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Motivation

The following pattern was noted with Steffen Lempp [2]

Finite Infinite
Euler P ACA0
Hamilton NP complete Π1

1−CA0

Does this pattern persist? No.

Does Weihrauch analysis tell us something different?



Weihrauch reductions

A problem P is weakly Weihrauch reducible to a problem Q
(denoted P 6W Q) if we can find
• a computable pre-processor and
• a computable post-processor such that for every Q solver

is a P solver.



Weihrauch reductions

A problem P strongly Weihrauch reducible to a problem Q
(denoted P 6sW Q) if we can find
• a computable pre-processor and
• a computable post-processor such that for every Q solver

is a P solver.



Wiehrauch problems and Π1
1−CA0

Work with Zack BeMent

WF: Input: A tree T in N<N

Output: 0 if T is not well founded, 1 otherwise.

SL Input: A graph G
Output: 1 if the graph L is isomorphic to a subgraph of G,

0 otherwise.

The graph L:



Wiehrauch problems and Π1
1−CA0

WF: Input: A tree T in N<N

Output: 0 if T is not well founded, 1 otherwise.

SL Input: A graph G
Output: 1 if the graph L is isomorphic to a subgraph of G,

0 otherwise.

Prop: WF ≡sW SL.

WF 6sW SL preprocessing: A tree is a graph.
postprocessing: Flip the output bit.

SL 6sW WF preprocessing: Build the tree of initial
segments of isomorphisms from L into G.

postprocessing: Flip the output bit.



Wiehrauch problems and Π1
1−CA0

WF: Input: A tree T in NN

Output: 0 if T is not well founded, 1 otherwise.

SL Input: A graph G
Output: 1 if the graph L is isomorphic to a subgraph of G,

0 otherwise.

Prop: WF ≡sW SL.

Coro: ŴF ≡sW ŜL.

ŴF: Input: A sequence of trees 〈Ti〉 in NN

Output: A function f : N→ 2 such that f (i) = 0 if Ti is not
well founded, 1 otherwise.



Wiehrauch problems and Π1
1−CA0

SL̂: Input: A graph G
Output: A function f such that f (n) = 1 iff

Ln is isomorphic to a subgraph of G

The graph L0:

The graph L1:



Wiehrauch problems and Π1
1−CA0

SL̂: Input: A graph G
Output: A function f such that f (n) = 1 iff

Ln is isomorphic to a subgraph of G

Prop: ŴF ≡sW SL̂

A graph construction:



A question: Fixed graphs as subgraphs

LPO: Input: A function f : N→ N
Output: 0 if 0 /∈ Range(f ) and

n + 1 if n is least with f (n) = 0

Prop: If F is a finite graph with at least two vertices, then
SF ≡W LPO.

Is there a graph H satisfying the following inequality?

LPO ≡W SF <W SH <W SL ≡W WF



Subgraphs of a fixed graph

SG: Input: A graph H
Output: 1 if H is isomorphic to a subgraph of G,

0 otherwise.

Suppose K is the complete (countable) graph and D is the
totally disconnected graph.

Prop: SK ≡W SD ≡W LPO.

Is there a graph G with SG ≡W WF?

There is a computable graph G such that every SG solver
computes a Σ1

1-complete set. [2]



Formal Weihrauch reducibility

Work with Asuka Wallace

We can carry out Weihrauch analysis in higher order arithmetic.
The following is a consequence of work with Carl Mummert [3].

Thm: If p(x , y) formalizes “y is a solution of the instance x of
the problem P” and q(x , y) formalizes the problem Q, then

iRCAω
0 ` Q 6W P

if and only if
iRCAω

0 ` ∀u∃x∀y∃v(p(x , y)→ q(u, v)),
provided P and Q are total and p(x , y)→ q(u, v) is in Γ1.

• iRCAω
0 is an intuitionistic version of RCA0 with higher

types.
• Γ1 limits the use of ∃.



Versions of LPO
LPO: Input: A function f : N→ N

Output: 0 if 0 /∈ Range(f ) and
n + 1 if n is least with f (n) = 0

LPOt : Input: A function f : N→ N
Output: 0 if 0 /∈ Range(f ) and 1 otherwise.

Note: LPOt ≡W LPO but LPOt <sW LPO.



Versions of LPO

LPO: Input: A function f : N→ N
Output: 0 if 0 /∈ Range(f ) and

n + 1 if n is least with f (n) = 0

LPO(f ) = n is: (n = 0 ∧ ∀x(f (x) 6= 0))∨
(n 6= 0 ∧ f (n − 1) = 0 ∧ ∀j < n − 1(f (j) 6= 0))

LPOt : Input: A function f : N→ N
Output: 0 if 0 /∈ Range(f ) and 1 otherwise.

LPOt(f ) = n is:
(n = 0 ∧ ∀x(f (x) 6= 0))∨ (n 6= 0 ∧ ∃x(f (x) = 0))

Note: LPOt ≡W LPO but LPOt <sW LPO.



Colorability of initial subgraphs

If G is a graph with vertices {v0, v1, v2, . . . }, let Gn be the
induced subgraph with vertices {v0, v1, v2, . . . vn}.

LG2 Input: A graph G.
Output: 0 if every Gk has a 2-coloring, n 6= 0 is Gn is the

first non-2-colorable initial subgraph.

Prop: iRCAω
0 proves the implications associated with

LG2 6W LPO and LPO 6W LG2.

Coro: iRCAω
0 proves LG2 ≡W LPO



Parallelization
Parallelization preserves Weihrauch equivalence in the formal
setting. We know iRCAω

0 proves LG2 ≡W LPO.

Coro: iRCAω
0 proves L̂G2 ≡W L̂PO

Coro: Over iRCA0, the following are equivalent:

(1) L̂G2

(2) L̂PO
(3) ACA0

In the last corollary we are conflating (for example) L̂PO with
the second order arithmetic statement that for every sequence
of functions there is a sequence of natural numbers such that
for all n, the nth sequence element is the solution to LPO for fn.



Why formalize?

It is messy to do even simple Weihrauch reductions in the
formal setting. However. . .

• Formalization allows us to use Weihrauch methodology
(e.g. parallelization) to prove results of reverse
mathematics.

• In intuitionistic systems, proofs of reductions could be
mined to extract pre/post processing algorithms. If the
proofs act as verifications for the algorithms, this is a
framework for deriving new verified problem solvers from a
trusted library.
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