Coloring Problems and Reverse Mathematics

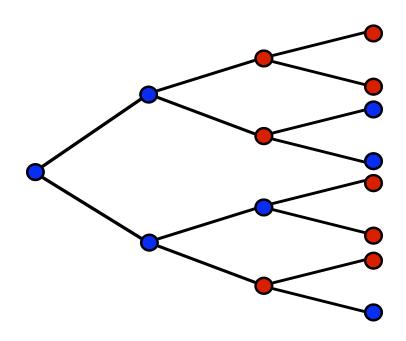
Jeff Hirst
Appalachian State University
October 16, 2008

These slides are available at: www.mathsci.appstate.edu/~jlh

Pigeonhole principles

 RT^1 : If $f: \mathbb{N} \to k$ then there is a $c \leq k$ and an infinite set H such that $\forall n \in H$ f(n) = c.

 TT^1 : For any finite coloring of $2^{<\mathbb{N}}$, there is a monochromatic subtree order-isomorphic to $2^{<\mathbb{N}}$.



A proof of TT^1

Lef **FIN** denote the set of finite subsets of N.

A version of Hindman's theorem:

Finite Union Theorem (FUT): If $f : \mathsf{FIN} \to \mathsf{k}$ then there is a $c \leq k$ and an infinite increasing sequence $\langle H_i \rangle_{i \in \mathbb{N}}$ of elements of FIN such that for every $F \in \mathsf{FIN}$

$$f(\cup_{i\in F}H_i)=c.$$

Claim: TT^1 is an easy consequence of FUT.

Sketch: Identify finite sets with sequences.

Question: Do we need FUT to prove TT^1 ?

Answer: No.

Reverse mathematics is often useful for answering this sort of question.

Brief overview of reverse mathematics

Reverse mathematics uses a hierarchy of axiom systems for second order arithmetic to analyze the relative strength of mathematical theorems.

 RCA_0 : basic arithmetic axioms, induction for Σ_1^0 formulas, comprehension for computable sets

WKL₀: RCA₀ plus a weak form of König's lemma

 ACA_0 : RCA_0 plus comprehension for sets defined by arithmetical formulas

Theorem [BHS] (RCA_0) FUT implies ACA_0 .

Theorem [CHM] (RCA₀) The least element principle for Σ_2^0 formulas (Σ_2^0 – IND) implies TT¹.

Sketch: Find a smallest set of colors such that for some node, every extension has a color in the set.

Corollary: The natural numbers together with the computable sets form a model of RCA_0 and TT^1 that is not a model FUT.

Related computability theoretic result: Every computable coloring of $2^{<\mathbb{N}}$ has a computable monochromatic subtree order isomorphic to $2^{<\mathbb{N}}$.

In reverse mathematics, equivalence results are optimal. The preceding results could be improved.

Question: Do we need $\Sigma_2^0 - \mathsf{IND}$ to prove TT^1 ?

Answer: Maybe. RCA_0 plus RT^1 does not prove TT^1 [CGM].

Question: Does ACA₀ prove FUT?

Answer: Maybe. The best known result is that the stronger system ACA_0^+ proves FUT [BHS].

Some more results on Ramsey's theorem

 RT^n_k : If $f: [\mathbb{N}]^n \to k$ then there is a c and an infinite $H \subset \mathbb{N}$ such that $f([H]^n) = c$.

 RT^n : $\forall k \mathsf{RT}^n_k$

 $RT: \forall nRT^n$

Sample reverse mathematics

- $\bullet \ \mathsf{RCA}_0 \vdash \mathsf{RT}^1 \leftrightarrow \mathsf{B}\Pi^0_1$
- $RCA_0 \not\vdash RT_2^2$ (Specker) $WKL_0 \not\vdash RT_2^2$ (Jockusch)
- For $n \ge 3$ and $k \ge 2$, $\mathsf{RCA}_0 \vdash \mathsf{RT}_k^n \leftrightarrow \mathsf{ACA}_0$ (Simpson)
- $RCA_0 \vdash RT \leftrightarrow ACA'_0$ (Mileti)

TT^n_k parallels RT^n_k

 TT^n_k : For any k coloring of the n-tuples of comparable nodes in $2^{<\mathbb{N}}$, there is a color and a subtree order-isomorphic to $2^{<\mathbb{N}}$ in which all n-tuples of comparable nodes have the specified color.

Note: RT^n_k is an easy consequence of TT^n_k

- For $n \geq 3$ and $k \geq 2$, $\mathsf{RCA}_0 \vdash \mathsf{TT}_k^n \leftrightarrow \mathsf{ACA}_0$ [CHM].
- $RCA_0 \vdash TT \leftrightarrow ACA'_0$. [AH plus Mileti]

Cholak, Jockusch, and Slaman showed $RCA_0 + RT_2^2 \not\vdash RT^2$.

Does
$$RCA_0 + TT_2^2 \vdash TT^2$$
?

Does
$$RCA_0 + TT_2^2 \vdash RT^2$$
?

Polarized partitions

Work with Damir Dzhafarov [DH]:

[IPTⁿ_k:] If $f : [\mathbb{N}]^n \to k$ then there is a c and a sequence of infinite sets $H_1 \dots H_n$ such that for any $x_1 < \dots < x_n$ (with $x_i \in H_i$ for all i) we have $f(x_1 \dots x_n) = c$.

Note: IPT_k^n is an easy consequence of RT_k^n .

Theorem: If $n \geq 3$ and $k \geq 2$, $\mathsf{RCA}_0 \vdash \mathsf{IPT}_k^n \leftrightarrow \mathsf{ACA}_0$.

Theorem: $RCA_0 \vdash IPT \leftrightarrow ACA'_0$.

IPT^2

 $f: [\mathbb{N}]^2 \to k$ is stable if $\lim_m f(n, m)$ exists for every n.

 SRT^2 is RT^2 for stable partitions.

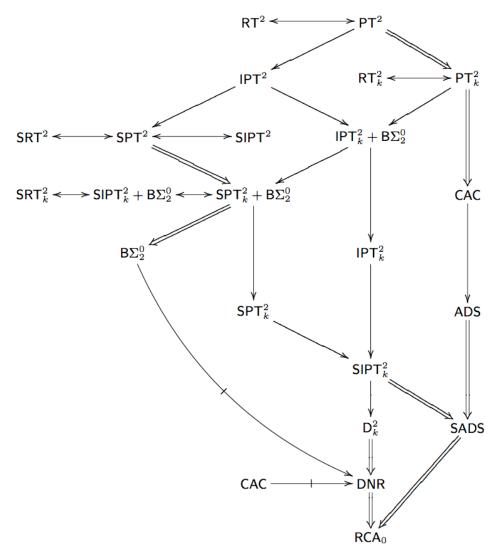
 $SIPT^2$ is IPT^2 for stable partitions.

Theorem: $RCA_0 \vdash SIPT^2 \rightarrow RT^1$

Theorem: $RCA_0 \vdash SIPT^2 \leftrightarrow SRT^2$

Consequence: $RCA_0 \vdash RT^2 \rightarrow IPT^2 \rightarrow SRT^2$

Question: Which of the converses hold?



Results contributed by: Cholak, Dzhafarov, Hirschfeldt, Hirst, Jockusch, Kjos-Hanssen, Lempp, Slaman, and Shore

A coloring problem equivalent to WKL₀

Theorem(RCA_0) The following are equivalent:

- (1) Weak König's Lemma.
- (2) Suppose G is a graph with no cycles of odd length. Then the vertices of G can be colored with two colors so that no neighboring vertices match.
- (3) Every graph with no cycles of odd length is bipartite.

References

- [1] Andreas R. Blass, Jeffry L. Hirst, and Stephen G. Simpson, Logical analysis of some theorems of combinatorics and topological dynamics, Logic and combinatorics (Arcata, Calif., 1985), Contemp. Math., vol. 65, Amer. Math. Soc., Providence, RI, 1987, pp. 125–156.
- [2] Jared Corduan, Marcia Groszek, and Joseph Mileti, Draft: A note on reverse mathematics and partitions of trees.
- [3] Jennifer Chubb, Jeffry Hirst, and Tim McNichol, Reverse mathematics and partitions of trees. To appear in J. Symbolic Logic.
- [4] Damir Dzhafarov and Jeffry Hirst, *The polarized Ramsey theorem*. To appear in Archive for Math. Logic.
- [5] Neil Hindman, Finite sums from sequences within cells of a partition of N, J. Combinatorial Theory Ser. A 17 (1974), 1–11.
- [6] Carl G. Jockusch Jr., Ramsey's theorem and recursion theory, J. Symbolic Logic **37** (1972), 268–280.
- [7] J. Mileti, Partition theory and computability theory. Ph.D. Thesis.
- [8] Stephen G. Simpson, Subsystems of second order arithmetic, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1999.
- [9] E. Specker, Ramsey's theorem does not hold in recursive set theory, Logic Colloquium (Manchester, 1969), Proc. Summer School and Colloq., North Holland, Amsterdam, 1971, pp. 439–442.