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Motivation

The following pattern was noted with Steffen Lempp [2]

Finite Infinite
Euler P ACAg
Hamilton | NP complete | TT]—CA,

Does this pattern persist? No.

Does Weihrauch analysis tell us something different?



Weihrauch reductions

A problem P is weakly Weihrauch reducible to a problem Q
(denoted P <y Q) if we can find

e a computable pre-processor and
e a computable post-processor such that for every Q solver
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is a P solver.
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Wiehrauch problems and TT]—CA

Work with Zack BeMent

WF: Input: Atree T in N<N
Output: 0 if T is not well founded, 1 otherwise.

SL  Input: Agraph G
Output: 1 if the graph L is isomorphic to a subgraph of G,
0 otherwise.

The graph L:




Wiehrauch problems and TT]—CA

WF: Input: Atree T in N<N
QOutput: 0if T is not well founded, 1 otherwise.

S.  Input: Agraph G
Output: 1 if the graph L is isomorphic to a subgraph of G,
0 otherwise.

Prop: WF =,w S,.

WF <.w S_ preprocessing: A tree is a graph.
postprocessing: Flip the output bit.

S <sw WF preprocessing: Build the tree of initial
segments of isomorphisms from L into G.
postprocessing: Flip the output bit.



Wiehrauch problems and TT]—CA

WF: Input: Atree T in NY
Output: 0if T is not well founded, 1 otherwise.

SL  Input: A graph G
Output: 1 if the graph L is isomorphic to a subgraph of G,
0 otherwise.

Prop: WF =g S,.
Coro: WF =W é\L
WF: Input: A sequence of trees (T;) in NN

Output: A function f: N — 2 such that f(i) = 0 if T; is not
well founded, 1 otherwise.



Wiehrauch problems and TT]—CA

Sp: Input: A graph G
QOutput: A function f such that f(n) = 1 iff

L, is isomorphic to a subgraph of G

The graph Ly:

The graph L;:




Wiehrauch problems and TT]—CA

Syt Input: A graph G
Output: A function f such that f(n) = 1 iff
L, is isomorphic to a subgraph of G

Prop: WF =sw Sp

A graph construction:



A question: Fixed graphs as subgraphs

LPO: Input: A function f: N — N
Output: 0if 0 ¢ Range(f) and
n+1if nis least with f(n) =0

Prop: If F is a finite graph with at least two vertices, then
SF =W LPO.

Is there a graph H satisfying the following inequality?

LPO =w SF <w Sy <w S; =w WF



Subgraphs of a fixed graph

SG:  Input: A graph H
Output: 1 if H is isomorphic to a subgraph of G,
0 otherwise.

Suppose K is the complete (countable) graph and D is the
totally disconnected graph.

Prop: S¥X = SP = LPO.
Is there a graph G with SC =\, WF?

There is a computable graph G such that every S€ solver
computes a £1-complete set. [2]



Formal Weihrauch reducibility

Work with Asuka Wallace

We can carry out Weihrauch analysis in higher order arithmetic.
The following is a consequence of work with Carl Mummert [3].

Thm: If p(x, y) formalizes “y is a solution of the instance x of
the problem P” and q(x, y) formalizes the problem Q, then
iRCA’ FQ<w P
if and only if
iRCAy F YuaxVy3v(p(x,y) — q(u, v)),
provided P and Q are total and p(x, y) — q(u, v) isin Ty.

e iRCAy’ is an intuitionistic version of RCAq with higher
types.

e [ limits the use of 3.



Versions of LPO

LPO: Input: Afunction f: N — N
Output: 0if 0 ¢ Range(f) and
n+1if nis least with f(n) =0

LPO;: Input: A function f: N — N
Output: 0if 0 ¢ Range(f) and 1 otherwise.

Note: LPO; =w LPO but LPO; <gw LPO.



Versions of LPO

LPO: Input: A function f: N — N
Output: 0if 0 ¢ Range(f) and
n+1if nis least with f(n) =0

LPO(f) = nis: (n=0AVx(f(x) #0))V
(n#£0ANf(n—1)=0AVj<n—1(f(j) #0))
LPO;¢: Input: A function f: N — N
Output: 0if 0 ¢ Range(f) and 1 otherwise.
LPO¢(f) = nis:
(n=0ANAVx(f(x) #0)) V (n#0A3x(f(x) =0))

Note: LPO; =y LPO but LPO; <gw LPO.



Colorability of initial subgraphs

If G is a graph with vertices {vp, vq, vo, ...}, let G, be the
induced subgraph with vertices {vp, v1, Vo, ... Vu}.

LG2 Input: A graph G.

Output: 0 if every Gk has a 2-coloring, n # 0 is G is the
first non-2-colorable initial subgraph.

Prop: iRCAy’ proves the implications associated with
LG2 <w LPO and LPO <y LG2.

Coro: iRCAy’ proves LG2 =y LPO



Parallelization
Parallelization preserves Weihrauch equivalence in the formal
setting. We know iRCAy’ proves LG2 =y LPO.

Coro: iRCAY proves LG2 = LPO

Coro: Over iRCAy, the following are equivalent:
(1) LG2

) LPO

(3) ACAq

In the last corollary we are conflating (for example) LPO with
the second order arithmetic statement that for every sequence
of functions there is a sequence of natural numbers such that
for all n, the n sequence element is the solution to LPO for f,.



Why formalize?

It is messy to do even simple Weihrauch reductions in the
formal setting. However. ..

e Formalization allows us to use Weihrauch methodology
(e.g. parallelization) to prove results of reverse
mathematics.

¢ In intuitionistic systems, proofs of reductions could be
mined to extract pre/post processing algorithms. If the
proofs act as verifications for the algorithms, this is a
framework for deriving new verified problem solvers from a
trusted library.
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