Reverse Mathematics of Two Theorems of Graph Theory

Jeff Hirst Appalachian State University Boone, NC

March 5, 2010

Mathematics Colloquium College of Charleston

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The rule: Vertices connected by an edge must have different colors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The rule: Vertices connected by an edge must have different colors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The rule: Vertices connected by an edge must have different colors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The rule: Vertices connected by an edge must have different colors.

Theorem

Every graph with no cycles of odd length can be 2-colored.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The rule: Vertices connected by an edge must have different colors.

Theorem

Every graph with no cycles of odd length can be 2-colored.

What is the logical strength of this statement?

・ コット (雪) (小田) (コット 日)

Reverse Mathematics

Goal: Determine exactly which set existence axioms are needed to prove familiar theorems.

Method: Prove results of the form

 $\mathsf{RCA}_0 \vdash \boldsymbol{AX} \leftrightarrow \boldsymbol{THM}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

where:

- RCA₀ is a weak axiom system,
- **AX** is a set existence axiom selected from a small hierarchy of axioms, and
- **THM** is a familiar theorem.

Why bother?

Work in reverse mathematics can:

- precisely categorize the logical strength of theorems.
- differentiate between different proofs of theorems.
- provide insight into the foundations of mathematics.
- utilize and contribute to work in many subdisciplines of mathematical logic – including proof theory, computability theory, models of arithmetic, etc.

(日) (日) (日) (日) (日) (日) (日)

RCA₀

Language:

Integer variables: x, y, z Set variables: X, Y, Z

Axioms:

basic arithmetic axioms

(0, 1, +, \times , =, and < behave as usual.)

Restricted induction

 $(\psi(\mathbf{0}) \land \forall n(\psi(n) \rightarrow \psi(n+1))) \rightarrow \forall n\psi(n)$

where $\psi(n)$ has (at most) one number quantifier.

Recursive set comprehension

If $\theta \in \Sigma_1^0$ and $\psi \in \Pi_1^0$, and $\forall n(\theta(n) \leftrightarrow \psi(n))$, then there is a set X such that $\forall n(n \in X \leftrightarrow \theta(n))$

 The smallest ω-model of RCA₀ consists of the usual natural numbers and the computable sets of natural numbers. We write M = (ω, REC).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- The smallest ω -model of RCA₀ consists of the usual natural numbers and the computable sets of natural numbers. We write $\mathfrak{M} = \langle \omega, \mathsf{REC} \rangle$.
- Elements of countable collections of objects can be identified with natural numbers.

(ロ) (同) (三) (三) (三) (○) (○)

- The smallest ω -model of RCA₀ consists of the usual natural numbers and the computable sets of natural numbers. We write $\mathfrak{M} = \langle \omega, \mathsf{REC} \rangle$.
- Elements of countable collections of objects can be identified with natural numbers.
- RCA₀ can prove the arithmetic associated with pairing functions.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The smallest ω -model of RCA₀ consists of the usual natural numbers and the computable sets of natural numbers. We write $\mathfrak{M} = \langle \omega, \mathsf{REC} \rangle$.
- Elements of countable collections of objects can be identified with natural numbers.
- RCA₀ can prove the arithmetic associated with pairing functions.
- Sets of pairs correspond to functions and/or countable sequences.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The smallest ω -model of RCA₀ consists of the usual natural numbers and the computable sets of natural numbers. We write $\mathfrak{M} = \langle \omega, \mathsf{REC} \rangle$.
- Elements of countable collections of objects can be identified with natural numbers.
- RCA₀ can prove the arithmetic associated with pairing functions.
- Sets of pairs correspond to functions and/or countable sequences.
- Many mathematical concepts can be encoded in terms of such sequences. Second order arithmetic is remarkably expressive.

Examples

Theorem (RCA_0) Every finite graph with no cycles of odd length can be 2-colored.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Examples

Theorem (RCA_0) Every finite graph with no cycles of odd length can be 2-colored.

Theorem (RCA_0) Every connected graph with no cycles of odd length can be 2-colored.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

WKL₀

Weak König's Lemma

Statement: Big very skinny trees are tall.

More formally: If T is an infinite tree in which each node is labeled 0 or 1, then T contains an infinite path.

The subsystem WKL₀ is RCA₀ plus Weak König's Lemma.

There is an infinite computable 0 - 1 tree with no infinite computable path, so $\langle \omega, \text{REC} \rangle$ is not a model of WKL₀.

Conclusion: $RCA_0 \not\vdash WKL_0$

Finally! Some reverse mathematics!

Theorem

(RCA₀) The following are equivalent:

1. WKL₀.

2. Every graph with no cycles of odd length can be 2-colored.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Suppose *G* is a graph with vertices $v_0, v_1, v_2, ...$ and no odd cycles.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Suppose *G* is a graph with vertices $v_0, v_1, v_2, ...$ and no odd cycles.

We need to use a 0 - 1 tree to cook up a 2-coloring of G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Suppose *G* is a graph with vertices $v_0, v_1, v_2, ...$ and no odd cycles.

We need to use a 0 - 1 tree to cook up a 2-coloring of *G*.

Let *T* be the tree consisting of sequences of the form $\langle i_0, i_1, \ldots, i_n \rangle$ where the sequence is a correct 2-coloring of the subgraph of *G* on the vertices v_0, v_1, \ldots, v_n .

Since *G* has no odd cycles, RCA_0 proves *T* contains infinitely many nodes.

Suppose *G* is a graph with vertices $v_0, v_1, v_2, ...$ and no odd cycles.

We need to use a 0 - 1 tree to cook up a 2-coloring of *G*.

Let *T* be the tree consisting of sequences of the form $\langle i_0, i_1, \ldots, i_n \rangle$ where the sequence is a correct 2-coloring of the subgraph of *G* on the vertices v_0, v_1, \ldots, v_n .

Since *G* has no odd cycles, RCA_0 proves *T* contains infinitely many nodes.

Any path through T is the desired 2-coloring.

A tool for reversals

Theorem

(RCA₀) The following are equivalent:

1. WKL₀.

2. If f and g are injective functions from \mathbb{N} into \mathbb{N} and $Ran(f) \cap Ran(g) = \emptyset$, then there is a set X such that $Ran(f) \subset X$ and $X \cap Ran(g) = \emptyset$.

(ロ) (同) (三) (三) (三) (○) (○)

Comment: X in (2) is like a separating set for disjoint computably enumerable sets.

Suppose we are given *f* and *g* with $Ran(f) \cap Ran(g) = \emptyset$.

If, for example, f(3) = 0 and g(2) = 2, we will construct the graph *G* as follows:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Suppose we are given *f* and *g* with $Ran(f) \cap Ran(g) = \emptyset$.

If, for example, f(3) = 0 and g(2) = 2, we will construct the graph *G* as follows:

(日) (日) (日) (日) (日) (日) (日)

Add straight links for f and and shifted links for g.

Suppose we are given *f* and *g* with $Ran(f) \cap Ran(g) = \emptyset$.

If, for example, f(3) = 0 and g(2) = 2, we will construct the graph *G* as follows:

Add straight links for *f* and and shifted links for *g*, and 2-color.

Suppose we are given *f* and *g* with $Ran(f) \cap Ran(g) = \emptyset$.

If, for example, f(3) = 0 and g(2) = 2, we will construct the graph *G* as follows:

Add straight links for *f* and and shifted links for *g*, and 2-color.

A few other theorems equivalent to WKL₀.

Theorem

(RCA₀) The following are equivalent:

- 1. WKL₀.
- 2. Every ctn. function on [0, 1] is bounded. (Simpson)
- 3. The closed interval [0, 1] is compact. (Friedman)
- 4. Every closed subset of $\mathbb{Q}\cap [0,1]$ is compact. (Hirst)
- 5. Existence theorem for solutions to ODEs. (Simpson)
- 6. The line graph of a bipartite graph is bipartite. (Hirst)
- 7. If $\langle x_n \rangle_{n \in \mathbb{N}}$ is a sequence of real numbers then there is a sequence of natural numbers $\langle i_n \rangle_{n \in \mathbb{N}}$ such that for each *j*, $x_{i_j} = \min\{x_n \mid n \le j\}$. (Hirst)

Arithmetical Comprehension

 ACA_0 is RCA_0 plus the following comprehension scheme:

For any formula $\theta(n)$ with only number quantifiers, the set $\{n \in \mathbb{N} \mid \theta(n)\}$ exists.

The minimum ω model of ACA₀ contains all the arithmetically definable sets.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Note: WKL₀ \nvdash ACA₀, but ACA₀ \vdash WKL₀.

ACA₀ and Graph Theory

Theorem

(RCA₀) The following are equivalent:

- 1. ACA_0
- 2. Every graph can be decomposed into its connected components.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

ACA₀ and Graph Theory

Theorem

(RCA₀) The following are equivalent:

- 1. ACA₀
- 2. Every graph can be decomposed into its connected components.

Observation: The proof of "every graph with no odd cycles can be two colored" that starts by decomposing the graph into its connected components makes use of the strong axiom ACA_0 . That proof is provably distinct from our proof in WKL_0 .

Other theorems equivalent to ACA₀

Theorem

(RCA₀) The following are equivalent:

- $1. \ ACA_0.$
- 2. Bolzano-Weierstraß theorem. (Friedman)
- 3. Cauchy sequences converge. (Simpson)
- 4. Ramsey's theorem for triples. (Simpson)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Other theorems equivalent to ACA₀

Theorem (RCA₀) *The following are equivalent:*

- 1. ACA₀.
- 2. Bolzano-Weierstraß theorem. (Friedman)
- 3. Cauchy sequences converge. (Simpson)
- 4. Ramsey's theorem for triples. (Simpson)

General rule of thumb: ACA₀ suffices for undergraduate math.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 RCA_0 proves transfinite induction for arithmetical formulas implies ACA_0 . (Hirst)

Other theorems equivalent to ACA₀

Theorem (RCA₀) *The following are equivalent:*

- 1. ACA₀.
- 2. Bolzano-Weierstraß theorem. (Friedman)
- 3. Cauchy sequences converge. (Simpson)
- 4. Ramsey's theorem for triples. (Simpson)

General rule of thumb: ACA₀ suffices for undergraduate math.

 RCA_0 proves transfinite induction for arithmetical formulas implies ACA_0 . (Hirst)

Conclusion: All undergraduate math can be done via transfinite induction arguments.

Ramsey's theorem on trees

RT¹: If $f : \mathbb{N} \to k$ then there is a $c \le k$ and an infinite set H such that $\forall n \in H f(n) = c$.

TT¹: For any finite coloring of $2^{<\mathbb{N}}$, there is a monochromatic subtree order-isomorphic to $2^{<\mathbb{N}}$.

These results extend to colorings of *n*-tuples.

TTⁿ_k parallels RTⁿ_k

TT_n^k: For any *k* coloring of the *n*-tuples of comparable nodes in $2^{<\mathbb{N}}$, there is a color and a subtree order-isomorphic to $2^{<\mathbb{N}}$ in which all *n*-tuples of comparable nodes have the specified color.

Note: RT_k^n is an easy consequence of TT_k^n

Results in Chubb, Hirst, and McNichol:

- There is a computable coloring with no Σ⁰_n monochromatic subtree. (Free.)
- Every computable coloring has a Π⁰_n monochromatic subtree. (Not free.)
- For $n \ge 3$ and $k \ge 2$, $\text{RCA}_0 \vdash \text{TT}_k^n \leftrightarrow \text{ACA}_0$.

TT¹ and TT² are problematic

 $RCA_0 + \Sigma_2^0 - IND$ can prove TT^1 .

 $RCA_0 + RT^1$ does not suffice to prove TT^1 . Corduan, Groszek, and Mileti

Question: Does TT^1 imply $\Sigma_2^0 - IND$?

TT¹ and TT² are problematic

 $RCA_0 + \Sigma_2^0 - IND$ can prove TT^1 .

 $RCA_0 + RT^1$ does not suffice to prove TT^1 . Corduan, Groszek, and Mileti

Question: Does TT^1 imply $\Sigma_2^0 - IND$?

 $RCA_0 + RT^2$ does not imply ACA_0 . (Seetapun)

Does $RCA_0 + TT^2$ imply ACA_0 ? Does $RCA_0 + TT^2$ imply WKL_0 ?

References

- Harvey Friedman, Abstracts: Systems of second order arithmetic with restricted induction, I and II, J. Symbolic Logic 41 (1976), 557–559.
- [2] Stephen G. Simpson, *Subsystems of second order arithmetic*, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009.
- [3] Jennifer Chubb, Jeffry L. Hirst, and Timothy H. McNicholl, *Reverse mathematics, computability, and partitions of trees*, J. Symbolic Logic **74** (2009), no. 1, 201–215.

(ロ) (同) (三) (三) (三) (○) (○)

[4] Jared Corduan, Marsha Groszek, and Joseph Mileti, *Reverse mathematics and Ramsey's property for trees*, J. Symbolic Logic. To appear.