Reverse Analysis

Jeffry L. Hirst Appalachian State University Boone, North Carolina

George Washington University, 11/19/2004

These slides appear at: www.mathsci.appstate.edu/~jlh

For much more reverse mathematics, come to the AMS-ASL Special Session on Reverse Mathematics at the Joint Math Meetings in Atlanta on 1/5 and 1/6. http://www.ams.org/amsmtgs/2091_program_ss6.html

Reverse Mathematics

Goal: Determine what set existence axioms are needed to prove familiar theorems.

Method: Prove results of the form

 $\mathsf{RCA}_0 \vdash \mathsf{AX} \leftrightarrow \mathsf{THM}$

where:

 \bullet RCA_0 is a weak axiom system,

• AX is a set existence axiom selected from a small hierarchy of axioms, and

• THM is a familiar theorem.

 $\mathsf{RCA}_0\text{: Recursive Comprehension}$

Language:

Integer variables (x, y, z) and set variables (X, Y, Z)Axioms:

basic arithmetic axioms

 $(0, 1, +, \times, =, \text{ and } < \text{ behave as usual.})$

Restricted induction

 $(\psi(0) \land \forall n(\psi(n) \rightarrow \psi(n+1))) \rightarrow \forall n\psi(n)$ where $\psi(n)$ has (at most) one number quantifier.

Recursive set comprehension

If $\theta \in \Sigma_1^0$ and $\psi \in \Pi_1^0$, and $\forall n(\theta(n) \leftrightarrow \psi(n))$, then there is a set X such that $\forall n(n \in X \leftrightarrow \theta(n))$

 RCA_0 suffices to prove the existence of pairing functions.

Encoding the reals A real number is a function $x : \mathbb{N} \to \mathbb{Q}$ such that $\forall k \forall i \ |x(k) - x(k+i)| \leq 2^{-k}$ $\langle x(i) \rangle_{i \in \mathbb{N}}$ is a rapidly converging Cauchy seq. of rationals. Examples of reals

- $\sqrt{2}$: 1, 1.4, 1.41, 1.414, 1.4142, ...
 - π : 3, 3.1, 3.14, 3.141, 3.1415, ...
 - $0: \qquad 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$
 - 0: 0, 0, 0, 0, 0, ...

Definition. (RCA_0) If x is a real number, then a decimal expansion for x is a sequence y such that

 $y(0) \in \mathbb{Z},$

 $y(i) \in \{0, ..., 9\}$ for all i > 0, and

for all k, $|x(k) - y(0).y(1)y(2)...y(k)| \le 2^{-k+1}$.

Theorem 1. (RCA_0) If x is a real number, then it has a decimal expansion.

Proof. If x is rational, do the long division. If x is irrational, list enough of x to find $y(0) \in \mathbb{Z}$ so that y(0) < x < y(0) + 1. Divide [y(0), y(0) + 1] into ten subintervals and list enough of x to find a y(1) such that y(0).y(1) < x < y(0).y(1) + .1Iterate.

Weak König's Lemma

Statement: Big 0-1 trees are tall.

More formally: If T is an infinite tree in which each node is labeled 0 or 1, then T contains an infinite path.

 WKL_0 is RCA_0 plus Weak König's Lemma.

Some reverse mathematics!

Theorem 2. (RCA_0) The following are equivalent:

- 1. WKL₀.
- 2. WKL₀ with $\{0, 1\}$ replaced by $\{0, 1, 2, \dots, 9\}$.
- 3. If f and g are injective functions with disjoint ranges, then there is a set X such that for all j, $f(j) \in X$ and $g(j) \notin X$.

A consequence: $\mathsf{RCA}_0 \not\vdash \mathsf{WKL}_0$.

Some reverse analysis!

Theorem 3. (RCA_0) The following are equivalent:

1. WKL₀.

2. If $\langle x_n \rangle_{n \in \mathbb{N}}$ is a sequence of real numbers, then there is a sequence $\langle y_n \rangle_{n \in \mathbb{N}}$ such that for each n, y_n is a decimal expansion for x_n .

3. If $\langle x_n \rangle_{n \in \mathbb{N}}$ is a sequence of rationals in [0,1], then there is a sequence $\langle d_n \rangle_{n \in \mathbb{N}}$ such that for each n, d_n is the first digit of the decimal expansion of x_n .

Proof. For $(1) \rightarrow (2)$, build a tree. $(2) \rightarrow (3)$ is trivial. For $(3) \rightarrow (1)$, use (3) to separate ranges of disjoint functions. \Box

Irrationals are different

If we know that a real x is irrational, we can always calculate x to a sufficient degree of accuracy to show that it is strictly greater or strictly less than any rational. Consequently...

Theorem 4. (RCA₀) If $\langle x_n \rangle_{n \in \mathbb{N}}$ is a sequence of irrational reals, then there is a sequence $\langle y_n \rangle_{n \in \mathbb{N}}$ such that for each n, y_n is a decimal expansion for x_n .

Computability theoretic consquences

Theorem 5. Every computable real has a computable decimal expansion.

Theorem 6. Every computable sequence of irrationals has a computable sequence of decimal expansions.

Theorem 7. There is a computable sequence of computable reals (each of which is equal to a rational number) for which there is no computable sequence of decimal expansions.

Theorem 8. Every computable sequence of computable reals has a sequence of decimal expansions of low degree, that is of degree \mathbf{a} where $\mathbf{a}' = \mathbf{0}'$. Constructive analysis vs. Computable analysis

Computable analyst:

We can find the decimal expansion of any single real.

We can find the decimal expansions for all the elements of a sequence of irrationals.

We can't always find the decimal expansions for all the elements of sequences of rationals.

Constructive analyst:

We can find the decimal expansions for all the elements of a sequence of irrationals.

We can't always find the decimal expansion for a real.

Other results equivalent to WKL_0

Theorem 9. (RCA_0) The following are equivalent:

- 1. WKL₀.
- 2. Every ctn function on [0,1] is bounded. (Simpson)
- 3. If f is ctn on [0,1], then $\int_0^1 f \, dx$ exists and is finite. (Simpson)
- 4. [0,1] is Heine-Borel compact. (Friedman)
- 5. If $\langle x_k \rangle_{k \in \mathbb{N}}$ is a sequence of reals, then there are integers $\langle \mu_k \rangle_{k \in \mathbb{N}}$ such that $x_{\mu_k} = \min\{x_j \mid j \leq k\}$ for all k. (H)
- 6. Graphs with no cycles of odd length are bipartite. (H)

Stronger subsystems and associated results

Theorem 10. RCA_0 proves the following equivalences:

- ACA₀ iff Bolzano/Weierstraß Theorem: Every bounded sequence of reals has a convergent subsequence. (Friedman)
- 2. ATR_0 iff Every countable closed subset of a complete separable metric space has a derived sequence. (Hirst)
- 3. Π_1^1 -CA₀ iff ACA₀+Cantor/Bendixson Theorem for Cantor space: Every closed subset of Cantor space is the union of a perfect closed set and a countable set. (Simpson)

Reverse Mathematics

Jeffry L. Hirst. Minima of initial segments of infinite sequences of reals, Math. Logic Quarterly, **50** (2004).

Stephen G. Simpson. Subsystems of second order arithmetic, Springer-Verlag, Berlin, 1999.

Computable Analysis

Marian B. Pour-El and J. Ian Richards. *Computability in analysis and physics*, Springer-Verlag, Berlin, 1989.

Constructive Analysis

Errett Bishop and Douglas Bridges. Constructive analysis, Springer-Verlag, Berlin, 1985.