How hard is it to prove that $\sqrt{2}$ is irrational?

Jeff Hirst
Appalachian State University Boone, NC

September 9, 2022

ASU Mathematical Sciences Colloquium

A first order proof by contradiction

Suppose $\left(\frac{m}{n}\right)^{2}=2$ where $m, n \in \mathbb{N}$.

$$
m^{2}=2 n^{2}
$$

If $m=2^{k} m_{0}$ and $n=2^{j} n_{0}$ with m_{0} and n_{0} odd,

$$
\begin{aligned}
\left(2^{k} m_{0}\right)^{2} & =2\left(2^{j} n_{0}\right)^{2} \\
2^{2 k} m_{0}^{2} & =2^{2 j+1} n_{0}^{2}
\end{aligned}
$$

So $2 k=2 j+1$, a contradiction!
It is easy to prove $\sqrt{2} \notin \mathbb{Q}$ in a first order setting, using some number theory.

First order vs. second order

First order arithmetic formulas use (only) quantifiers over natural numbers.

$$
\forall m \forall n\left(\left(\frac{m}{n}\right)^{2} \neq 2\right)
$$

Translation: if m / n is a rational, its square is not 2 .

Second order arithmetic formulas use quantifiers over sets of natural numbers (and objects coded by sets).

$$
\forall \alpha \in \mathbb{R}\left(\alpha^{2}=2 \rightarrow \forall m \forall n\left(\frac{m}{n} \neq \alpha\right)\right)
$$

Translation: If α is a real and $\alpha=\sqrt{2}$, then α is not rational.

Coding of reals

In second order arithmetic, reals are coded by rapidly converging sequences of rationals.

If $\alpha=\left\langle q_{0}, q_{1}, q_{2}, \ldots\right\rangle$ codes a real, then $\forall n\left|q_{n}-q_{n+j}\right| \leqslant 2^{-n}$.

Many different sequences could be used to code $\sqrt{2}$. For example:

$$
\begin{gathered}
\sqrt{2}=\alpha=\langle 1,1.4,1.41,1.414, \ldots\rangle \\
\sqrt{2}=\beta=\left\langle 1, \frac{3}{2}, \frac{17}{12}, \frac{577}{408} \frac{665857}{470832}, \ldots\right\rangle \\
=\langle 1,1.5,1.41 \overline{6}, 1.414215,1.414233562, \ldots\rangle
\end{gathered}
$$

A conjecture

$R C A_{0}$ is an axiom system for second order arithmetic including:

- basic arithmetic axioms,
- induction for some simple formulas,
- an existence axiom for computable sets of natural numbers.

Conjecture: RCA_{0} can prove the following:

- The sequence $\beta=\left\langle 1, \frac{3}{2}, \frac{17}{12}, \frac{577}{408}, \frac{665557}{470832}, \ldots\right\rangle$ exists and codes a real number.
- $\beta^{2}=2$.
- $\forall m \forall n\left(\beta \neq \frac{m}{n}\right)$

Summarizing, RCA_{0} can prove that $\sqrt{2}$ is irrational.

The larger project

Hynek Mlcousek asked on the FOM listserve:
What axioms are needed to prove that π and e are irrational?
Joey Seevers is working on e.
Nicholas Beitzell is working on π.
What about other irrational algebraic numbers?
What about other irrational transcendental numbers (e.g.
π^{e} or $\left.e^{\pi}\right)$?
How much induction is used in these proofs?
How does the choice of the representing sequences affect the difficulty of the proofs?
How hard is it to prove that π (or e, etc.) is transcendental?

References

More about reverse mathematics:
[1] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press and ASL, 2009. DOI 10.1017/CBO9780511581007. MR2517689

More about representations of reals:
[2] Jeffry L. Hirst, Representations of reals in reverse mathematics, Bull. Pol. Acad. Sci. Math. 55 (2007), no. 4, 303-316.
DOI 10.4064/ba55-4-2. MR2369116

More about proofs with weak induction axioms:
[3] Caleb Davis, Denis R. Hirschfeldt, Jeffry Hirst, Jake Pardo, Arno Pauly, and Keita Yokoyama, Combinatorial principles equivalent to weak induction, Computability 9 (2020), no. 3-4, 219-229.
DOI 10.3233/com-180244. MR4133714

