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Second order arithmetic with
comprehension for computable sets

RCA( plus arithmetical comprehension
ACA( plus 0(") exists for every n
RCA( plus Konig’s lemma for 0-1 trees

Ramsey’s theorem: If f : |[N|"* — k then
there is an infinite X such that f is con-
stant on | X]".

Ramsey’s theorem restricted to n = 3
and k£ = 2

Free Set Theorem: If f : [N]" — N then
there is an infinite X such that £ € X
and f(Z) € X imply f(Z¥) € ©.

Free set theorem for n = 3

Thin Set Theorem: If f : [N]” — N
then there is an infinite X such that

fIX]") #N
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