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Hindman’s Theorem

Hindman’s theorem is a coloring result proved by Neil Hindman
in his 1974 paper [2].

HT: If f : N→ k is a finite coloring of N, then there is an infinite
set whose finite sums are monochromatic. That is, there is an
infinite set H and a color c such that for every finite set
{h0, h1 . . . hn} ⊂ H, we have f (h0 + h1 + · · ·+ hn) = c.

Hindman’s theorem can be iterated for sequences of colorings.

IHT: If 〈fi〉i∈N is a sequence of finite colorings of N, then there is
a set H = {h0 < h1 < h2 . . . } such that for each j , the finite sums
of {hn | n > j} are monochromatic for fj .



Reverse Math bounds

Blass, Hirst, and Simpson [1] gave bounds for the strength of
HT and IHT:

IHT is provable in ACA+
0 (which is arithmetical

comprehension plus an axiom asserting that every set has an
ω jump.)

Over RCA0, HT implies ACA0.

The exact strength of HT and IHT remain open.

Related work:

Towsner [6] describes computable colorings with complicated
monochromatic sets.

Montalban and Shore [4] prove conservation results over IHT.



Colorings and countable Boolean algebras

Given any finite partition (coloring) of N, there is a countable
Boolean shift algebra that contains:

• the partition (monochromatic) sets,
• all the finite sets,
• unions, intersections, and complements of sets in the

algebra, and
• the shift sets X − n = {x − n | x ∈ X ∧ x > n}.

ACA0 suffices to construct a nice presentation of the shift
algebra for a coloring, with the sets given as a nonrepeating
sequence of characteristic functions with maps from the indices
of component sets to indices of unions, intersections,
complements, and shifts. The algebras in [3] are not so nice.



Ultrafilters

A subset u of (the indices of the sets in) a shift algebra is called
an ultrafilter if:
• ∅ is not in u,
• u is closed under intersection,
• if X ⊃ Y ∈ u, then X ∈ u, and
• for all X in the shift algebra, either X ∈ u or X c ∈ u.

The characteristic function for an ultrafilter u can be viewed as
an element of 2N.

The collection of all ultrafilters on a countable shift algebra form
a closed subset of 2N.

The collection of all ultrafilters containing a particular element
of the shift algebra form a basic open subset of the closed set
of ultrafilters.



Invariant ultrafilters

An ultrafilter u on a shift algebra is (almost downward
translation) invariant if for every X ∈ u there is an n ∈ X such
that X − n ∈ u.

When the shift algebra contains all the finite sets, u is invariant
iff for every X ∈ u and every j ∈ N, there is an n > j such that
n ∈ u and X − n ∈ u.

If the underlying shift algebra is the entire power set of N, u is
invariant iff

for every X ∈ u, {n | X − n ∈ u} ∈ u, which happens iff
u is an idempotent for Galvin-Glazer addition.



Invariant ultrafilters and monochromatic sets
Given a shift algebra constructed from a coloring, we can
extract a monochromatic set closed under finite sums from any
invariant ultrafilter.

Start with a monochromatic set in the ultrafilter, and shift and
intersect in the following fashion.
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Invariant ultrafilters and IHT

Using an invariant ultrafilter for a shift algebra constructed from
a sequence of colorings, we can dovetail to find a
monochromatic set for the iterated Hindman’s theorem.

Theorem [3] RCA0 proves the following are equivalent:
1. IHT.
2. Every countable shift algebra has an invariant ultrafilter.

Summarizing: If we can find invariant ultrafilters in ACA0, then
we have proven IHT in ACA0.



Shifting ultrafilters

Shifts and set operations interact nicely. For example,

(X − n) ∩ (Y − n) = (X ∩ Y ) − n and

(X − n)c = X c − n.

Suppose u is an ultrafilter. Define u + 1 by

X ∈ u + 1 if and only if X − 1 ∈ u.

Then u + 1 is also an ultrafilter.

If u and v agree on many sets, then so do u + 1 and v + 1. In
fact, the function sending each u to u + 1 is a continuous
function on the space of ultrafilters.



Topological dynamics
Here is a lemma from Blass, Hirst, and Simpson [1]:

Lemma 5.10: The following is provable in ACA0. Let U be a
compact metric space and let S : U → U be a continuous
function. For all x ∈ U there exists a u in the orbit closure x̄
such that every v ∈ ū is uniformly recurrent.

What does this mean in our setting?

The function S defined by S(u) = u + 1 is continuous. Lemma
5.10 says there is an ultrafilter u such that every v in the
closure of {u, S(u), S(S(u)), S(3)(u), . . . } is uniformly recurrent.

v is uniformly recurrent means that for every k there is an m
such that for every n there is a j 6 m such that Sn+j(v) and v
agree on the first k sets. Informally, v is revisited remarkably
regularly.



Orbits and invariant ultrafilters

Suppose that we have an ultrafilter u as provided by Lemma
5.10, whose orbit closure consists of uniformly recurrent
ultrafilters.

Is there an invariant ultrafilter in the orbit closure?

Sometimes, yes. For example, if the orbit is finite, then there
must be an invariant ultrafilter. For some infinite orbits, we can
carry out another construction, based on witness sets.



Witness sets

We say that a set W = {w0, w1, w2, . . . } is a witness set if there
is an ultrafilter v such that W is in v and for every n, the shift set
W − wn is not in v . Thus W witnesses that v is not invariant.

Associated with a witness set, there is a nested sequence of
clopen sets:

All ultrafilters containing W
All ultrafilters containing W ∩ (W − w0)

c

All ultrafilters containing W ∩ (W − w0)
c ∩ (W − w1)

c

and so on.

The intersection of these sets is the closed set consisting of all
non-invariant ultrafilters witnessed by W .



Witness sets and orbit closures
Our definition of witness set looks like a Σ1

1 formula:

A set W = {w0, w1, w2, . . . } is a witness set if there is an
ultrafilter v such that W is in v and for every n, the shift set
W − wn is not in v .

However, in the orbit closure of u, for every n there is a j such
that

W ∩ (W − w0)
c ∩ (W − w1)

c ∩ · · · ∩ (W − wn)
c ∈ S(j)(u)

if and only if the orbit closure of u contains a non-invariant
ultrafilter v witnessed by W .

The set of witness sets is arithmetically definable.

If our boolean algebra is {B0, B1, B2, . . . } we say that Bj is a
minimal witness set if Bj witnesses that some ultrafilter v is
invariant and no Bi for i < j witnesses that v is invariant. The
set of minimal witnesses is also arithmetically definable.



Minimal witnesses and a sequence of open sets

Suppose W0, W1 . . . is the sequence of minimal witnesses for
the orbit closure of u.

Sequentially select open sets associated with witnesses so
small that they omit forward orbit elements with witnesses of
arbitrarily large index.

If this process never halts, then we have a sequence of open
sets such that:

no initial segment is a cover of the orbit closure of u, and
every non-invariant ultrafilter is contained in some open set
in the sequence.

The orbit closure is a closed set, so by the Heine-Borel
theorem, some ultrafilter lies outside the sequence of open
sets. Thus some ultrafilter is invariant.



What is left?

What if the process described above halts?

In particular, what if there are only finitely many minimal
witnesses?

Is there a way to use uniform recurrence to show that when the
process halts there is an invariant ultrafilter? (In ACA0?)
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