
Leaf Management

Jeffry L. Hirst

December 23, 2018

Abstract
Finding the set of leaves for an unbounded tree is a nontrivial

process in both the Weihrauch and reverse mathematics settings. De-
spite this, many combinatorial principles for trees are equivalent to
their restrictions to trees with leaf sets. For example, let ŴF denote
the problem of choosing which trees in a sequence are well-founded,
and let PK denote the problem of finding the perfect kernel of a tree.
Let ŴFL and PKL denote the restrictions of these principles to trees
with leaf sets. Then ŴF, ŴFL, PK, and PKL are all equivalent to
Π1

1−CA0 over RCA0, and all strongly Weihrauch equivalent.

Introduction

The first section of this paper shows that for unbounded trees, finding leaf
sets is a nontrivial process. The second section describes an algorithm for
transforming trees into trees with leaf sets in such a way that properties
related to infinite paths and perfect subtrees are preserved. The main equiv-
alence results are presented in this section. The paper closes with a section
containing an application to hypergraphs, where the use of a combinatorial
principle restricted to sequences of trees with leaf sets is central to the proof
of a Weihrauch equivalence.

All relevant background information on reverse mathematics can be found
in Simpson’s text [7]. For background on Weihrauch analysis, see the work
of Brattka, Gherardi, and Pauly [3].

Leaf sets

In second order arithmetic settings, a tree is encoded by a set of finite se-
quences of natural numbers that is closed under initial subsequences. For

1

any finite sequence σ, let |σ| denote the length of σ. A leaf in a tree is a
sequence that has no extensions in the tree. For a tree T , let leaf(T) denote
the set of leaves of T . A function b : N→ N is a bounding function for T if
for every σ ∈ T and for every i < |σ|, σ(i) ≤ b(i). If a tree T has a bounding
function, little set comprehension is required to calculate leaf(T).

Proposition 1. (RCA0) If b is a bounding function for the tree T , then
leaf(T) exists.

Proof. Working in RCA0, the sequence σ is a leaf of T if and only if σ ∈ T and
for each j ≤ b(|σ|+1) we have σ_j /∈ T . Thus, the set leaf(T) is computable
using T and b as parameters, and exists by recursive comprehension.

Let bleaf denote the Weihrauch problem that accepts a tree T and a
bounding function b as inputs and outputs the set leaf(T). For a bounded
tree, the preceding proof describes a process for computing the leaf set. Con-
sequently, bleaf is at the lowest level of the strong Weihrauch hierarchy, as
stated in the following proposition.

Proposition 2. bleaf ≡sW 0.

Finding leaf sets for trees without bounding functions is nontrivial. The
formulation of LPO parallelized in the next proposition is the one preceding
Theorem 6.7 of Brattka, Gherardi, and Pauly [3], and the Boolean negation
of Definition 2.6 of Brattka and Gherardi [2].

Proposition 3. (RCA0) The following are equivalent.

(1) ACA0.

(2) For every tree T , the set leaf(T) exists.

(3) L̂PO: If 〈pi〉i∈N is a sequence of sequences of natural numbers, then
there is a function z : N→ {0, 1} such that for each i, z(i) = 1 if and
only if ∃n(pi(n) = 0).

Proof. We will work in RCA0 throughout the proof. To see that (1) implies
(2), note that σ ∈ leaf(T) if and only if σ ∈ T and ∀j(σ_j /∈ T). Thus
arithmetical comprehension proves the existence of leaf(T).

To see that (2) implies (3), assume (2) and let 〈pi〉i∈N be an instance of

L̂PO. Consider the tree T constructed from 〈pi〉i∈N as follows. Every finite

2

sequence of ones is in T . For each n ∈ N the sequence σn consisting of n+ 1
ones followed by a zero is in T . The sequence σ_n j is in T if and only if
pn(j) = 0 and ∀i < j(pn(i) 6= 0). The set of sequences T exists by recursive
comprehension and is a tree because it is closed under initial segments. Apply
(2) to find leaf(T). The function z : N → {0, 1} defined by z(n) = 1 if and
only if σn /∈ leaf(T) exists by recursive comprehension and is a solution of

the instance of L̂PO.
To complete the proof, by Lemma III.1.3 of Simpson [7], it suffices to

use (3) to find the range of an injection. Let f : N → N be an injection.
By recursive comprehension, we can find the sequence 〈pi〉i∈N defined by
pi(n) = 0 if f(n) = i, and pi(n) = 1 otherwise. Apply (3) to find z such that
z(i) = 1 if and only if ∃n(pi(n) = 0). Then the set {i | z(i) = 1} is the range
of f , is computable from z, and so exists by recursive comprehension.

By virtue of our circuitous reverse mathematics treatment, we can easily
prove the related Weihrauch reducibility result. Let leaf denote the problem
that accepts a tree T as input and outputs the leaf set leaf(T).

Proposition 4. leaf ≡sW L̂PO.

Proof. The proof that (2) implies (3) for Proposition 3 also shows that

L̂PO ≤sW leaf. To prove the reverse relation, fix T and let 〈σi〉i∈N be an
enumeration of the sequences in T . For each i, let pi(j) = 0 if σ_i j ∈ T and

let pi(j) = 1 otherwise. If z is a solution to this instance of L̂PO, then it is
also a characteristic function for leaf(T).

Transforming trees

As shown in the previous section, finding the leaf set for an arbitrary tree is a
nontrivial process in both the reverse mathematics and Weihrauch settings.
However, in many cases it is possible to uniformly transform trees into trees
with leaf sets while preserving many Weihrauch equivalences and equivalence
theorems of reverse mathematics. The transformation can be defined using
the following operations on finite sequences. For every σ ∈ N<N, let σ + 1
denote the sequence with exactly the same length as σ such that for all
n < |σ|, (σ+1)(n) = σ(n)+1. For example, 〈1, 3, 5〉+1 = 〈2, 4, 6〉. Similarly,
define σ · 1 so that (σ · 1)(n) = σ(n) · 1. Our main tree transformation is
T ∗ as defined in the following theorem. Näıvely, T ∗ is created by adding 1
to every node of T and attaching a leaf labeled 0 to each positive node.

3

Lemma 5. (RCA0) Suppose T ⊂ N<N is a tree. The following are also trees:
T− = {σ · 1 | σ ∈ T}, T+ = {σ + 1 | σ ∈ T}, and T ∗ = T+ ∪ {σ_0 |
σ ∈ T+}. Furthermore, given a sequence 〈Ti〉i∈N, we can find the sequence
〈T ∗i , leaf(T ∗i)〉.

Proof. Working in RCA0, it is easy to use recursive comprehension to prove
the existence of the sets T−, T+, and T ∗. The initial segments of the shifts
σ · 1 and σ+1 are the shifts of initial segments of σ, so T− and T+ are trees.
A proper initial segment of a sequence in the set {σ_0 | σ ∈ T+} is an initial
segment of an element of T+, so T ∗ is also a tree.

To complete the proof, suppose 〈Ti〉i∈N is a sequence of trees. For each
i, σ ∈ T ∗i if and only if the last element of σ is positive and σ · 1 ∈ Ti, or if
σ = τ_0 and τ · 1 ∈ Ti. Thus recursive comprehension implies that 〈T ∗i 〉i∈N
exists. For each i, the sequence σ ∈ leaf(T ∗i) if and only if σ ∈ T ∗i and the last
entry of σ is 0. Thus RCA0 can prove that the sequence of pairs 〈T ∗i , leaf(T ∗i)〉
exists.

The trees T and T ∗ share many properties. Information about paths and
subtrees of one can be uniformly transformed to information about the other.
As described in Simpson [7, Definition I.6.6], a subtree S if T is perfect if
every sequence in T has incompatible extensions in T . The perfect kernel of
T is the union of all the perfect subtrees of T .

Theorem 6. (RCA0) A tree T and the transform T ∗ satisfy the following.

(1) T is well-founded if and only if T ∗ is well-founded.

(2) T has at most one path if and only if T ∗ has at most one path.

(3) S is a perfect subtree of T if and only if S+ is a perfect subtree of T ∗.

(4) K is the perfect kernel of T if and only if K+ is the perfect kernel of
T ∗.

Proof. Each part follows from the fact that the map taking σ to σ + 1 is
a bijection between the paths of T and those of T ∗ and also between the
perfect subtrees of T and those of T ∗.

The next two theorems list familiar equivalences for tree statements that
continue to hold when restricted to trees with leaf sets. For both proofs, the
central tool is the transformation from T to T ∗. In the following theorem,

4

the labels used for the combinatorial principles are consistent with those used
for the associated Weihrauch problems by Kihara, Marcone, and Pauly [6].

Theorem 7. (RCA0) The following are equivalent.

(1) ATR0.

(2) The Σ1
1 separation principle: For any Σ1

1 formulas ϕ0(n) and ϕ1(n)
containing no free occurrences of Z, if ¬∃n(ϕ0(n) ∧ ϕ1(n)), then

∃Z∀n((ϕ0(n)→ n ∈ Z) ∧ (ϕ1(n)→ n /∈ Z)).

(3) Σ1
1−SEP : If 〈T0,i〉i∈N and 〈T1,i〉i∈N are sequences of trees such that for

each i, at most one of T0,i and T1,i has an infinite path, then there is a
set Z such that for all n, T0,n has an infinite path implies n ∈ Z and
T1,n has an infinite path implies n /∈ Z.

(4) Σ1
1−SEPL : Item (3) for 〈T0,i, leaf(T0,i)〉i∈N and 〈T1,i, leaf(T1,i)〉i∈N, se-

quences of trees with leaf sets.

(5) Σ1
1−CA− : If 〈Ti〉i∈N is a sequence of trees each with at most one infinite

path, then there is a set Z such that for all n, n ∈ Z if and only if Tn
has an infinite path.

(6) Σ1
1−CA−L : Item 5 for sequences of trees with leaf sets.

(7) PTT1 : If T has uncountably many paths then T has a non-empty perfect
subtree.

(8) PTT1L : Item 7 for trees with leaf sets.

Proof. The equivalence of (1) and (2) is Theorem V.5.1 of Simpson [7]. The
existence of an infinite path in a tree can be written as a Σ1

1 formula, so (2)
implies (3). To prove the converse, use a bootstrapping argument, proving
ACA0 from (3) by creating a sequence of pairs of linear trees that compute the
range of an injection. Then use ACA0 and (3) to derive (2) by an application
of Lemma 3.14 of Friedman and Hirst [5]. The equivalence of (5) and (1) is
Theorem V.5.2 of Simpson [7], and the equivalence of (7) and (1) is Theorem
V.5.5 of Simpson [7]. Item (4) is a restriction of (3), so (3) implies (4) trivially.
The converse is an immediate consequence of Theorem 6. Similarly, (5) and
(6) are equivalent, as are (7) and (8).

5

To avoid confusion with the subsystem Π1
1−CA0, in following theorem

we use ŴF as a label for the combinatorial principle denoted by Π1
1−CA in

the article of Kihara, Marcone, and Pauly [6]. Note that ŴF is the infinite
parallelization of the the principle WF, that takes a tree as an input and
outputs a 1 if the tree is well-founded and a 0 otherwise.

Theorem 8. (RCA0) The following are equivalent:

(1) Π1
1−CA0 : If ϕ(n) is a Π1

1 formula, then there is a set Z such that for
all n, n ∈ Z if and only if ϕ(n).

(2) ŴF : If 〈Ti〉i∈N is a sequence of trees, then there is a set Z such that
for all n, n ∈ Z if and only if T has no infinite path.

(3) ŴFL : Item (2) for sequences of trees with leaf sets.

(4) PK : Every tree has a perfect kernel.

(5) PKL : Item (4) for trees with leaf sets.

Proof. The equivalence of (1) and (2) is Theorem VI.1.1 of Simpson [7]. The
equivalence of (1) and (4) is Theorem VI.1.3 of Simpson [7]. The restriction
(3) follows trivially from (2), and the converse follows immediately from
Theorem 6. By a similar argument, (4) and (5) are equivalent.

We now turn to the Weihrauch analogs of the preceding results. The
main tool is the computability theoretic version of Lemma 5.

Lemma 9. There is a uniformly computable map from trees T to T−, and
invertible uniformly computable maps from T to T+ and T ∗. Also, there is a
computable functional mapping sequences of trees 〈Ti〉i∈N to 〈T ∗i , leaf(T ∗i)〉.

Proof. The processes described at the beginning of the section are uniformly
computable, and for T+ and T ∗, uniformly computably invertible. Leaf sets
are uniformly computable for trees of the form T ∗.

The following Weihrauch analog of Theorem 7 is based on the results of
Kihara, Marcone, and Pauly [6].

Theorem 10. PTT1 ≡sW PTT1L <W Σ1
1−SEP. Also, the following princi-

ples are strongly Weihrauch equivalent: Σ1
1−SEP, Σ1

1−SEPL, Σ1
1−CA−, and

Σ1
1−CA−L .

6

Proof. The equivalences between the statements and the versions restricted
to trees with leaf sets follow from Lemma 9 and Theorem 6. The equivalence
of Σ1

1−SEP and Σ1
1−CA− is included in Theorem 3.11 of Kihara, Marcone,

and Pauly [6], while PTT1 <sW Σ1
1−SEP follows from their Corollary 3.7,

Theorem 3.11, and Proposition 6.4 [6].

We close the section with the Weihrauch analog of Theorem 8.

Theorem 11. WF ≡sW WFL. Also, the following four principles are strongly
Weihrauch equivalent: ŴF, ŴFL, PK, and PKL.

Proof. The equivalences WF ≡sW WFL, ŴF ≡sW ŴFL, and PK ≡sW PKL all
follow immediately from Lemma 9 and Theorem 6. It suffices to show that
ŴF ≡sW PK.

To see that ŴF ≤sW PK, let 〈Ti〉i∈N be a sequence of trees, the input for

ŴF. For sequences σ and τ with |σ| = |τ |, let σ ∗ τ denote the sequence
consisting of alternating entries of σ and τ . Thus for σ and τ of length
n+ 1, σ ∗ τ = 〈σ(0), τ(0), . . . , σ(n), τ(n)〉. Define the tree T by including the
following sequences for each i ∈ N:

• 〈i〉 ∈ T for each i ∈ N, and

• if σ ∈ Ti, |σ| = n, and τ is a binary sequence of length n, then
〈i〉_(σ ∗ τ) ∈ T and the initial segment of 〈i〉_(σ ∗ τ) omitting the last
element is also in T .

The tree T is uniformly computable from the sequence 〈Ti〉i∈N. If Ti has
an infinite path p, then for every binary sequence τ , all initial segments of
〈i〉_(p ∗ τ) are in T . In this case, there is a perfect subtree of T above 〈i〉,
so 〈i〉 is in the perfect kernel of T . If Ti is well-founded, then the subtree of
extensions of 〈i〉 in T is also well-founded, so no perfect subtree of T contains
〈i〉. Thus, if K is a perfect kernel for T , then Ti is well-founded if and only

if 〈i〉 ∈ K. Summarizing, Z = {i | 〈i〉 ∈ K} is the desired output for ŴF.

To see that PK ≤sW ŴF, let T be an input tree for PK. In the following,
we freely conflate finite sequences with their natural number codes. For each
finite sequence σ ∈ T , define Tσ as follows:

• 〈σ〉 ∈ Tσ, and

7

• if 〈σ, . . . , 〈τ0, . . . , τm〉〉 ∈ Tσ, and for each i ≤ m, τ_i ei,0 and τ_i ei,1 are
incompatible extensions of τi in T , then

〈σ, . . . , 〈τ0, . . . , τm〉, 〈τ_0 e0,0, τ_0 e0,1, . . . , τ_m em,0, τ_m em,1〉〉 ∈ Tσ.

The sequence 〈Tσ〉σ∈T (which can be viewed as 〈Ti〉i∈N) is uniformly com-
putable from T . For each σ ∈ T , Tσ has an infinite path if and only if σ is
contained in a perfect subtree of T . Let Z be a solution of ŴF for 〈Tσ〉σ∈T .
Then Z = {σ ∈ T | Tσ is well-founded}, and K = {σ ∈ T | σ /∈ Z} is the
perfect kernel of T .

An application

This section presents a Weihrauch analysis closely related to Theorem 6 of
Davis, Hirst, Pardo, and Ransom [4]. A hypergraph H = (V,E) consists of
a set of vertices V = {v0, v1, . . . } and a set of edges E = {e1, e2, . . . }, where
each edge in E is a set of vertices. For hypergraphs, an edge can be a set
of any cardinality. If every edge of a hypergraph has cardinality exactly 2,
then H is a graph. A k-coloring of a hypergraph H = (V,E) is a function
f : V → k. A k-coloring is called proper if every edge with at least two
vertices contains vertices of different colors. Let HPC(k) be the problem that
accepts a hypergraph H as input, outputs 1 if H has a proper k-coloring,
and outputs 0 otherwise.

The second part of the proof of the following theorem applies a leaf man-
agement result from the preceding section.

Theorem 12. For all k ≥ 2, HPC(k) ≡sW WF.

Proof. To see that HPC(k) ≤sW WF, let H = (V,E) be a hypergraph input
for HPC(k). In the following, we freely conflate vertices and finite collections
of vertices with their integer codes. Build a tree T by including sequences
σ = 〈σ0, σ1, . . . , σm〉 satisfying the following conditions for each i ≤ m.

• If i = 2j, then σi is a set of two vertices in edge ej, or σi is a code for
∅ and ej does not contain a pair of vertices in the list {v0, . . . , vm}.

• If i = 2j + 1, then σi < k. We view this as a color for vj.

• The partial coloring of H given by the odd entries of σ uses distinct
colors on the pairs of vertices listed in the even entries.

8

The odd entries of any infinite path in T encode a proper k-coloring of H.
Also, any proper k-coloring of H can be used to define an infinite path
through T . (If H has no edges of cardinality less than 2, an infinite path can
be uniformly computed from any proper coloring, but this is not necessary
for the current argument.) Thus, HPC(k) is 1 for H if and only if WF is 0
for T .

By Theorem 11, WF ≡sW WFL, so to complete the proof it suffices to
show that WFL ≤sW HPC(k). We will prove this for k = 2 and indicate how
to modify the argument for larger values of k.

Let T be an input for WFL, that is, a tree with a leaf set. Emulating the
construction from the proof of Theorem 6 of Davis et al. [4], define a hyper-
graphH as follows. The vertices ofH include the five vertices {a0, a1, b0, b1, s}
plus two vertices labeled σ0 and σ1 for each sequence σ ∈ T . The edges of H
consist of

• (a0, a1), (a1, s), (b0, b1), and (b1, s),

• (σ0, σ1) for every nonempty σ ∈ T ,

• (σ1, s) if σ is a leaf of T ,

• Eσ = {σ1} ∪ {τ0 | τ ∈ T ∧ ∃n τ = σ_n} if σ ∈ T is not a leaf, and

• E0 = {a0, b0} ∪ {σ0 | σ ∈ T ∧ |σ| = 1}.
H is uniformly computable from T and its leaf set. Note that the leaf set is
used in the third and fourth bullets. H has a proper 2-coloring if and only if
T has an infinite path. For details, see the proof of Theorem 6 of [4]. Thus
WFL ≤sW HPC(2). To prove the reduction for larger values of k, modify
the construction by adding a complete subgraph on k − 2 vertices to H and
connecting each of its vertices to every vertex of H with an edge consisting
of two vertices.

Parallelization yields the Weihrauch analog of part of the reverse mathe-
matical Theorem 6 of Davis et al. [4].

Corollary 13. For k ≥ 2, ŴF ≡sW ĤPC(k).

Proof. Fix k. By Theorem 12, WF ≡sW HPC(k), so by Proposition 3.6 part

(3) of Brattka, Gherardi, and Pauly [3], ŴF ≡sW ĤPC(k)

The arguments used in Theorem 6 of [4] can be used to extend Theorem
12 and Corollary 13 to conflict-free colorings.

9

Acknowledgements

A talk related to this paper was presented at Dagstuhl Seminar 18361, orga-
nized by Vasco Brattka, Damir Dzhafarov, Alberto Marcone, and Arno Pauly,
and held September 2-7 of 2018 at Schloss Dagstuhl, the Leibniz-Zentrum
für Informatik [1]. The author’s travel to the seminar was supported by a
Board of Trustees travel grant from Appalachian State University.

Bibliography

[1] Vasco Brattka, Damir Dzhafarov, Alberto Marcone, and Arno Pauly, Measuring the
Complexity of Computational Content: From Combinatorial Problems to Analysis
(Dagstuhl Seminar 18361), Dagstuhl Reports 8 (2018). To appear.

[2] Vasco Brattka and Guido Gherardi, Effective choice and boundedness principles
in computable analysis, Bull. Symbolic Logic 17 (2011), no. 1, 73–117, DOI
10.2178/bsl/1294186663. MR2760117

[3] Vasco Brattka, Guido Gherardi, and Arno Pauly, Weihrauch Complexity in Computable
Analysis (2017), 50+xi pp., available at arXiv:1707.03202.

[4] Caleb Davis, Jeffry Hirst, Jake Pardo, and Tim Ransom, Reverse mathematics and
colorings of hypergraphs, Archive for Mathematical Logic, posted on November 29,
2018, DOI 10.1007/s00153-018-0654-z.

[5] Harvey M. Friedman and Jeffry L. Hirst, Weak comparability of well orderings and re-
verse mathematics, Ann. Pure Appl. Logic 47 (1990), no. 1, 11–29, DOI 10.1016/0168-
0072(90)90014-S. MR1050559

[6] Takayuki Kihara, Alberto Marcone, and Arno Pauly, Searching for an analogue of
ATR0 in the Weihrauch lattice (2018), available at arXiv:1812.01549.

[7] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives
in Logic, Cambridge University Press, Cambridge; Association for Symbolic Logic,
Poughkeepsie, NY, 2009. MR2517689

10

