A *Real* Tour of Reverse Mathematics

Jeffry L. Hirst Appalachian State University Boone, North Carolina

George Washington University, 11/19/2004

These slides appear at: www.mathsci.appstate.edu/~jlh

For much more reverse mathematics, come to the AMS-ASL Special Session on Reverse Mathematics at the Joint Math Meetings in Atlanta on 1/5 and 1/6. http://www.ams.org/amsmtgs/2091_program_ss6.html

Reverse Mathematics

Goal: Determine what set existence axioms are needed to prove familiar theorems.

Method: Prove results of the form $\mathsf{RCA}_0 \vdash \mathsf{AX} \leftrightarrow \mathsf{THM},$ where:

- \bullet RCA_0 is a weak axiom system,
- AX is a set existence axiom selected from a small hierarchy of axioms, and
- THM is a familiar theorem.

 $\mathrm{Hierarchy:}\ \mathsf{RCA}_0 < \mathsf{WKL}_0 < \mathsf{ACA}_0 < \mathsf{ATR}_0 < \Pi^1_1\text{-}\mathsf{CA}_0$

 $\mathsf{RCA}_0\text{: Recursive Comprehension}$

Language:

Integer variables (x, y, z) and set variables (X, Y, Z)Axioms:

basic arithmetic axioms

 $(0, 1, +, \times, =, \text{ and } < \text{ behave as usual.})$

Restricted induction

 $(\psi(0) \land \forall n(\psi(n) \to \psi(n+1))) \to \forall n\psi(n)$

where $\psi(n)$ has (at most) one number quantifier.

Recursive set comprehension

If $\theta \in \Sigma_1^0$ and $\psi \in \Pi_1^0$, and $\forall n(\theta(n) \leftrightarrow \psi(n))$, then there is a set X such that $\forall n(n \in X \leftrightarrow \theta(n))$

 RCA_0 suffices to prove the existence of pairing functions.

Encoding the reals A real number is a function $x : \mathbb{N} \to \mathbb{Q}$ such that $\forall k \forall i \ |x(k) - x(k+i)| \leq 2^{-k}$ $\langle x(i) \rangle_{i \in \mathbb{N}}$ is a rapidly converging Cauchy seq. of rationals. Examples of reals

- $\sqrt{2}$: 1, 1.4, 1.41, 1.414, 1.4142, ...
 - π : 3, 3.1, 3.14, 3.141, 3.1415, ...
 - $0: \qquad 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$
 - $0: 0, 0, 0, 0, 0, \dots$

Weak König's Lemma

Statement: WKL_0 consists of RCA_0 together with "every infinite 0-1 tree contains an infinite path."

Theorem 1. (RCA_0) The following are equivalent:

- 1. WKL₀.
- 2. If f and g are injective functions with disjoint ranges, then there is a set X such that for all j, $f(j) \in X$ and $g(j) \notin X$.
- 3. [0,1] is Heine-Borel compact. (Friedman)

Compactness vs. Compactness

Definition. A complete separable metric space X is *com*pact if there exists an infinite sequence of finite sequences of points in X, $\langle \langle x_{ij} | i \leq n_j \rangle | j \in \mathbb{N} \rangle$ such that for every $z \in X$ and $j \in \mathbb{N}$ there exists an $i \leq n_j$ such that $d(x_{ij}, z) < 2^{-j}$.

Theorem 2. (RCA_0) [0,1] is compact.

Definition. A set is *Heine-Borel compact* if every open cover contains a finite subcover.

Theorem 3. (RCA_0) The following are equivalent:

1. WKL₀.

2. [0,1] is Heine-Borel compact. (Friedman)

Minima vs. Minima

Theorem 4. (RCA₀) If $\langle x_i \rangle_{i \in \mathbb{N}}$ is a sequence of real numbers, then there is a sequence of real numbers $\langle y_i \rangle_{i \in \mathbb{N}}$ such that $y_i = \min\{x_j \mid j \leq i\}$ for each $i \in \mathbb{N}$.

Theorem 5. (RCA_0) The following are equivalent:

1. WKL₀.

2. If $\langle x_i \rangle_{i \in \mathbb{N}}$ is a sequence of real numbers, then there is a sequence of indices $\langle \mu_i \rangle_{i \in \mathbb{N}}$ such that for each $i \in \mathbb{N}$,

 $x_{\mu_i} = \min\{x_j \mid j \le i\}.$

Arithmetical Comprehension

Statement: ACA₀ consists of RCA₀ together with "if $\theta(x)$ is a formula with no set quantifiers, i.e. an arithmetical formula, then the set $X = \{x \in \mathbb{N} \mid \theta(x)\}$ exists."

Theorem 6. (RCA_0) The following are equivalent:

- 1. ACA₀.
- 2. If f injects \mathbb{N} into \mathbb{N} , then the range of f exists.
- 3. (Bolzano-Weierstrauß) Every bounded sequence of numbers contains a convergent subsequence. (Friedman)
- 4. Every increasing sequence of rationals in (0,1) converges. (Friedman)

Closed vs. Closed

Definition. An open set in \mathbb{R} is a countable sequence of balls with real centers and rational radii. A closed set is the complement of an open set.

Definition. A separably closed set is the collection of limit points of a countable sequence of points.

Theorem 7. (RCA_0) The following are equivalent:

- 1. ACA₀.
- 2. If X is a separably closed set then X is closed. (Brown)
- 3. If X is a closed subset of a compact set, then X is separably closed. (Brown and Hirst)

Induction and Set Comprehension

Theorem 8. (RCA_0) The following are equivalent:

1. ACA₀.

2. The arithmetical transfinite induction scheme: If X is a well-ordered set with minimum element 0 and $\theta(x)$ is an arithmetical formula, then if

 $\theta(0) \text{ and } \forall y \in X(\forall x < y \ \theta(x) \to \theta(y)),$

then $\forall y \in X \ \theta(y)$.

Corollary 9. All undergraduate analysis theorems can be proved by transfinite induction.

Arithmetical Transfinite Recursion Statement: ATR_0 consists of ACA_0 together with a scheme for iterating arithmetical comprehension along countable well orderings.

Definition. A derived sequence for a set of reals is constructed by repeatedly ejecting the isolated points, and taking intersections at limit stages.

Theorem 10. (RCA_0) The following are equivalent:

- 1. ATR_0 .
- 2. If X and Y are well-ordered then $X \leq Y$ or $Y \leq X$. (Friedman et. al.)
- 3. Every countable closed subset of [0,1] has a derived sequence.

Π_1^1 comprehension

Statement: Π_1^1 -CA₀ consists of RCA₀ together with "if $\theta(x)$ is a formula with exactly one leading universal set quantifier, i.e. a Π_1^1 formula, then the set $X = \{x \in \mathbb{N} \mid \theta(x)\}$ exists."

Theorem 11. (RCA_0) The following are equivalent:

- 1. Π_1^1 -CA₀.
- 2. $ACA_0+Cantor/Bendixson$ Theorem for Cantor space: Every closed subset of Cantor space is the union of a perfect closed set and a countable set. (Simpson)
- 3. Every closed set is separably closed. (Brown)

Bibliography

- Stephen G. Simpson, Subsystems of second order arithmetic, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1999, ISBN 3-540-64882-8. MR1723993 (2001i:03126)
- [2] Douglas K. Brown, Notions of closed subsets of a complete separable metric space in weak subsystems of second-order arithmetic, Logic and Computation (Pittsburgh, PA, 1987), Contemp. Math., vol. 106, Amer. Math. Soc., Providence, RI, 1990, pp. 39– 50. MR1057814 (91i:03108)
- [3] Jeffry L. Hirst, *Reverse mathematics of separably closed sets*, in preparation.
- [4] _____, Minima of initial segments of infinite sequences of reals, MLQ Math. Log. Q. 50 (2004), 47–50. MR2029605
- [5] _____, Ordinal inequalities, transfinite induction, and reverse mathematics, J. Symbolic Logic 64 (1999), 769–774. MR1777785 (2002g:03138)
- [6] _____, Derived sequences and reverse mathematics, Math. Logic Quart. **39** (1993), 447–453. MR1270391 (95d:03102)