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A pigeonhole principle and Hindman’s Theorem

TT1: For any finite coloring of 2<N, there is a monochro-
matic subtree order-isomorphic to 2<N.

A version of Hindman’s theorem:

Finite Union Theorem (FUT): If f : FIN → k then there
is a c ≤ k and an infinite increasing sequence 〈Hi〉i∈N of
elements of FIN such that for every F ∈ FIN

f (∪i∈FHi) = c.



Question (McNicholl): Do we need FUT to prove TT1?

Answer: No.

(CHM[3]): RCA0 + Σ0
2 − IND ` TT1

(BHS[2]): RCA0 ` FUT→ ACA0

ω together with the computable sets forms a model of RCA0
plus Σ0

2 − IND which is not a model of ACA0.



Brief overview of reverse mathematics

Reverse mathematics uses a hierarchy of axiom systems for
second order arithmetic to analyze the relative strength of
mathematical theorems.

RCA0 : basic arithmetic axioms, induction for Σ0
1 formulas,

comprehension for computable sets

ACA0 : RCA0 plus comprehension for sets defined by arith-
metical formulas

Friedman presented the axiom systems used here (with re-
stricted induction) in a talk at the meeting of the ASL in
Chicago in April 1975. (See [7] for these abstracts and [6]
for the related paper from the ICM in Vancouver in 1974.)



How strong is TT1?

RT1: Usual infinite pigeonhole principle. If f : N→ k then
for some c and some infinite X , f (x) = c for all x ∈ X .

Theorem (CGM[4]): RCA0 + RT1 6` TT1

Question: Does TT1 imply Σ0
2 − IND?

Partial answer: The known proofs of TT1 use Σ0
2 − IND,

but the use may not be necessary.



ECT: Eventually constant tails

ECT(N): If f : N→ k, then for some b, the range of f on
[x,∞) is the same for every x ≥ b.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
f (x) • • • • • • • • • • • • • • • • • • • • •

ECT(2<N): If f : 2<N → k, then for some node τ , the
range of f on the tree of nodes extending σ is the same for
every σ ⊃ τ .



ECT, induction, and TT1

Note: RCA0 ` ECT(2<N)→ TT1

Theorem: RCA0 proves the following are equivalent:

(1) Σ0
2 − IND

(2) ECT(2<N)

(3) ECT(N)

Hints: Prove 1 → 2 → 3 → 1. For 3 → 1 use Simpson’s
exercise II.3.13 [9]:

Σ0
2 − IND↔ bounded Σ0

2 comprehension.



More Ramsey’s theorem

RTn: If f : [N]n → k then there is a c and an infinite
H ⊂ N such that f ([H ]n) = c.

TTn: For any k coloring of the n-tuples of comparable nodes
in 2<N, there is a color and a subtree order-isomorphic
to 2<N in which all n-tuples of comparable nodes have
the specified color.

IPTn: If f : [N]n → k then there is a c and a sequence of
infinite sets H1 . . . Hn so that for any x1 < · · · < xn
(with xi ∈ Hi for all i) we have f (x1 . . . xn) = c.



Theorem: For n ≥ 3, RCA0 proves these equivalences:

ACA0↔ RTn↔ TTn↔ IPTn

References: RT: Simpson[9] TT: CHM[3] IPT: DH[5]

If we let RT denote ∀nRTn, we can prove:

Theorem: For n ≥ 3, RCA0 proves these equivalences:

ACA′0↔ RT↔ TT↔ IPT

References: RT: Mileti[8] TT: AH[1] IPT: DH[5]

RCA0 proves that RT2 → IPT2 → SRT2. How strong are
the converses?
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