Introduction to Reverse Mathematics with Applications

Jeff Hirst Appalachian State University Boone, NC

February 5, 2010

CUNY Logic Workshop The City University of New York

Reverse Mathematics

Goal: Determine exactly which set existence axioms are needed to prove familiar theorems.

Method: Prove results of the form

$$\mathsf{RCA}_0 \vdash \mathbf{AX} \leftrightarrow \mathbf{THM}$$

where:

- RCA₀ is a weak axiom system,
- AX is a set existence axiom selected from a small hierarchy of axioms, and
- THM is a familiar theorem.

Why bother?

Work in reverse mathematics can:

- precisely categorize the logical strength of theorems.
- differentiate between different proofs of theorems.
- provide insight into the foundations of mathematics.
- utilize and contribute to work in many subdisciplines of mathematical logic – including proof theory, computability theory, models of arithmetic, etc.

RCA₀

Language:

Integer variables: x, y, z Set variables: X, Y, Z

Axioms:

basic arithmetic axioms

$$(0, 1, +, \times, =, and < behave as usual.)$$

Restricted induction

$$(\psi(0) \land \forall n(\psi(n) \to \psi(n+1))) \to \forall n\psi(n)$$

where $\psi(n)$ has (at most) one number quantifier.

Recursive set comprehension

If
$$\theta \in \Sigma_1^0$$
 and $\psi \in \Pi_1^0$, and $\forall n(\theta(n) \leftrightarrow \psi(n))$, then there is a set X such that $\forall n(n \in X \leftrightarrow \theta(n))$

The smallest ω -model of RCA $_0$ consists of the usual natural numbers and the computable sets of natural numbers. We write $\mathfrak{M}=\langle \omega, \mathsf{REC} \rangle.$

The smallest ω -model of RCA $_0$ consists of the usual natural numbers and the computable sets of natural numbers. We write $\mathfrak{M}=\langle \omega, \mathsf{REC} \rangle.$

Any theorem of RCA_0 must hold in this model. It's very useful for building intuition.

The smallest ω -model of RCA $_0$ consists of the usual natural numbers and the computable sets of natural numbers. We write $\mathfrak{M}=\langle \omega, \mathsf{REC} \rangle.$

Any theorem of RCA₀ must hold in this model. It's very useful for building intuition.

 RCA_0 proves that if $f: \mathbb{N} \to 2$, then there is an infinite set X such that f is constant on X.

The smallest ω -model of RCA $_0$ consists of the usual natural numbers and the computable sets of natural numbers. We write $\mathfrak{M}=\langle \omega, \mathsf{REC} \rangle.$

Any theorem of RCA₀ must hold in this model. It's very useful for building intuition.

 RCA_0 proves that if $f: \mathbb{N} \to 2$, then there is an infinite set X such that f is constant on X.

The intuition gained from the minimal model is useful, but sometimes misleading.

• Elements of countable collections of objects can be identified with natural numbers.

- Elements of countable collections of objects can be identified with natural numbers.
- RCA₀ can prove the arithmetic associated with pairing functions.

- Elements of countable collections of objects can be identified with natural numbers.
- RCA₀ can prove the arithmetic associated with pairing functions.
- Sets of pairs correspond to functions and/or countable sequences.

- Elements of countable collections of objects can be identified with natural numbers.
- RCA₀ can prove the arithmetic associated with pairing functions.
- Sets of pairs correspond to functions and/or countable sequences.
- Many mathematical concepts can be encoded in terms of such sequences. Second order arithmetic is remarkably expressive.

- Elements of countable collections of objects can be identified with natural numbers.
- RCA₀ can prove the arithmetic associated with pairing functions.
- Sets of pairs correspond to functions and/or countable sequences.
- Many mathematical concepts can be encoded in terms of such sequences. Second order arithmetic is remarkably expressive.
- Some coding can be averted: See Friedman's work on Strict Reverse Mathematics or Kohlenbach's Higher Order Reverse Mathematics in Reverse Mathematics 2001.

Theorem

(RCA₀) If $\langle x_n \rangle_{n \in \mathbb{N}}$ is a sequence of real numbers, then there is a sequence $\langle y_n \rangle_{n \in \mathbb{N}}$ such that for every j, $y_j = \min\{x_i \mid i \leq j\}$.

Theorem

(RCA₀) If $\langle x_n \rangle_{n \in \mathbb{N}}$ is a sequence of real numbers, then there is a sequence $\langle y_n \rangle_{n \in \mathbb{N}}$ such that for every j, $y_j = \min\{x_i \mid i \leq j\}$.

The idea behind the proof:

Here's a sequence of three real numbers, each represented as a rapidly converging Cauchy sequence of rationals.

```
x_0 = \langle 0 & .1 & .12 & .121 & .1212 & ... \rangle

x_1 = \langle .1 & .11 & .101 & .1001 & .100 & ... \rangle

x_2 = \langle .1 & .09 & .11 & .101 & .099 & ... \rangle
```

Theorem

(RCA₀) If $\langle x_n \rangle_{n \in \mathbb{N}}$ is a sequence of real numbers, then there is a sequence $\langle y_n \rangle_{n \in \mathbb{N}}$ such that for every j, $y_j = \min\{x_i \mid i \leq j\}$.

The idea behind the proof:

Here's a sequence of three real numbers, each represented as a rapidly converging Cauchy sequence of rationals.

$$x_0 = \langle 0 & .1 & .12 & .121 & .1212 & ... \rangle$$

 $x_1 = \langle .1 & .11 & .101 & .1001 & .100 & ... \rangle$
 $x_2 = \langle .1 & .09 & .11 & .101 & .099 & ... \rangle$

Build the minimum y_2 by choosing the least entry in each component.

Theorem

(RCA₀) If $\langle x_n \rangle_{n \in \mathbb{N}}$ is a sequence of real numbers, then there is a sequence $\langle y_n \rangle_{n \in \mathbb{N}}$ such that for every j, $y_j = \min\{x_i \mid i \leq j\}$.

The idea behind the proof:

Here's a sequence of three real numbers, each represented as a rapidly converging Cauchy sequence of rationals.

```
x_0 = \langle 0 & .1 & .12 & .121 & .1212 & ... \rangle

x_1 = \langle .1 & .11 & .101 & .1001 & .100 & ... \rangle

x_2 = \langle .1 & .09 & .11 & .101 & .099 & ... \rangle
```

Build the minimum y_2 by choosing the least entry in each component. So $y_2 = \langle 0.09.101.1001.999... \rangle$.

WKL₀

Weak König's Lemma

Statement: Big very skinny trees are tall.

More formally: If T is an infinite tree in which each node is labeled 0 or 1, then T contains an infinite path.

The subsystem WKL₀ is RCA₀ plus Weak König's Lemma.

There is an infinite computable 0-1 tree with no infinite computable path, so $\langle \omega, \text{REC} \rangle$ is not a model of WKL₀.

Conclusion: RCA₀ ⊬ WKL₀

• Any Scott system is a set universe for an ω model of WKL₀.

- Any Scott system is a set universe for an ω model of WKL₀.
- $\langle \omega, REC \rangle$ is the intersection of all the ω models of WKL₀.

- Any Scott system is a set universe for an ω model of WKL₀.
- $\langle \omega, REC \rangle$ is the intersection of all the ω models of WKL₀.
- There is no minimum ω model of WKL₀.

- Any Scott system is a set universe for an ω model of WKL₀.
- $\langle \omega, REC \rangle$ is the intersection of all the ω models of WKL₀.
- There is no minimum ω model of WKL₀.
- There is a model of WKL₀ in which every set is low.
 (Apply the Jockusch-Soare low basis theorem.)

- Any Scott system is a set universe for an ω model of WKL₀.
- $\langle \omega, REC \rangle$ is the intersection of all the ω models of WKL₀.
- There is no minimum ω model of WKL₀.
- There is a model of WKL₀ in which every set is low.
 (Apply the Jockusch-Soare low basis theorem.)

For more details, see Chapter VIII of Simpson's *Subsystems of Second Order Arithmetic*.

Finally! Some reverse mathematics!

Theorem

(RCA₀) The following are equivalent:

- 1. WKL₀.
- 2. Every graph with no cycles of odd length is bipartite.

Note: RCA₀ proves that a graph is bipartite if and only if there is a 2-coloring of its nodes.

Also, RCA₀ proves (2) for finite graphs.

Suppose G is a graph with vertices v_0, v_1, v_2, \ldots and no odd cycles.

Suppose G is a graph with vertices v_0, v_1, v_2, \ldots and no odd cycles.

We need to use a 0-1 tree to cook up a 2-coloring of G.

Suppose G is a graph with vertices v_0, v_1, v_2, \ldots and no odd cycles.

We need to use a 0-1 tree to cook up a 2-coloring of G.

Let T be the tree consisting of sequences of the form $\langle i_0, i_1, \ldots, i_n \rangle$ where the sequence is a correct 2-coloring of the subgraph of G on the vertices v_0, v_1, \ldots, v_n .

Since G has no odd cycles, RCA₀ proves T contains infinitely many nodes.

Suppose G is a graph with vertices v_0, v_1, v_2, \ldots and no odd cycles.

We need to use a 0-1 tree to cook up a 2-coloring of G.

Let T be the tree consisting of sequences of the form $\langle i_0, i_1, \ldots, i_n \rangle$ where the sequence is a correct 2-coloring of the subgraph of G on the vertices v_0, v_1, \ldots, v_n .

Since G has no odd cycles, RCA₀ proves T contains infinitely many nodes.

Any path through T is the desired 2-coloring.

A tool for reversals

Theorem

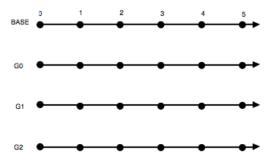
(RCA₀) The following are equivalent:

- 1. WKL₀.
- 2. If f and g are injective functions from $\mathbb N$ into $\mathbb N$ and $Ran(f)\cap Ran(g)=\emptyset$, then there is a set X such that $Ran(f)\subset X$ and $X\cap Ran(g)=\emptyset$.

Comment: X in (2) is like a separating set for disjoint computably enumerable sets.

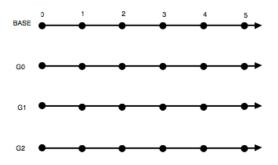
Suppose we are given f and g with $Ran(f) \cap Ran(g) = \emptyset$.

If, for example, f(3) = 0 and g(2) = 2, we will construct the graph G as follows:



Suppose we are given f and g with $Ran(f) \cap Ran(g) = \emptyset$.

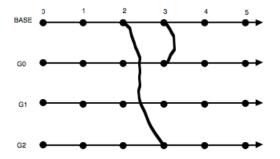
If, for example, f(3) = 0 and g(2) = 2, we will construct the graph G as follows:



Add straight links for f and and shifted links for g.

Suppose we are given f and g with $Ran(f) \cap Ran(g) = \emptyset$.

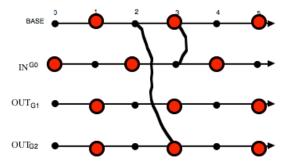
If, for example, f(3) = 0 and g(2) = 2, we will construct the graph G as follows:



Add straight links for f and and shifted links for g, and 2-color.

Suppose we are given f and g with $Ran(f) \cap Ran(g) = \emptyset$.

If, for example, f(3) = 0 and g(2) = 2, we will construct the graph G as follows:



Add straight links for f and and shifted links for g, and 2-color.

A few other theorems equivalent to WKL₀.

Theorem

(RCA₀) The following are equivalent:

- 1. WKL₀.
- 2. Every ctn. function on [0,1] is bounded. (Simpson)
- 3. The closed interval [0,1] is compact. (Friedman)
- **4**. Every closed subset of $\mathbb{Q} \cap [0,1]$ is compact. (Hirst)
- 5. Existence theorem for solutions to ODEs. (Simpson)
- 6. The line graph of a bipartite graph is bipartite. (Hirst)
- 7. If $\langle x_n \rangle_{n \in \mathbb{N}}$ is a sequence of real numbers then there is a sequence of natural numbers $\langle i_n \rangle_{n \in \mathbb{N}}$ such that for each j, $x_{ij} = \min\{x_n \mid n \leq j\}$. (Hirst)

Arithmetical Comprehension

ACA₀ is RCA₀ plus the following comprehension scheme:

For any formula $\theta(n)$ with only number quantifiers, the set $\{n \in \mathbb{N} \mid \theta(n)\}$ exists.

The minimum ω model of ACA₀ contains all the arithmetically definable sets.

Note: WKL₀ \forall ACA₀, but ACA₀ \vdash WKL₀.

ACA₀ and Graph Theory

Theorem

(RCA₀) The following are equivalent:

- 1. ACA₀
- 2. Every graph can be decomposed into its connected components.

Half of the proof: To prove that 1) implies 2), let G be a graph with vertices v_0, v_1, \dots

ACA₀ and Graph Theory

Theorem

(RCA₀) The following are equivalent:

- 1. ACA₀
- 2. Every graph can be decomposed into its connected components.

Half of the proof: To prove that 1) implies 2), let G be a graph with vertices v_0, v_1, \dots

Define f by letting f(n) be the least j such that there is a path from v_n to v_j .

ACA₀ and Graph Theory

Theorem

(RCA₀) The following are equivalent:

- 1. ACA₀
- 2. Every graph can be decomposed into its connected components.

Half of the proof: To prove that 1) implies 2), let G be a graph with vertices $v_0, v_1, ...$

Define f by letting f(n) be the least j such that there is a path from v_n to v_j .

By ACA_0 , f exists. f is the desired decomposition.

A tool for reversals to ACA₀

Theorem

(RCA₀) The following are equivalent:

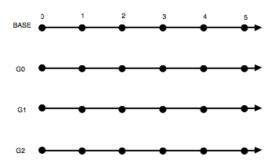
- 1. ACA₀
- 2. If $f : \mathbb{N} \to \mathbb{N}$ is 1-1, then Ran(f) exists.

Item (2) is analogous to asserting the existence of the Turing jump.

To prove that the graph decomposition theorem implies ACA_0 , we want to use a graph decomposition to calculate the range of a function.

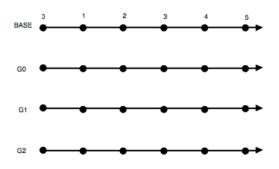
Suppose we are given an injection f.

If, for example, f(0) = 2 and f(1) = 0, we will construct the graph G as follows:



Suppose we are given an injection f.

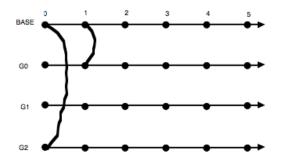
If, for example, f(0) = 2 and f(1) = 0, we will construct the graph G as follows:



Add links for each value of f.

Suppose we are given an injection f.

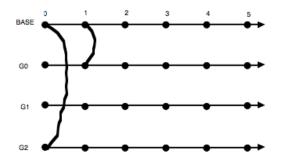
If, for example, f(0) = 2 and f(1) = 0, we will construct the graph G as follows:



Add links for each value of f.

Suppose we are given an injection f.

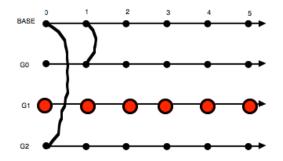
If, for example, f(0) = 2 and f(1) = 0, we will construct the graph G as follows:



Add links for each value of f. Decompose G.

Suppose we are given an injection f.

If, for example, f(0) = 2 and f(1) = 0, we will construct the graph G as follows:



The range of f is computable from the decomposition.

Theorem

- 1. ACA₀.
- 2. Bolzano-Weierstraß theorem. (Friedman)
- 3. Cauchy sequences converge. (Simpson)
- 4. Ramsey's theorem for triples. (Simpson)

Theorem

(RCA₀) The following are equivalent:

- 1. ACA₀.
- 2. Bolzano-Weierstraß theorem. (Friedman)
- 3. Cauchy sequences converge. (Simpson)
- 4. Ramsey's theorem for triples. (Simpson)

General rule of thumb: ACA₀ suffices for undergraduate math.

Theorem

(RCA₀) The following are equivalent:

- 1. ACA₀.
- 2. Bolzano-Weierstraß theorem. (Friedman)
- 3. Cauchy sequences converge. (Simpson)
- 4. Ramsey's theorem for triples. (Simpson)

General rule of thumb: ACA₀ suffices for undergraduate math.

 RCA_0 proves transfinite induction for arithmetical formulas is equivalent to ACA_0 . (Hirst and Simpson)

Theorem

(RCA₀) The following are equivalent:

- 1. ACA₀.
- 2. Bolzano-Weierstraß theorem. (Friedman)
- 3. Cauchy sequences converge. (Simpson)
- 4. Ramsey's theorem for triples. (Simpson)

General rule of thumb: ACA₀ suffices for undergraduate math.

 RCA_0 proves transfinite induction for arithmetical formulas is equivalent to ACA_0 . (Hirst and Simpson)

Conclusion: All undergraduate math can be done with transfinite induction arguments.

Arithmetical Transfinite Recursion

ATR₀ consists of RCA₀ plus axioms that allow iteration of arithmetical comprehension along any well ordering. This allows transfinite constructions.

A tool for proofs:

Theorem

(ATR₀) If $\psi(X)$ is a Σ_1^1 formula that is only satisfied by well ordered sets, then there is a well ordering β such that $\psi(X)$ implies $X < \beta$.

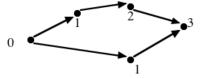
A tool for reversals:

Theorem

(RCA₀) ATR₀ is equivalent to "If α and β are well orderings, then $\alpha \leq \beta$ or $\beta \leq \alpha$."

ATR₀ and graph theory

A rank function for a directed acyclic graph is a function that maps the vertices onto a well ordering, preserving the ordering induced by the edges in a nice way.



Theorem

- 1. ATR₀
- 2. Every well founded directed acyclic graph with a source node has a rank function

Theorem

- 1. ATR₀.
- 2. Lusin's Separation Theorem: Any two disjoint analytic sets can be separated by a Borel set. (Simpson)
- 3. Mahlo's Theorem: Given any two countable closed compact subsets of the reals, one can be homeomorphically embedded in the other. (Friedman and Hirst)
- 4. Every countable reduced Abelian *p*-group has an Ulm resolution. (Friedman, Simpson, and Smith)
- 5. Sherman's Inequality: If α , β , and γ are countable well orderings, then $(\alpha + \beta)\gamma \leq \alpha\gamma + \beta\gamma$. (Hirst)

Π_1^1 comprehension

The system $\Pi_1^1 - \mathsf{CA}_0$ is RCA_0 plus the axioms asserting the existence of the set $\{n \in \mathbb{N} \mid \theta(n)\}$ for $\theta \in \Pi_1^1$. (That is, θ has one universal set quantifier and no other set quantifiers.)

A tool for reversals and some graph theory:

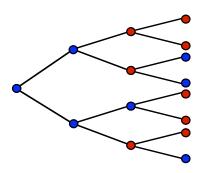
Theorem

- 1. $\Pi_1^1 CA_0$.
- 2. If $\langle T_i \rangle_{n \in \mathbb{N}}$ is a sequence of trees then there is a function $f: \mathbb{N} \to 2$ such that f(n) = 1 iff T_n is well founded.
- 3. For any graph H, and any sequence of graphs $\langle G_i \rangle_{i \in \mathbb{N}}$, there is a function $f: \mathbb{N} \to 2$ such that f(n) = 1 iff H is isomorphic to a subgraph of G. (Hirst and Lempp)

Ramsey's theorem on trees

RT¹: If $f: \mathbb{N} \to k$ then there is a $c \le k$ and an infinite set H such that $\forall n \in H f(n) = c$.

 TT^1 : For any finite coloring of $2^{<\mathbb{N}}$, there is a monochromatic subtree order-isomorphic to $2^{<\mathbb{N}}$.



TT_k parallels RT_k

 $\mathsf{TT}^{\mathsf{h}}_{\mathsf{h}}$: For any k coloring of the n-tuples of comparable nodes in $2^{<\mathbb{N}}$, there is a color and a subtree order-isomorphic to $2^{<\mathbb{N}}$ in which all n-tuples of comparable nodes have the specified color.

Note: RT_k^n is an easy consequence of TT_k^n

Results in Chubb, Hirst, and McNichol:

- There is a computable coloring with no Σ_n^0 monochromatic subtree. (Free.)
- Every computable coloring has a Π_n^0 monochromatic subtree. (Not free.)
- For $n \ge 3$ and $k \ge 2$, $RCA_0 \vdash TT_k^n \leftrightarrow ACA_0$.

TT¹ is problematic

 ${\sf RCA_0} + \Sigma_2^0 - {\sf IND}$ can prove ${\sf TT^1}$. ${\sf RCA_0} + {\sf RT^1}$ does not suffice to prove ${\sf TT^1}$. ${\sf Corduan}, \, {\sf Groszek}, \, {\sf and \, Mileti}$ Question: Does ${\sf TT^1}$ imply $\Sigma_2^0 - {\sf IND}$?

TT¹ is problematic

 $RCA_0 + \Sigma_2^0 - IND$ can prove TT^1 .

RCA₀ + RT¹ does not suffice to prove TT¹.

Corduan, Groszek, and Mileti

Question: Does TT¹ imply $\Sigma_2^0 - \text{IND}$?

$$f: [2^{<\mathbb{N}}]^2 \to k \text{ is 3-stable if}$$

$$\forall \sigma \in 2^{<\mathbb{N}} \exists c < k \forall \sigma' \supseteq \sigma \exists \tau \supset \sigma' \forall \rho \supseteq \tau \, f(\sigma, \rho) = c$$

 $S^3TT_2^2$ asserts that every 3-stable coloring of pairs in a tree has a monochromatic subtree order isomorphic to $2^{<\mathbb{N}}$.

Theorem: $RCA_0 + S^3TT_2^2 \vdash TT^1$.

Question: Does this theorem hold with 1-stable colorings?

References

- [1] Harvey Friedman, Abstracts: Systems of second order arithmetic with restricted induction, I and II, J. Symbolic Logic **41** (1976), 557–559.
- [2] Stephen G. Simpson, *Subsystems of second order arithmetic*, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009.
- [3] Jennifer Chubb, Jeffry L. Hirst, and Timothy H. McNicholl, Reverse mathematics, computability, and partitions of trees, J. Symbolic Logic 74 (2009), no. 1, 201–215.
- [4] Jared Corduan, Marsha Groszek, and Joseph Mileti, *Reverse mathematics and Ramsey's property for trees*, J. Symbolic Logic. To appear.
- [5] Damir Dzhafarov, Jeffry Hirst, and Tamara Lakins, Ramsey's theorem for trees: The polarized tree theorem and notions of stability, Archive for Mathematical Logic. To appear.