Reverse Mathematics and Banach's Theorem

Jeffry Hirst
Appalachian State University
Boone, NC

December 10, 2021

Cross-Alps Logic Seminar

Banach's Theorem

In his note Un théorème sur les transformations biunivoques [1], Stefan Banach proved the following theorem.

Banach's Theorem: If $f_{0}: A \rightarrow B$ and $f_{1}: B \rightarrow A$ are injections then there is a bijection $h: A \rightarrow B$ such that for all x, either $h(x)=f_{0}(x)$ or $f_{1}(h(x))=x$ (that is, $\left.h(x)=f^{-1}(x)\right)$.

Banach's Theorem

In his note Un théorème sur les transformations biunivoques [1], Stefan Banach proved the following theorem.

Banach's Theorem: If $f_{0}: A \rightarrow B$ and $f_{1}: B \rightarrow A$ are injections then there is a bijection $h: A \rightarrow B$ such that for all x, either $h(x)=f_{0}(x)$ or $f_{1}(h(x))=x$ (that is, $h(x)=f^{-1}(x)$).

What does h look like?

$f_{0} \uparrow$

Banach's Theorem

In his note Un théorème sur les transformations biunivoques [1], Stefan Banach proved the following theorem.

Banach's Theorem: If $f_{0}: A \rightarrow B$ and $f_{1}: B \rightarrow A$ are injections then there is a bijection $h: A \rightarrow B$ such that for all x, either $h(x)=f_{0}(x)$ or $f_{1}(h(x))=x$ (that is, $h(x)=f^{-1}(x)$).

What does h look like?

$$
f_{0} \uparrow \quad f_{1} \downarrow
$$

Banach's Theorem

In his note Un théorème sur les transformations biunivoques [1], Stefan Banach proved the following theorem.

Banach's Theorem: If $f_{0}: A \rightarrow B$ and $f_{1}: B \rightarrow A$ are injections then there is a bijection $h: A \rightarrow B$ such that for all x, either $h(x)=f_{0}(x)$ or $f_{1}(h(x))=x$ (that is, $h(x)=f^{-1}(x)$).

What does h look like?

$$
f_{0} \uparrow \quad f_{1} \downarrow h
$$

Banach's Theorem

In his note Un théorème sur les transformations biunivoques [1], Stefan Banach proved the following theorem.

Banach's Theorem: If $f_{0}: A \rightarrow B$ and $f_{1}: B \rightarrow A$ are injections then there is a bijection $h: A \rightarrow B$ such that for all x, either $h(x)=f_{0}(x)$ or $f_{1}(h(x))=x$ (that is, $h(x)=f^{-1}(x)$).

What does h look like?

$$
f_{0} \uparrow \quad f_{1} \downarrow \quad h
$$

What does h look like?

Some components may have endpoints.

What does h look like?

Some components may have endpoints.

What does h look like?

Some components may have endpoints.

A sketch of a proof of Banach's theorem:

Suppose $f_{0}: A \rightarrow B$ and $f_{1}: B \rightarrow A$ are injections.

Every element of $A($ and $B)$ lies in exactly one component.

For $a \in A$, define:

$$
h(a)= \begin{cases}f_{1}^{-1}(a) & \text { if the component for } a \text { has a high endpoint } \\ f_{0}(a) & \text { otherwise }\end{cases}
$$

Old reverse mathematics results

We will look at two restrictions of Banach's theorem in subsystems of second order arithmetic, first considered long ago in my dissertation [2] and a related article [3].

Theorem $\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:
(1) ACA_{0} (Arithmetical comprehension axiom)
(2) If $f_{0}: \mathbb{N} \rightarrow \mathbb{N}$ and $f_{1}: \mathbb{N} \rightarrow \mathbb{N}$ are injections then there is a bijection $h: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $n, h(n)=f_{0}(n)$ or $f_{1}(h(n))=n$.

Overview of reverse mathematics

Reverse mathematics is a program for the study of the strength of mathematical statements, based on a hierarchy of axiom systems for second order arithmetic. Simpson's book [5] is an excellent reference.

The language includes variables for natural numbers n and sets of natural numbers X, and symbols for arithmetic operations and relations like $m \times(a+b)=c$ and $a \in X$.

The base theory, RCA_{0}, includes axioms for restricted induction and the recursive comprehension axiom, which (informally) asserts that computable sets (using parameters) exist.

The system ACA_{0} consists of RCA_{0} plus a comprehension scheme for sets defined by formulas with quantification limited to numbers.

Proving Banach's Theorem in ACA_{0}

Suppose $f_{0}: \mathbb{N} \rightarrow \mathbb{N}$ and $f_{1}: \mathbb{N} \rightarrow \mathbb{N}$ are injections.
For $n \in \mathbb{N}$, the component containing n has a high endpoint if and only if there is a finite sequence $m_{0}, m_{1}, m_{2}, \ldots, m_{k}$ such that

$$
f_{1}\left(m_{0}\right)=n \quad f_{0}\left(m_{1}\right)=m_{0} \quad \ldots \quad f_{1}\left(m_{k}\right)=m_{k-1}
$$

and

$$
\forall j f_{0}(j) \neq m_{k}
$$

which can be written as an arithmetical formula. Thus the function
$h(n)= \begin{cases}\mu m\left(f_{1}(m)=n\right) & \text { if the component for } n \text { has a high endpoint } \\ f_{0}(n) & \text { otherwise }\end{cases}$
is also defined by an arithmetical formula.

Preparation for a reversal

Now we want to use Banach's theorem to deduce ACA $_{0}$.
The main tool for reversals to ACA_{0} is Lemma III.1.3 of Simpson [5]:

Lemma $\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:
(1) ACA_{0}
(2) If $g: \mathbb{N} \rightarrow \mathbb{N}$ is an injection, then $\{m \mid \exists n g(n)=m\}$ exists.

To prove the reversal, given an injection $g: \mathbb{N} \rightarrow \mathbb{N}$, we want to compute injections f_{0} and f_{1} such that if h satisfies Banach's theorem, we can compute the range of g using h.

A sample construction of f_{0} and f_{1} from g
Suppose the injection g has these values:

A sample construction of f_{0} and f_{1} from g
Suppose the injection g has these values:

A sample construction of f_{0} and f_{1} from g
Suppose the injection g has these values:

A sample construction of f_{0} and f_{1} from g
Suppose the injection g has these values:

A sample construction of f_{0} and f_{1} from g Suppose the injection g has these values:

n	0	1	2	3
$g(n)$	3	2	4	0

$$
p_{0}=2
$$

A sample construction of f_{0} and f_{1} from g
Suppose the injection g has these values:

n	0	1	2	3
$g(n)$	3	2	4	0

$p_{0}=2$

A sample construction of f_{0} and f_{1} from g
Suppose the injection g has these values:

n	0	1	2	3
$g(n)$	3	2	4	0

$p_{0}=2$

$p_{1}=3$

$p_{2}=5$

A sample construction of f_{0} and f_{1} from g
Suppose the injection g has these values:

n	0	1	2	3
$g(n)$	3	2	4	0

$p_{0}=2$

$p_{1}=3$

$p_{2}=5$

A sample construction of f_{0} and f_{1} from g
Suppose the injection g has these values:

n	0	1	2	3
$g(n)$	3	2	4	0

$p_{0}=2$

$p=3$

$p_{2}=5$

-•

A sample construction of f_{0} and f_{1} from g
Suppose the injection g has these values:

n	0	1	2	3
$g(n)$	3	2	4	0

$p_{0}=2$

$p_{1}=3$

$p_{2}=5$

$p_{3}=7$

A sample construction of f_{0} and f_{1} from g
Suppose the injection g has these values:

n	0	1	2	3
$g(n)$	3	2	4	0

$p_{0}=2$

$p_{1}=3$

$p_{2}=5$

$p_{3}=7$

A sample construction of f_{0} and f_{1} from g
Suppose the injection g has these values:

n	0	1	2	3
$g(n)$	3	2	4	0

$p_{0}=2$

$p_{1}=3$

$p_{2}=5$

$p_{3}=7$

A sample construction of f_{0} and f_{1} from g
Suppose the injection g has these values:

n	0	1	2	3
$g(n)$	3	2	4	0

A bounded restriction

Definition: The function $b: \mathbb{N} \rightarrow \mathbb{N}$ is a bounding function for $f: \mathbb{N} \rightarrow \mathbb{N}$ if for all n, if $\exists t(f(t)=n)$ then $(\exists t \leqslant b(n))(f(t)=n)$.

Theorem (RCA_{0}) The following are equivalent:
(1) WKL_{0}. Weak König's Lemma: Every infinite 0-1 tree has an infinite path.
(2) If $f_{0}: \mathbb{N} \rightarrow \mathbb{N}$ and $f_{1}: \mathbb{N} \rightarrow \mathbb{N}$ are injections with bounding function $b: \mathbb{N} \rightarrow \mathbb{N}$ then there is a bijection $h: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $n, h(n)=f_{0}(n)$ or $f_{1}(h(n))=n$.

Proving Bounded Banach's Theorem in WKL

Given injections f_{0} and f_{1} bounded by b, construct a tree of possible initial segments of h in the manner of this example:

Include $\langle 0,0,1,0\rangle$ in T if the initial segment of h defined by
$h(0)=f_{0}(0) \quad h(1)=f_{0}(1) \quad h(2)=f_{1}^{-1}(2) \quad h(3)=f_{0}(3)$
is "consistent up to 4 ," meaning:

Proving Bounded Banach's Theorem in WKL

Given injections f_{0} and f_{1} bounded by b, construct a tree of possible initial segments of h in the manner of this example:

Include $\langle 0,0,1,0\rangle$ in T if the initial segment of h defined by
$h(0)=f_{0}(0) \quad h(1)=f_{0}(1) \quad h(2)=f_{1}^{-1}(2) \quad h(3)=f_{0}(3)$
is "consistent up to 4," meaning:

- h is defined: There is a $t \leqslant b(2)$ such that $f(t)=2$
- h is injective: $f^{-1}(2) \notin\left\{f_{0}(0), f_{0}(1), f_{0}(3)\right\}$
- h is onto: Any endpoints of components before 4 are included in the graph of h.

Any infinite path through the tree computes the desired bijection.

Preparation for a reversal

Now we want to to use bounded Banach's Theorem to prove $W_{K L}$.

An important reversal tool for WKL_{0} is Lemma IV.4.4 of Simpson [5]:

Lemma $\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:
(1) WKL_{0}
(2) If g_{0} and g_{1} are injections with disjoint ranges then there is a set X that separates their ranges, that is:

$$
\forall n\left(g_{0}(n) \in X \wedge g_{1}(n) \notin X\right)
$$

Sketch: Bounded Banach's Theorem implies WKLo

Given bijections g_{0} and g_{1} with disjoint ranges we need bounded injections f_{0} and f_{1} such that any bijection satisfying Banach's Theorem can be used to calculate a separating set.

Example: Values of f_{0} and f_{1} on powers of $p_{1}=3$ reflect whether or not 1 is in the separating set.

Suppose $g_{0}(2)=1$. Omit the vertical link at $3^{2 m+2}$ for $m=2$.

Sketch: Bounded Banach's Theorem implies WKLo

Given bijections g_{0} and g_{1} with disjoint ranges we need bounded injections f_{0} and f_{1} such that any bijection satisfying Banach's Theorem can be used to calculate a separating set.

Example: Values of f_{0} and f_{1} on powers of $p_{1}=3$ reflect whether or not 1 is in the separating set.

Suppose $g_{0}(2)=1$. Omit the vertical link at $3^{2 m+2}$ for $m=2$.

Sketch: Bounded Banach's Theorem implies WKLo

Given bijections g_{0} and g_{1} with disjoint ranges we need bounded injections f_{0} and f_{1} such that any bijection satisfying Banach's Theorem can be used to calculate a separating set.

Example: Values of f_{0} and f_{1} on powers of $p_{1}=3$ reflect whether or not 1 is in the separating set.

Suppose $g_{0}(2)=1$. Omit the vertical link at $3^{2 m+2}$ for $m=2$.

Suppose $g_{1}(1)=3$. Omit the slanted link at $7^{2 m+2}$ for $m=1$.

Sketch: Bounded Banach's Theorem implies WKLo

Given bijections g_{0} and g_{1} with disjoint ranges we need bounded injections f_{0} and f_{1} such that any bijection satisfying Banach's Theorem can be used to calculate a separating set.

Example: Values of f_{0} and f_{1} on powers of $p_{1}=3$ reflect whether or not 1 is in the separating set.

Suppose $g_{0}(2)=1$. Omit the vertical link at $3^{2 m+2}$ for $m=2$.

Suppose $g_{1}(1)=3$. Omit the slanted link at $7^{2 m+2}$ for $m=1$.

Sketch: Bounded Banach's Theorem implies WKL

Given bijections g_{0} and g_{1} with disjoint ranges we need bounded injections f_{0} and f_{1} such that any bijection satisfying Banach's Theorem can be used to calculate a separating set.

Suppose $g_{0}(2)=1$. Omit the vertical link at $3^{2 m+2}$ for $m=2$.

Suppose $g_{1}(1)=3$. Omit the slanted link at $7^{2 m+2}$ for $m=1$.
$\left\{n \mid h\left(p_{n}\right) \neq p_{n}\right\}$ is a separating set.

Higher order reverse mathematics

A framework for doing reverse mathematics in all finite types was introduced by Kohlenbach [4]. It allows the introduction of functionals from sets to numbers and from sets to sets (and more).

The axiom system $\mathrm{RCA}_{0}^{\omega}$ is based on functions (rather than sets), and incorporates limited versions of induction, primitive recursion, and choice. $\mathrm{RCA}_{0}^{\omega}$ is a conservative extension of $R_{C A}$.

Many theorems of second order arithmetic are of the form $\forall X \exists Y \theta(X, Y)$. The language of $\mathrm{RCA}_{0}^{\omega}$ can express Skolemized versions of the form

$$
\exists \Psi \forall X \theta(X, \Psi(X))
$$

We can study the strength of these functional existence statements over RCA ${ }_{0}^{\omega}$.

Preliminary results with Carl Mummert

Theorem $\left(\mathrm{RCA}_{0}^{\omega}\right)$ The following are equivalent:
(1) (WKL): There is a functional WKL : $\mathbb{N}^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ such that if T is a code for an infinite tree in $2^{\mathbb{N}}$, then $\operatorname{WKL}(T)$ is an infinite path in T.
(2) (LLPO): There is a functional LLPO : $\mathbb{N}^{\mathbb{N}} \rightarrow 2$ such that the value of $\operatorname{LLPO}(f)$ is the parity of the location of the first 0 in the range of f, provided such a location exists.
(3) $\left(\mathrm{bB}_{\mathbb{N}}\right)$: There is a functional $\mathrm{bB}_{\mathbb{N}}\left(f_{0}, f_{1}, b\right)=h$ such that if f_{0} and f_{1} are injections with bound b then h is a bijection satisfying bounded Banach's Theorem.

The proof of the reversal uses (2) to avoid the prime power arguments. The forward direction relies on b (as opposed to characteristic functions for the ranges of f_{0} and f_{1}) to ensure that $b B_{\mathbb{N}}$ is total, even when the inputs are incorrect.

Higher order Banach's Theorem on \mathbb{N}

Theorem ($\mathrm{RCA}_{0}^{\omega}$) The following are equivalent:
(1) $\left(\exists^{2}\right)$: There is functional LPO : $\mathbb{N}^{\mathbb{N}} \rightarrow 2$ such that $\mathrm{LPO}(f)=0$ if and only if $\exists n f(n)=0$.
(2) $\left(\mathrm{B}_{\mathbb{N}}\right)$: There is a functional $\mathrm{B}_{\mathbb{N}}\left(f_{0}, f_{1}\right)=h$ such that if f_{0} and f_{1} are injections then h is a bijection satisfying Banach's Theorem.

The proof of the reversal uses (1) to avoid prime power arguments.

Conjectured extension

If f_{0} and f_{1} are injections from a complete separable metric space X into X with modulus of uniform continuity m, we can define a functional B_{X} such that $\mathrm{B}_{X}\left(f_{0}, f_{1}, m\right)$ is a bijection $h: X \rightarrow X$ satisfying Banach's Theorem.

Conjecture $\left(\mathrm{RCA}_{0}^{\omega}\right)$ The following are equivalent:
(1) $\left(\exists^{2}\right)$
(2) If X is a compact complete sep. metric space then $\left(\mathrm{B}_{X}\right)$.
(3) $\left(\mathrm{B}_{[0,1]}\right)$
(4) $\left(B_{2^{\mathbb{N}}}\right)$

We believe relaxing the restrictions on uniform continuity and compactness results in strictly stronger functional existence statements.

Links to traditional reverse mathematics

Known conservation results:
$R C A_{0}^{\omega}+\left(\exists^{2}\right)$ is conservative over $A C A_{0}$ for Π_{2}^{1} formulas.
$R C A_{0}^{\omega}+(S)$ (Souslin functional) is conservative over $\Pi_{1}^{1}-C A_{0}$ for Π_{2}^{1} formulas.

Preliminary conservation results:
$R C A_{0}^{\omega}+(W K L)$ is conservative over $W^{W} L_{0}$ for Π_{2}^{1} formulas.
$R C A_{0}^{\omega}+(w S)$ is conservative over $A T R_{0}$ for Π_{2}^{1} formulas.

References

[1] Stefan Banach, Un théorème sur les transformations biunivoques, Fundamenta Mathematica 6 (1924), 236-239.
DOI 10.4064/fm-6-1-236-239.
[2] Jeffry Lynn Hirst, COMBINATORICS IN SUBSYSTEMS OF SECOND ORDER ARITHMETIC, ProQuest LLC, Ann Arbor, MI, 1987. Thesis (Ph.D.)-The Pennsylvania State University. MR2635978
[3] Jeffry L. Hirst, Marriage theorems and reverse mathematics, Logic and computation (Pittsburgh, PA, 1987), Contemp. Math., vol. 106, Amer. Math. Soc., Providence, RI, 1990, pp. 181-196. DOI 10.1090/conm/106/1057822. MR1057822
[4] Ulrich Kohlenbach, Higher order reverse mathematics, Reverse mathematics 2001, Lect. Notes Log., vol. 21, Assoc. Symbol. Logic, La Jolla, CA, 2005, pp. 281-295.
DOI 10.1017/9781316755846. MR2185441
[5] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press and ASL, 2009. DOI 10.1017/CBO9780511581007. MR2517689

