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Banach’s Theorem
In his note Un théorème sur les transformations biunivoques
[1], Stefan Banach proved the following theorem.

Banach’s Theorem: If f0 : A→ B and f1 : B → A are injections
then there is a bijection h : A→ B such that for all x , either
h(x) = f0(x) or f1(h(x)) = x (that is, h(x) = f−1(x)).

What does h look like?
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A sketch of a proof of Banach’s theorem:

Suppose f0 : A→ B and f1 : B → A are injections.

Every element of A (and B) lies in exactly one component.

For a ∈ A, define:

h(a) =

{
f−1
1 (a) if the component for a has a high endpoint
f0(a) otherwise



Old reverse mathematics results

We will look at two restrictions of Banach’s theorem in
subsystems of second order arithmetic, first considered long
ago in my dissertation [2] and a related article [3].

Theorem (RCA0) The following are equivalent:
(1) ACA0 (Arithmetical comprehension axiom)
(2) If f0 : N→ N and f1 : N→ N are injections then there is a

bijection h : N→ N such that for all n, h(n) = f0(n) or
f1(h(n)) = n.



Overview of reverse mathematics

Reverse mathematics is a program for the study of the strength
of mathematical statements, based on a hierarchy of axiom
systems for second order arithmetic. Simpson’s book [5] is an
excellent reference.

The language includes variables for natural numbers n and sets
of natural numbers X , and symbols for arithmetic operations
and relations like m × (a + b) = c and a ∈ X .

The base theory, RCA0, includes axioms for restricted induction
and the recursive comprehension axiom, which (informally)
asserts that computable sets (using parameters) exist.

The system ACA0 consists of RCA0 plus a comprehension
scheme for sets defined by formulas with quantification limited
to numbers.



Proving Banach’s Theorem in ACA0

Suppose f0 : N→ N and f1 : N→ N are injections.

For n ∈ N, the component containing n has a high endpoint if
and only if there is a finite sequence m0,m1,m2, . . . ,mk such
that

f1(m0) = n f0(m1) = m0 . . . f1(mk ) = mk−1

and
∀j f0(j) 6= mk

which can be written as an arithmetical formula. Thus the
function

h(n) =

{
µm(f1(m) = n) if the component for n has a high endpoint
f0(n) otherwise

is also defined by an arithmetical formula.



Preparation for a reversal

Now we want to use Banach’s theorem to deduce ACA0.

The main tool for reversals to ACA0 is Lemma III.1.3 of
Simpson [5]:

Lemma (RCA0) The following are equivalent:
(1) ACA0

(2) If g : N→ N is an injection, then {m | ∃n g(n) = m} exists.

To prove the reversal, given an injection g : N→ N, we want to
compute injections f0 and f1 such that if h satisfies Banach’s
theorem, we can compute the range of g using h.



A sample construction of f0 and f1 from g
Suppose the injection g has these values:

n 0 1 2 3
g(n) 3 2 4 0
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A bounded restriction

Definition: The function b : N→ N is a bounding function for
f : N→ N if for all n, if ∃t (f (t) = n) then (∃t 6 b(n)) (f (t) = n).

Theorem (RCA0) The following are equivalent:
(1) WKL0. Weak König’s Lemma: Every infinite 0-1 tree has

an infinite path.
(2) If f0 : N→ N and f1 : N→ N are injections with bounding

function b : N→ N then there is a bijection h : N→ N such
that for all n, h(n) = f0(n) or f1(h(n)) = n.



Proving Bounded Banach’s Theorem in WKL0

Given injections f0 and f1 bounded by b, construct a tree of
possible initial segments of h in the manner of this example:

Include 〈0,0,1,0〉 in T if the initial segment of h defined by

h(0) = f0(0) h(1) = f0(1) h(2) = f−1
1 (2) h(3) = f0(3)

is “consistent up to 4,” meaning:

• h is defined: There is a t 6 b(2) such that f (t) = 2
• h is injective: f−1(2) /∈ {f0(0), f0(1), f0(3)}
• h is onto: Any endpoints of components before 4 are

included in the graph of h.

Any infinite path through the tree computes the desired
bijection.
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Preparation for a reversal

Now we want to to use bounded Banach’s Theorem to prove
WKL0.

An important reversal tool for WKL0 is Lemma IV.4.4 of
Simpson [5]:

Lemma (RCA0) The following are equivalent:
(1) WKL0

(2) If g0 and g1 are injections with disjoint ranges then there is
a set X that separates their ranges, that is:

∀n(g0(n) ∈ X ∧ g1(n) /∈ X )



Sketch: Bounded Banach’s Theorem implies WKL0

Given bijections g0 and g1 with disjoint ranges we need
bounded injections f0 and f1 such that any bijection satisfying
Banach’s Theorem can be used to calculate a separating set.

Example: Values of f0 and f1 on powers of p1 = 3 reflect
whether or not 1 is in the separating set.

Suppose g0(2) = 1. Omit the vertical link at 32m+2 for m = 2.
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Sketch: Bounded Banach’s Theorem implies WKL0

Given bijections g0 and g1 with disjoint ranges we need
bounded injections f0 and f1 such that any bijection satisfying
Banach’s Theorem can be used to calculate a separating set.

Suppose g0(2) = 1. Omit the vertical link at 32m+2 for m = 2.

Suppose g1(1) = 3. Omit the slanted link at 72m+2 for m = 1.

{n | h(pn) 6= pn} is a separating set.



Higher order reverse mathematics
A framework for doing reverse mathematics in all finite types
was introduced by Kohlenbach [4]. It allows the introduction of
functionals from sets to numbers and from sets to sets (and
more).

The axiom system RCAω
0 is based on functions (rather than

sets), and incorporates limited versions of induction, primitive
recursion, and choice. RCAω

0 is a conservative extension of
RCA0.

Many theorems of second order arithmetic are of the form
∀X∃Y θ(X ,Y ). The language of RCAω

0 can express
Skolemized versions of the form

∃Ψ∀X θ(X ,Ψ(X ))

We can study the strength of these functional existence
statements over RCAω

0 .



Preliminary results with Carl Mummert

Theorem (RCAω
0 ) The following are equivalent:

(1) (WKL): There is a functional WKL : NN → 2N such that if T
is a code for an infinite tree in 2N, then WKL(T ) is an
infinite path in T .

(2) (LLPO): There is a functional LLPO : NN → 2 such that the
value of LLPO(f ) is the parity of the location of the first 0 in
the range of f , provided such a location exists.

(3) (bBN): There is a functional bBN(f0, f1,b) = h such that if f0
and f1 are injections with bound b then h is a bijection
satisfying bounded Banach’s Theorem.

The proof of the reversal uses (2) to avoid the prime power
arguments. The forward direction relies on b (as opposed to
characteristic functions for the ranges of f0 and f1) to ensure
that bBN is total, even when the inputs are incorrect.



Higher order Banach’s Theorem on N

Theorem (RCAω
0 ) The following are equivalent:

(1) (∃2): There is functional LPO : NN → 2 such that
LPO(f ) = 0 if and only if ∃n f (n) = 0.

(2) (BN): There is a functional BN(f0, f1) = h such that if f0 and
f1 are injections then h is a bijection satisfying Banach’s
Theorem.

The proof of the reversal uses (1) to avoid prime power
arguments.



Conjectured extension

If f0 and f1 are injections from a complete separable metric
space X into X with modulus of uniform continuity m, we can
define a functional BX such that BX (f0, f1,m) is a bijection
h : X → X satisfying Banach’s Theorem.

Conjecture (RCAω
0 ) The following are equivalent:

(1) (∃2)

(2) If X is a compact complete sep. metric space then (BX ).
(3) (B[0,1])

(4) (B2N)

We believe relaxing the restrictions on uniform continuity and
compactness results in strictly stronger functional existence
statements.



Links to traditional reverse mathematics

Known conservation results:

RCAω
0 + (∃2) is conservative over ACA0 for Π1

2 formulas.

RCAω
0 + (S) (Souslin functional) is conservative over Π1

1 − CA0
for Π1

2 formulas.

Preliminary conservation results:

RCAω
0 + (WKL) is conservative over WKL0 for Π1

2 formulas.

RCAω
0 + (wS) is conservative over ATR0 for Π1

2 formulas.
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