1 if and only if
for some x in the half open interval of natural numbers [a, b), f(x) appears
exactly once in the range of f restricted to [a, b). Because g is stable, by
SRT2

2 there is an infinite homogeneous set H. An argument based on the first
3 · 2k−1 elements of H shows that g is identically equal to 0. Consequently,
the minimum element of H satisfies the requirements of the bound b in the
statement of ERT. (For a more complete proof, see Davis et al. [5]).
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By Corollary 2.6 of Chong, Slaman, and Yang [3], SRT2
2 cannot prove

IΣ0
2, so neither can ERT. Thus although RCA0 + IΣ0

2 proves ERT, the full
strength of IΣ0

2 is not necessary. Using a recent conservation result of Patey
and Yokoyama [9], together with an alternative formalization of ERT, we can
show that RCA0 proves ERT, completely eliminating the use of IΣ0

2.

Lemma 2. (RCA0) The following are equivalent.

(1) ERT.

(2) ERT′ : If f : N → k for some k ∈ N, then there is a number b ∈ N,
a set I ⊂ [0, k) consisting of the range of f on [b,∞), and a witness
set {(xi, yi) | i ∈ I} such that for every z ≥ b, we have f(z) ∈ I,
b ≤ xf(z) < yf(z), and f(z) = f(xf(z)) = f(yf(z)).

Proof. We will work in RCA0. Note that for any f , the number b provided
by ERT′ also satisfies the statement of ERT. Thus ERT follows immediately
from ERT′.

To prove the converse, let f : N→ k and apply ERT to obtain b. The set
I = {j < k | ∃t(t ≥ b ∧ f(t) = j)} exists by bounded Σ0

1 comprehension, a
consequence of RCA0 [11, Theorem II.3.9]. For each i ∈ I, there are at least
two distinct values xi ≥ b and yi ≥ b such that f(xi) = f(yi) = i. Picking
the least such witness pair for each i, recursive comprehension proves the
existence of the witness set {(xi, yi) | i ∈ I}. Routine arguments verify that
b and this witness set satisfy the requirements of ERT′.

Applying the two lemmas and using a result of Patey and Yokoyama [9],
we can easily prove ERT in RCA0, answering a question of Davis et al. [5].
An alternative direct proof of Theorem 3 is included in the next section in
the proof of Theorem 6.

Theorem 3. RCA0 proves ERT.

Proof. (RCA0) By Lemma 1, RCA0 + SRT2
2 proves ERT. Thus, by Lemma 2,

RCA0 + SRT2
2 proves ERT′. By Theorem 7.4 of Patey and Yokoyama [9],

RCA0 + SRT2
2 is a conservative extension of RCA0 for formulas of the form

∀Xϕ(X), where ϕ is Π0
3. ERT′ has this form, so RCA0 proves ERT′. By

Lemma 2, RCA0 proves ERT.

The conservation result of Patey and Yokoyama is a powerful tool for
eliminating the use of Σ0

2 induction in the proofs of combinatorial principles.
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Their result actually holds for Ramsey’s theorem for pairs and two colors,
so it is not necessary to limit ourselves to stable colorings. The principle
ERT′ can be formalized in the form ∀Xϕ(X) where ϕ is Σ0

2. Clearly, we
have made use of less than the full strength of this technique in our example.
On the other hand, if ERT is directly formalized in the form ∀Xθ(X), the
formula θ is Σ0

3, so Patey and Yokoyama’s result does not apply. Lemma 2
is a necessary step in the argument.

2. Reverse mathematics: ERT is IΣ0
1 and ECT is IΣ0

2

In this section, we prove that our combinatorial principles are equivalent to
induction schemes over the weakened base system RCA∗0. The axioms of RCA∗0
are those of RCA0 less the Σ0

1 induction scheme, with the addition of a Σ0
0 in-

duction scheme and function symbols and axioms for integer exponentiation.
The subsystem is described in Chapter X of Simpson’s book [11]. The fol-
lowing lemma incorporates results from an early work of Simpson and Smith
[12]. Note the change in the base system at the beginning of the statement
of the lemma.

Lemma 4. (RCA∗0) The following are equivalent.

(1) IΣ0
1, the Σ0

1 induction scheme.

(2) The universe of total functions is closed under primitive recursion.

(3) Bounded Σ0
1 comprehension.

(4) Bounded Π0
1 comprehension.

Proof. The equivalence of items (1), (2), and (3) are included in Lemma 2.5
of the article of Simpson and Smith [12]. Recursive comprehension proves the
existence of complements of sets, so items (3) and (4) are also equivalent.

For our arguments, it is useful to formalize the concept of a partial func-
tion. Working in RCA∗0, we can define a code for a finite partial function
as a set of ordered pairs f ⊂ [0, k) × N such that for all i, n, and m, if
(i, n) ∈ f and (i,m) ∈ f , then n = m. Using this notion, we can state
another equivalent form of IΣ0

1.

Lemma 5. (RCA∗0) The following are equivalent:
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(1) IΣ0
1.

(2) Finite partial functions have bounded ranges. That is, if f ⊂ k × N is
a finite partial function, then

∃b∀i < k ∀n((i, n) ∈ f → n ≤ b).

Proof. To prove (1) implies (2), working in RCA∗0, assume IΣ0
1 and let f be

a finite partial function contained in k × N. By Lemma 4, we may apply
bounded Σ0

1 comprehension and find the set D = {x < k | ∃y(x, y) ∈ f}. By
recursive comprehension, there is a total function f ′ satisfying

f ′(n) =

{
min{m | (n,m) ∈ f} if n ∈ D
0 otherwise.

By Lemma 4, we may apply primitive recursion to find the summation func-
tion g(n) =

∑n
i=0 f

′(i). The integer g(k−1) is a suitable bound for the range
of f .

To prove the converse, we will use (2) to prove bounded Σ0
1 comprehen-

sion. Let θ(m,n) be a Σ0
0 formula and fix a bound k. We will prove that the

set {m < k | ∃nθ(m,n)} exists. Using recursive comprehension, we can find
the set of pairs

f = {(m,n) | θ(m,n) ∧ ∀y < n¬θ(m, y)}.

Note that f is a partial function from k into N. By (2), there is a bound b for
the range of f . Thus, for all m < k, ∃nθ(m,n) if and only if ∃n ≤ b θ(m,n).
So {m < k | ∃nθ(m,n)} is identical to {m < k | ∃n ≤ b θ(m,n)}, and its
existence follows from recursive comprehension.

We can now show that ERT is equivalent to IΣ0
1 over RCA∗0. Because

RCA∗0 plus IΣ0
1 is RCA0, this provides a direct proof of ERT in RCA0, without

the use of conservation results. Following the proof of the theorem, we will
comment on this as a technique for eliminating IΣ0

2 in proofs of combinatorial
results.

Theorem 6. (RCA∗0) The following are equivalent.

(1) IΣ0
1.

(2) ERT.

5



(3) ∀jERT(j). Here ERT(j) generalizes ERT, requiring that at or after the
bound b, any value of f that appears must appear at least j times.

Proof. To show that (1) implies (2), we could simply cite Theorem 3. We
present a direct proof using sequential applications of bounded comprehen-
sion that will be adapted to prove Theorem 8 below. Working in RCA∗0,
assume IΣ0

1. By Lemma 4, we may apply bounded Σ0
1 comprehension. We

will prove ERT for f : N → k. By bounded Σ0
1 comprehension, we can find

the set of (codes for) non-repeating finite sequences of values less than k
such that the colors appear in this order somewhere in the range of f . More
formally, bounded Σ0

1 comprehension proves the existence of a set S of (codes
for) sequences such that σ ∈ S if and only if

• length(σ) < k,

• ∀i < length(σ) (σ(i) < k),

• ∀i < length(σ)∀j < length(σ) (σ(i) = σ(j)→ i = j),

and there is a finite witness sequence τ such that

• length(σ) = length(τ),

• ∀i < length(τ)∀j < length(τ) (i < j → τ(i) < τ(j)),

• ∀i < length(τ)(f(τ(i)) = σ(i)).

By Lemma 4, we may also use bounded Π0
1 comprehension. Using S as a

parameter and applying bounded Π0
1 comprehension, we can find a subset T

of S consisting of the empty sequence and all those sequences σ such that
the first time the colors appear in the specified order, the last color never
reappears. When selecting the first witness sequence, we assume that for
sequences differing in a single entry, the sequence with the smaller entry
appears first. Thus, σ is in T if and only if σ is empty, or σ ∈ S and
for the first witness sequence τ for σ and any j > length(τ) − 1, f(j) 6=
σ(length(τ) − 1). T is a subset of the finite set of non-repeating sequences
of numbers less than k, so RCA∗0 can answer questions about whether or not
sequences are in T . In particular, we can define a subset T0 ⊂ T of sequences
σ such that no extension of σ is in T and every initial segment of σ is in T .
Suppose σ0 ∈ T0. If σ0 is empty, then every color in the range of f appears
at least twice, and b = 0 is the desired bound for ERT. If σ0 is nonempty, let
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τ0 be the first witness sequence for σ0, and define b = τ0(length(σ0)− 1) + 1.
Because σ0 is in T and none of its extensions are, every color appearing at
or after b must appear at least twice. Summarizing, the bound b satisfies the
requirements of ERT.

Next, we will show that (2) implies (1) by proving the contrapositive.
Suppose RCA∗0 holds and IΣ0

1 fails. By Lemma 5, there is a finite partial
function g ⊂ k × N with an unbounded range. Define the function f : N →
k + 1 by

f(n) =

{
j if j < k ∧ (j, n) ∈ g
k otherwise.

The function f exists by recursive comprehension, and for any b there is an
n > b such that f(n) < k and the value of f(n) appears only once in the
range of f . Thus no b can be a bound for ERT applied to f , and ERT fails.

Because (2) is a special case of (3), to complete the proof of the theorem,
it suffices to show in RCA∗0 that ∀jERT(j) follows from ERT. By our previous
work, IΣ0

1 follows from ERT, so we may work in RCA0. Fix j and suppose
f : N→ k. Our goal is to find a b such that every color appearing at or after
b appears at least j times in the range of f at or after b. Define g : N→ k×j
by setting

g(n) = (f(n),modj|{i < n | f(i) = f(n)}|).

Intuitively, if f takes the value i at locations x0, x1, . . . xj (and nowhere before
or in between), then g(x0) = (i, 0), g(x1) = (i, 1), . . . , g(xj−1) = (i, j − 1),
and g(xj) = (i, 0). Using a bijection between k× j and the natural numbers
less than k · j, we can view g as a function from N into k · j. Let b be a bound
for ERT applied to g. Suppose color i appears at or after b in the range of
f . Let x0 be the first such location. Then for some m < j, g(x0) = (i,m).
Note that x0 is the first location at or after b where g takes this value. By
ERT for g, there is an x1 > x0 such that g(x1) = g(x0). By the definition of
g, there are at least j places in [x0, x1) where f takes the value i. Thus b is
a bound for ERT(j) for f . This completes the proof of (3) from (2) and the
proof of the theorem.

For use in the proof of Theorem 11, note that the set T defined in the
preceding proof can be used to compute the minimum bound satisfying ERT.
Because we are making a computability theoretic argument, we are not re-
stricted to RCA∗0. If every color in the range of f appears at least twice, then
no sequences of length one appear in T0, so σ0 is the empty sequence and
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b = 0 is the minimum bound. Otherwise, define finite sequences σ and τ
as follows. Let σ(0) be the last appearing among colors that appear exactly
once, and let τ(0) be the location where σ(0) appears. Let σ(i + 1) be the
last appearing among colors that appear exactly once after τ(i) if such a
color exists, and let τ(i + 1) be the last location where σ(i) appears. If no
such color exists, terminate the sequences. Routine verifications show that
σ ∈ T0 and that τ is the first witness for σ, so that b = τ(length(σ)− 1) + 1
is a bound for ERT. From the construction, if b′ is any bound for ERT, then
b′ > τ(0), and for i < length(σ), if b′ > τ(i) then b′ > τ(i + 1). Thus b
is minimal. Consequently, the minimum bound can be calculated by listing
T0, calculating the value b for each sequence in T0, and then selecting the
minimum bound.

The existence of the set T in the proof that (1) implies (2) above used
an application of bounded Σ0

1 comprehension followed by an application of
bounded Π0

1 comprehension. Näıvely concatenating the associated formulas
to construct T with a single application results in a use of bounded Σ0

2 com-
prehension, a principle equivalent to IΣ0

2 [11, Exercise II.3.13]. Conversely, it
may be possible to eliminate unnecessary uses of IΣ0

2 in proofs, particularly in
the guise of bounded Σ0

2 or bounded Π0
2 comprehension, by using a sequence

of applications of bounded Σ0
1 or bounded Π0

1 comprehension. In the case
of the preceding proof, the sequential applications can be combined into a
single application, as in the second part of the proof of Theorem 8 below.

We complete this section with a proof of the equivalence of IΣ0
2 and ECT,

showing that ERT is strictly weaker than ECT over RCA∗0. This result differs
from those in the article of Hirst [6] in the use of the weaker base system
RCA∗0. The arguments here sidestep the tree colorings used for [6, Theorem 6]
and in the alternative argument following [6, Theorem 7], which is based on
the conservation result of Corduan, Groszek, and Mileti [4].

Theorem 7. (RCA∗0) The following are equivalent.

(1) IΣ0
2.

(2) ECT.

Proof. To prove that (1) implies (2), assume IΣ0
2 and fix f : N→ k. Because

IΣ0
2 implies IΣ0

1, we may work in RCA0. By bounded Π0
2 comprehension, a

consequence of IΣ0
2 ([11, Exercise II.3.13], plus complementation via recursive

comprehension), the set

T = {j < k | ∀n∃x(x > n ∧ f(x) = j)}
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exists. If j /∈ T , then after some point j ceases to appear in the range of f .
Formally,

∀j < k ∃s∀x((j /∈ T ∧ x > s)→ f(x) 6= j).

By the Π0
1 bounding principle, a consequence of IΣ0

2 [11, Exercise II.3.15],
there is a b such that

∀j < k ∀x((j /∈ T ∧ x > b)→ f(x) 6= j).

In particular, if j /∈ T then for all x ≥ b we have f(x) 6= j. Summarizing, the
range of f at or after b is exactly T , and every value of T appears infinitely
often in the the range. Thus b satisfies the requirements of ECT.

We will prove that (2) implies (1), by a two stage bootstrapping argu-
ment. For the first step, working in RCA∗0, note that ECT implies ERT. By
Theorem 6, we may deduce IΣ0

1, so from now on we can work in RCA0.
For the second step, we will use ECT to prove bounded Π0

2 comprehension,
and then deduce IΣ0

2. Fix k and consider T = {j < k | ∀x∃yθ(j, x, y)} where
θ is a Σ0

0 formula. Our goal is to prove the existence of T . Suppose (j, x, y)
is the nth triple in a bijective enumeration of k × N× N. Define f(n) = j if
y is the first witness that ∀s < x ∃t ≤ y θ(j, s, t), and let f(n) = k otherwise.
The function f exists by recursive comprehension. For any j < k, j appears
infinitely often in the range of f if and only if ∀x∃yθ(j, x, y). Apply ECT to
f and obtain a bound b. Then

T = {j < k | ∃x(x ≥ b ∧ f(x) = j)}.

By bounded Σ0
1 comprehension, a consequence of RCA0 [11, Theorem II.3.9],

the set T exists, proving bounded Π0
2 comprehension. To complete the proof,

recall that by the first step above, we may work in RCA0. By complemen-
tation, bounded Π0

2 comprehension implies bounded Σ0
2 comprehension. Ap-

plying Exercise II.3.13 of Simpson [11], Σ0
2 induction follows from RCA0 and

bounded Σ0
2 comprehension.

3. Weihrauch analysis

The goal of this section is to analyze ERT and ECT using Weihrauch re-
ductions. Because ERT and ECT have number outputs rather than set out-
puts, Weihrauch reducibility yields meaningful results where other forms of
computability-theoretic reducibility would not. We will consider Weihrauch
problems defined by subsets of NN × N. Each problem P can be viewed
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as a multifunction mapping instances I ∈ domain(P ) into solutions S with
(I, S) ∈ P . A problem P is Weihrauch reducible to a problem Q, written
P ≤W Q, if instances of P can be uniformly computably transformed into
instances of Q whose solutions can be uniformly computably transformed
into solutions of the problem P . This last transformation may make use of
the original instance of P . More formally, P ≤W Q if there are computable
functionals Φ and Ψ such that for all I ∈ domain(P ), Φ(I) ∈ domain(Q),
and for all S such that (Φ(I), S) ∈ Q, we have (I,Ψ(I, S)) ∈ P . We write
P ≡W Q if P ≤W Q and Q ≤W P , and write P <W Q if P ≤W Q and
Q 6≤W P .

The relation ≡W is an equivalence relation on the Weihrauch problems.
The equivalence classes are called Weihrauch degrees, and many have well-
known representing problems. For example, many Weihrauch problems are
known to be equivalent to the Weihrauch problem LPO (Limited Principle of
Omniscience). This problem takes as an instance any f ∈ NN, and outputs 0
if ∃nf(n) = 0 and 1 otherwise. For an introduction to Weihrauch reducibility
and many Weihrauch degrees, see the article of Brattka and Gherardi [1] and
the survey of Brattka, Gherardi, and Pauly [2].

Many operators on Weihrauch problems preserve reducibility. For exam-
ple, for a problem P , the problem P n is the result of n parallel applications
of P . The problem P ∗ is the result of an arbitrary finite number of parallel
applications of P . Thus, for each n, we have P n ≤W P ∗. Pauly introduces
the concept of P ∗ in [10] and in Theorem 6.5 shows that P ≤W Q implies
P ∗ ≤W Q∗. Thus ·∗ can be viewed as an operator that preserves Weihrauch
reducibility.

We may view ERT as a Weihrauch problem, where the input is a number
k and a function f : N → k, and the solution is a value b as provided by
ERT, that is,

∀n ≥ b ∃m ≥ b (m 6= n ∧ f(m) = f(n)).

In a similar fashion, ECT can be viewed as a Weihrauch problem. Our goal
is to find a known Weihrauch problems equivalent to ERT and to ECT, and
to separate ERT and ECT in the Weihrauch setting. As a first step, we can
state the following theorem.

Theorem 8. ERT ≡W LPO∗.

Proof. First we show that LPO∗ ≤W ERT. Given k LPO instances f0, . . . fk−1
we define a coloring g : N → k + 1 as follows. For i < k, let g(nk + i) = i
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if and only if fi(n) = 0 and ∀m < n(fi(m) 6= 0). Else, set g(nk + i) = k.
Note that by construction, all colors but k appear at most once in the range
of g. Thus any solution to ERT for g must be an upper bound for the first
occurrence of 0 in the range of any fi, which allows us to solve LPO for each
fi.

For the converse reduction, we can adapt the first part of the proof of
Theorem 6, substituting LPO∗ for the uses of bounded comprehension. Given
f : N → k we can use finitely many parallel applications of LPO to find the
non-repeating sequences of colors in the set S. Simultaneously, we can use
finitely many parallel applications of LPO to find those sequences that appear
and whose last color reappears. Call the set of these sequences T ′. A sequence
is in the set T defined in the proof of Theorem 6 if and only if it is in S and is
not in T ′. Given the set T , we can find the bound b satisfying ERT for f by
the construction in the proof of Theorem 6. This shows that ERT ≤W LPO∗.
Summarizing, ERT ≡W LPO∗.

Next, we turn to the Weihrauch analysis of ECT. The principle Discrete
Choice, denoted CN, takes as an input an enumeration of the complement
of a nonempty set A and outputs an element of A. The article of Neumann
and Pauly [8] introduces and studies TCN, the total continuation of CN. TCN
accepts the enumeration of the complement of any set A, empty or not, and
outputs a number, which will be an element of A if A is nonempty. Clearly,
CN ≤W TCN, and consequently CN ≤W TC∗N. Lemma 5 of Neumann and
Pauly [8] includes LPO∗ <W CN. Concatenating the relations, LPO∗ <W TC∗N.
The next theorem links TC∗N and ECT.

Theorem 9. ECT ≡W TC∗N.

Proof. To see that ECT ≤W TC∗N, suppose the coloring f : N → k is an
instance of ECT. Our goal is to use finitely many applications of TCN to
find a value b such that every color appearing at or after b appears infinitely
often in the range of f . For each i < k construct an enumeration of the
complement of the set

Ai = {n | ∀m ≥ n(f(m) 6= i)}.

Apply TCN to each of these sets to obtain numbers bi such that if the color
i appears only finitely often, then it no longer appears after bi. The number
b = 1 + max{bi | i < k} is a solution to the ECT instance.
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For the converse direction, suppose Ai for 1 ≤ i < k is a finite list of
TCN instances, where for each i, ei enumerates the complement of Ai. Fix a
bijective pairing function (·, ·) : N×k → N, and define the coloring c : N→ k
by

c((s, i)) =

{
i if i 6= 0 ∧ ei(s) = min{n | ∀t < s(ei(t) 6= n)}
0 otherwise.

Apply ECT to c to find a bound b. If some color i 6= 0 appears infinitely
often in the range of c, then Ai = ∅. Otherwise, if i never appears after b
and s is sufficiently large that (s, i) ≥ b, then min{n | ∀t < s(ei(t) 6= n)} is
in Ai. In either case, min{n | ∀t < s(ei(t) 6= n)} is a valid output for TCN
applied to the input Ai.

Summarizing, we have shown that ERT ≡W LPO∗, LPO∗ <W TC∗N, and
TC∗N ≡W ECT, so ERT <W ECT. We have captured the strength of ERT and
ECT in terms of known Weihrauch degrees, and shown that ERT is strictly
weaker than ECT in the Weihrauch degrees.

Both Theorem 8 and Theorem 9 fail for strong Weihrauch reducibility.
In strong reducibility, the solution to the input problem must be computed
from any solution of the transformed problem without further reference to the
original input. Using the notation from the first paragraph of this section,
P ≤sW Q if there are computable functionals Φ and Ψ such that for all
I ∈ domain(P ), Φ(I) ∈ domain(Q), and for all S such that (Φ(I), S) ∈ Q,
we have (I,Ψ(S)) ∈ P .

As an example using familiar problems, we will show that LPO∗ <sW TC∗N.
To see that LPO ≤sW TCN, given an instance f of LPO, construct an instance
g of TCN by setting g(n) = n + 1 if f(n) 6= 0 and g(n) = 0 otherwise. If
the solution for g is positive, then the solution for f is 0. If the solution for
g is 0, then the solution for f is 1. Similarly, sequences of LPO problems
can be transformed to sequences of TCN problems, so LPO∗ ≤sW TC∗N. We
know TC∗N 6≤W LPO∗, so TC∗N 6≤sW LPO∗, and thus LPO∗ <sW TC∗N. The next
theorem summarizes strong reducibility relations for ERT and ECT.

Theorem 10. ERT <sW ECT <sW TC∗N, LPO 6≤sW ECT, and ERT 6≤sW

LPO∗.

Proof. Identity functionals witness ERT ≤sW ECT. We know ECT 6≤W ERT,
so ECT 6≤sW ERT and thus ERT <sW ECT.
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The first paragraph of the proof of Theorem 9 shows that ECT ≤sW TC∗N.
The failure of the converse relation and ECT <sW TC∗N both follow from
LPO 6≤sW ECT, which we prove next.

To see that LPO 6≤sW ECT, suppose by contradiction that Φ and Ψ witness
LPO ≤sW ECT. Suppose f1 and f2 are LPO problems with distinct solutions.
Let Φ(f1) = g1 and Φ(f2) = g2 be the associated ECT problems. Let b1 be a
solution for g1 and b2 be a solution for g2. Then b = max{b1, b2} is a solution
for both g1 and g2. Then Ψ(b) is a solution for both f1 and f2, yielding a
contradiction. Thus LPO 6≤sW ECT. This argument is an example of the
general principle that no multifunction of the form f : X ⇒ N where all f(x)
are upwards closed can compute a non-trivial multifunction g : X ⇒ k for
finite k.

To see that ERT 6≤sW LPO∗, we again argue by contradiction, supposing
that Φ and Ψ witness ERT ≤sW LPO∗. Let f1 be the instance of ECT consist-
ing of a two-coloring that is constantly zero. Suppose Φ(f1) = (g1, . . . , gn)
is a sequence of n instances of LPO. The computation of Φ(f1) uses only a
finite initial segment of f1. Denote the length of this segment by k. The LPO
problems g1, . . . , gn have solutions s1, . . . , sn. Thus Ψ(s1, . . . , sn) computes
a bound m satisfying ERT for f1. Now consider the ERT problem f2, con-
sisting of a two-coloring that contains k +m zeros, followed by a single one,
followed by an infinite string of zeros. Because f2 and f1 agree on the first
k values, Φ(f2) = Φ(f1) = (g1, . . . , gn). These LPO problems are the same
as before, and so still have the solutions s1, . . . , sn. Thus Ψ(s1, . . . , sn) = m
should be a bound satisfying ERT for f2. However, by the construction of f2,
any bound for f2 must be at least k+m+ 1, which is strictly larger than m.
Thus Φ and Ψ cannot be witnesses of ERT ≤sW LPO∗, and we have shown
that ERT 6≤sW LPO∗.

Minor alterations in the formulations of ERT and ECT can result in in-
teresting variations in their Weihrauch strengths. For example, let minERT
denote the principle that outputs the minimum bound satisfying ERT. Define
minECT similarly.

Theorem 11. ERT ≡W minERT and RCA∗0 proves ERT↔ minERT.

Proof. Every solution of minERT is a solution of ERT, so ERT ≤W minERT.
For the converse, apply the second paragraph of the proof of Theorem 8,
using LPO∗ to find the set T . By the note following the proof of Theorem 6,
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T can be used to calculate the minimum bound. Thus minERT ≤W LPO∗.
By Theorem 8, LPO∗ ≤W ERT, so minERT ≤W ERT.

For the reverse mathematics result, RCA∗0 proves minERT implies ERT
trivially. To prove the converse, assume ERT and let f : N → k. By ERT,
we can find a bound b. By Theorem 6, ERT implies Σ0

1 induction, so by
Lemma 4 we can use bounded Σ0

1 comprehension to find Y = {c < k |
∃x(x ≥ b ∧ f(x) = c}, the range of f on [b,∞). By the Σ0

0 least element
principle, there is a least n ≤ b such that for all t ∈ [n, b], either f(t) ∈ Y or
f(t) appears at least twice in [n, b]. This least n satisfies minERT.

In contrast to Theorem 11, we will prove below that ECT <W minECT.
Our proof uses the following characterization of minECT in terms of TCN and
isInfinite. The principle isInfinite takes an infinite binary string as input, out-
puts 1 if it has infinitely many ones, and outputs 0 otherwise. The notation
P ×Q denotes the principle corresponding to solving P and Q in parallel.

Theorem 12. minECT ≡W TC∗N × isInfinite∗.

Proof. To see that minECT ≤W TC∗N× isInfinite∗, let f : N→ k be an instance
of minECT. For each j < k, we can use one instance of isInfinite to determine
if j appears infinitely many times in the range of f , and one instance of TCN
to find the last occurrence of j in the case that j appears only finitely many
times. Adding one to the maximum of the positions for the values that do
not appear infinitely many times yields the desired output for minECT.

The converse relation takes a few steps. By Theorem 9, TC∗N ≡W ECT.
Trivially, ECT ≤W minECT, so TC∗N ≤W minECT.

To see that isInfinite ≤W minECT, let p denote an infinite binary sequence.
Let r be the sequence consisting of a 1 followed by the result of alternating
0 with digits from p. Then minECT(r) is 0 if and only if 1 appears infinitely
many times in p.

Next, we show that minECT is idempotent, or to be more precise, that
minECT × minECT ≤W minECT. Let 〈·, ·〉 : N × N → N be a bijective map
such that if m0 ≤ m1 and n0 ≤ n1, then 〈m0, n0〉 ≤ 〈m1, n1〉. Let p and
q be instances of minECT. Replace p(0) with a color not appearing in the
range of p. This increases the value of minECT by one only in the case
that every color appears infinitely often in the original sequence. We can
now assume that at least one color appears only finitely many times in p.
Make the same adjustment and assumption for q. Define the coloring r by
r(〈n,m〉) = 〈p(n), q(m)〉. If n0 is the last time some color c0 appears in p,
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and n1 is the last time that some color c1 appears in q, then 〈n0, n1〉 is the
last time that 〈c0, c1〉 appears in r. Conversely, if 〈c0, c1〉 appears for the last
time at position 〈n0, n1〉, then c0 must appear last in p at n0, and c1 must
appear last in q at n1. Thus, solutions for p and q can be extracted from the
solution for r.

Iterated applications of the idempotence of minECT (or an application of
Proposition 4.4 of [2]) show that minECT∗ ≤W minECT. Because isInfinite ≤W

minECT, we have isInfinite∗ ≤W minECT∗ ≤W minECT. We have already
shown that TC∗N ≤W minECT, so TC∗N× isInfinite∗ ≤W minECT×minECT ≤W

minECT, completing the proof of the theorem.

The next result assists in separating ECT and minECT.

Theorem 13. isInfinite 6≤W TC∗N.

Proof. Suppose by way of contradiction that Φ and Ψ witness isInfinite ≤W

TC∗N. The function mapping sequences p to the number of instances of TCN
in Φ(p) is computable and therefore continuous. Let σ0 and n be such that
Φ(p) consists of n instances of TCN for all p < σ0, that is for all p extending
σ0. Denote the ranges of these instances by Φ(p)1, . . . ,Φ(p)n. For i ≤ n and
m ∈ N, define Cm,i = {σ < σ0 | m ∈ Φ(σ)i}. Let σ1 be an extension of σ0
such that for each i ∈ [1, n], either every Cm,i is dense below σ1, or there is
an mi such that Cmi,i contains no extension of σ1. Let F be the set of all i
such that mi is defined.

Let p consist of σ1 followed by an infinite sequence of zeros. The sequence
p has finitely many ones. There is a solution (a1, . . . , an) of Φ(p) such that
ai = mi for all i ∈ F . Then Ψ(a1, . . . , an, p) returns 0, with a computation
that depends only on a1, . . . , an and a finite initial segment σ2 of p. Let
g � σ2 be 1-generic. If i /∈ F , then for every m, Cm,i is dense below σ2, so
Φ(g)i = N. Thus, (a1, . . . , an) is a solution of Φ(g). But Ψ(a1, . . . , an, g) =
Ψ(a1, . . . , an, p) = 0 and g has infinitely many ones, yielding the desired
contradiction.

Theorem 14. ECT <W minECT and RCA∗0 proves ECT↔ minECT.

Proof. Trivially, ECT ≤W minECT. To prove the strict inequality, suppose by
contradiction that minECT ≤W ECT. By Theorem 12, isInfinite ≤W minECT,
so by Theorem 9, isInfinite ≤W TC∗N, contradicting Theorem 13.

Shifting focus to reverse mathematics, trivially RCA∗0 proves that minECT
implies ECT. For the converse, assuming ECT, by Theorem 7, we may use Σ0

2
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induction. By the Π0
1 least element principle (a consequence of Σ0

1 induction),
a minimal bound can be found in the first part of the proof of Theorem 7.
Thus, over RCA∗0, ECT is equivalent to minECT.

Theorem 14 demonstrates the ability of Weihrauch reductions to make
finer distinctions in this setting.

Our final result links minECT to principles considered by Hirst and Mum-
mert [7]. The principle C#

max takes as inputs a size n and the enumeration of
the complement of a collection of finite subsets of N, each of size at most n,
and outputs an element of the collection of maximum cardinality.

Theorem 15. minECT ≡W C#
max.

Proof. From Theorem 12 we know minECT ≡W TC∗N× isInfinite∗, so it suffices
to show that

minECT ≤W C#
max ≤W TC∗N × isInfinite∗.

For the first reduction, suppose f : N→ k is an instance of minECT. Consider
the set A of all finite sets F ⊂ k × N such that for each j < k, if (j, n) ∈ F
then n is the maximum natural number such that f(j) = n. Here we are
identifying pairs with their integer codes, so F can be viewed as a subset of
N. The set A is Π0

1 definable using f as a parameter, and its complement
can be enumerated by a function uniformly computable from f . Use this
enumeration and the size k as the input for C#

max, and let F0 be the resulting
maximal output set. Adding 1 to the maximum of the second coordinates of
the elements of F0 yields the desired bound for minECT.

To prove the final reduction, it is useful to note that TCN can be used
to count the numbers of ones in a binary string. Using a bijective pairing
function, given a sequence p : N → 2, we can define an enumeration q of
the (codes for) pairs that omits at most one pair, so that the first coordinate
of that omitted pair corresponds to the number of ones in the range of p,
provided that number is finite. Calculation of q can be viewed as a moving
marker process. Place a marker on (0, 0) and then alternate enumerating
unmarked pairs and calculating values of p until a 1 appears in the range of
p. Move the marker to the first non-enumerated pair with an initial coordi-
nate of 1, enumerate (0, 0), and continue enumerating unmarked pairs and
calculating values of p until the next 1 appears in the range of p. Iterate.
If there are infinitely many ones in the range of p, then q will enumerate all
pairs. If only finitely many ones appear, TCN applied to q will find a pair
with the desired first coordinate.
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To prove that C#
max ≤W TC∗N × isInfinite∗, let f : N → N<N enumerate

the complement of a set A of finite subsets of N, each of size less than k.
For each positive i < k, let ei be an enumeration of all the subsets of N of
size exactly i. For each positive i < k, define the instance pi of isInfinite
as follows. Set pi(n) = 1 if there is a t ≤ n such that f(t) = ei(ct) where
ct = |{j < n | pi(j) = 1}|, and set pi(n) = 0 otherwise. Thus f enumerates
all sets of size i if and only if the range of pi contains infinitely many ones,
and the range of pi contains a total of n ones if and only if ei(n) is the first set
enumerated by ei that is in A. For each pi, let qi be the associated instance of
TCN that counts the ones in the range of pi. Given the solutions to isInfinite
for each pi and to TCN for each qi for all i < k, we can find the maximum j
such that isInfinite fails for pj. If n is the output from TCN for qj, then ej(n)
is a maximal element of A, solving the instance C#

max corresponding to f .

Hirst and Mummert [7] showed that C#
max is Weihrauch equivalent and

provably equivalent over RCA0 to several principles formalizing calculation
of bases for bounded dimension matroids and vector spaces, and finding con-
nected component decompositions of graphs with finitely many components.
Thus minECT is Weihrauch equivalent to all these principles, ECT is strictly
Weihrauch weaker, and all of them are provably equivalent over RCA0.
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