Weihrauch analysis motivated by finite complexity

Jeffry Hirst Appalachian State University Boone, NC

Joint work with Zack BeMent and Asuka Wallace

February 27, 2021

SEaLS 2021: SouthEAstern Logic Symposium

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Motivation

The following pattern was noted with Steffen Lempp [2]

	Finite	Infinite
Euler	Р	ACA ₀
Hamilton	NP complete	$\Pi_1^1 - CA_0$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Does this pattern persist? No.

Does Weihrauch analysis tell us something different?

Weihrauch reductions

A problem *P* is weakly Weihrauch reducible to a problem *Q* (denoted $P \leq_W Q$) if we can find

- a computable pre-processor and
- a computable post-processor such that for every Q solver

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

is a *P* solver.

Weihrauch reductions

A problem *P* strongly Weihrauch reducible to a problem *Q* (denoted $P \leq_{sW} Q$) if we can find

- a computable pre-processor and
- a computable post-processor such that for every *Q* solver

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

is a *P* solver.

Work with Zack BeMent

WF: Input: A tree T in $\mathbb{N}^{<\mathbb{N}}$ Output: 0 if T is not well founded, 1 otherwise.

S_L Input: A graph *G* Output: 1 if the graph *L* is isomorphic to a subgraph of *G*, 0 otherwise.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

WF: Input: A tree T in $\mathbb{N}^{<\mathbb{N}}$ Output: 0 if T is not well founded, 1 otherwise.

S_L Input: A graph *G* Output: 1 if the graph *L* is isomorphic to a subgraph of *G*, 0 otherwise.

Prop: WF
$$\equiv_{sW} S_L$$
.

- $\label{eq:WF} \mathsf{WF} \leqslant_{\mathit{sW}} \mathsf{S}_\mathsf{L} \qquad \text{preprocessing: A tree is a graph.} \\ \text{postprocessing: Flip the output bit.}$
- $S_L \leq_{sW} WF$ preprocessing: Build the tree of initial segments of isomorphisms from *L* into *G*. postprocessing: Flip the output bit.

- WF: Input: A tree T in $\mathbb{N}^{\mathbb{N}}$ Output: 0 if T is not well founded, 1 otherwise.
 - S_L Input: A graph *G* Output: 1 if the graph *L* is isomorphic to a subgraph of *G*, 0 otherwise.

 $\textbf{Prop: WF} \equiv_{sW} S_L.$

 $\text{Coro: } \widehat{WF} \equiv_{sW} \widehat{S_L}.$

WF: Input: A sequence of trees $\langle T_i \rangle$ in N^ℕ Output: A function $f : \mathbb{N} \to 2$ such that f(i) = 0 if T_i is not well founded, 1 otherwise.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

S_L: Input: A graph *G* Output: A function *f* such that f(n) = 1 iff L_n is isomorphic to a subgraph of *G*

 $\textbf{Prop:}\ \widehat{\textbf{WF}} \equiv_{\textbf{sW}} \textbf{S}_{\widehat{\textbf{L}}}$

A graph construction:

A question: Fixed graphs as subgraphs

```
LPO: Input: A function f : \mathbb{N} \to \mathbb{N}
Output: 0 if 0 \notin Range(f) and
n+1 if n is least with f(n) = 0
```

Prop: If *F* is a finite graph with at least two vertices, then $S_F \equiv_W LPO$.

Is there a graph H satisfying the following inequality?

$$\mathsf{LPO} \equiv_\mathsf{W} \mathsf{S}_{\mathsf{F}} <_\mathsf{W} \mathsf{S}_{\mathsf{H}} <_\mathsf{W} \mathsf{S}_{\mathsf{L}} \equiv_\mathsf{W} \mathsf{WF}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Subgraphs of a fixed graph

S^G: Input: A graph HOutput: 1 if H is isomorphic to a subgraph of G, 0 otherwise.

Suppose K is the complete (countable) graph and D is the totally disconnected graph.

Prop:
$$S^K \equiv_W S^D \equiv_W LPO$$
.

Is there a graph *G* with $S^G \equiv_W WF$?

There is a computable graph *G* such that every S^G solver computes a Σ_1^1 -complete set. [2]

(日) (日) (日) (日) (日) (日) (日)

Formal Weihrauch reducibility

Work with Asuka Wallace

We can carry out Weihrauch analysis in higher order arithmetic. The following is a consequence of work with Carl Mummert [3].

Thm: If p(x, y) formalizes "*y* is a solution of the instance *x* of the problem *P*" and q(x, y) formalizes the problem *Q*, then iRCA₀^{ω} $\vdash Q \leq_W P$

if and only if

$$\mathsf{iRCA}_0^{\omega} \vdash \forall u \exists x \forall y \exists v (p(x, y) \to q(u, v)),$$

provided *P* and *Q* are total and $p(x, y) \rightarrow q(u, v)$ is in Γ_1 .

- iRCA₀^ω is an intuitionistic version of RCA₀ with higher types.
- Γ_1 limits the use of \exists .

Versions of LPO

LPO: Input: A function $f : \mathbb{N} \to \mathbb{N}$ Output: 0 if $0 \notin Range(f)$ and n+1 if n is least with f(n) = 0

LPO_{*t*}: Input: A function $f : \mathbb{N} \to \mathbb{N}$ Output: 0 if $0 \notin Range(f)$ and 1 otherwise.

Note: LPO_t \equiv_W LPO but LPO_t $<_{sW}$ LPO.

Versions of LPO

LPO: Input: A function
$$f : \mathbb{N} \to \mathbb{N}$$

Output: 0 if $0 \notin Range(f)$ and
 $n+1$ if n is least with $f(n) = 0$

$$LPO(f) = n \text{ is: } (n = 0 \land \forall x(f(x) \neq 0)) \lor \\ (n \neq 0 \land f(n-1) = 0 \land \forall j < n-1(f(j) \neq 0))$$

LPO_t: Input: A function $f : \mathbb{N} \to \mathbb{N}$ Output: 0 if $0 \notin Range(f)$ and 1 otherwise.

 $LPO_t(f) = n \text{ is:}$ $(n = 0 \land \forall x(f(x) \neq 0)) \lor (n \neq 0 \land \exists x(f(x) = 0))$

Note: LPO_t \equiv_W LPO but LPO_t $<_{sW}$ LPO.

Colorability of initial subgraphs

If *G* is a graph with vertices $\{v_0, v_1, v_2, ...\}$, let G_n be the induced subgraph with vertices $\{v_0, v_1, v_2, ..., v_n\}$.

LG2 Input: A graph *G*. Output: 0 if every G_k has a 2-coloring, $n \neq 0$ is G_n is the first non-2-colorable initial subgraph.

(日) (日) (日) (日) (日) (日) (日)

Prop: iRCA₀^{ω} proves the implications associated with LG2 \leq_W LPO and LPO \leq_W LG2.

Coro: iRCA₀^{ω} proves LG2 \equiv_W LPO

Parallelization

Parallelization preserves Weihrauch equivalence in the formal setting. We know iRCA₀^{ω} proves LG2 \equiv_W LPO.

Coro: iRCA_0^{\omega} proves $\widehat{LG2} \equiv_W \widehat{LPO}$

Coro: Over iRCA₀, the following are equivalent:

- (1) LG2
- (2) **LPO**
- (3) ACA₀

In the last corollary we are conflating (for example) $\widehat{\text{LPO}}$ with the second order arithmetic statement that for every sequence of functions there is a sequence of natural numbers such that for all *n*, the *n*th sequence element is the solution to LPO for *f_n*.

Why formalize?

It is messy to do even simple Weihrauch reductions in the formal setting. However...

- Formalization allows us to use Weihrauch methodology (e.g. parallelization) to prove results of reverse mathematics.
- In intuitionistic systems, proofs of reductions could be mined to extract pre/post processing algorithms. If the proofs act as verifications for the algorithms, this is a framework for deriving new verified problem solvers from a trusted library.

References

- Vasco Brattka, Guido Gherardi, and Arno Pauly, Weihrauch Complexity in computable analysis (2018), 1–61. arXiv:1707.03202.
- [2] Jeffry L. Hirst and Steffen Lempp, Infinite versions of some problems from finite complexity theory, Notre Dame J. Formal Logic 37 (1996), no. 4, 545–553, DOI 10.1305/ndjfl/1040046141. MR1446228
- [3] Jeffry L. Hirst and Carl Mummert, Using Ramsey's theorem once, Arch. Math. Logic 58 (2019), no. 7-8, 857–866, DOI 10.1007/s00153-019-00664-z. MR4003638

(ロ) (同) (三) (三) (三) (三) (○) (○)