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The main question

Question: Is the iterated version of Hindman’s theorem (IHT)
provable in ACA0?

IHT: Let 〈fi〉i∈N be a sequence of finite colorings of N. There is
an infinite set H = {h0 < h1 < . . . } such that for each i ,
{hj | j > i} is monochromatic for fi in the sense of Hindman’s
theorem. That is, for each i , fi is constant on the collection of
finite sums of distinct elements in {hj | j > i}.

Blass, Hirst, and Simpson [1] proved IHT in ACA+
0 , which

appends the existence of the ω-jump to ACA0. In the same
paper, it was shown that Hindman’s Theorem implies ACA0
over RCA0.
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Question: Is the iterated version of Hindman’s theorem (IHT)
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Montalbán and Shore’s [3] conservation results over IHT
heighten the significance of finding the exact strength of this
theorem.

For example, if IHT is provable in ACA0, then the first order
consequences of their statements that are conservative over
IHT are also conservative over Peano Arithmetic.



IHT and ultrafilters
IHT is related to the existence of some special ultrafilters on
countable fields of sets. [2]

A countable field of sets is a countable collection of sets that is
closed under intersection, union, and relative complementation.
In ACA0 we may assume that the sets are represented by a
non-repeating sequence of characteristic functions, and the set
operations are represented by functions from indices of sets to
indices of sets.

Given a set X ⊂ N and an number n, let
X − n = {x − n | x ∈ X ∧ x > n}. A translation algebra is a
countable field of sets which is closed under translation.

For a sequence of colorings 〈fi〉, ACA0 suffices to prove the
existence of the translation algebra containing all the
monochromatic sets for the colorings and all the finite sets.



IHT and ultrafilters

Given a countable field of sets, an ultrafilter u is a subset that:
• ∅ is not in u,
• u is closed under intersection,
• if X ⊃ Y ∈ u, then X ∈ U,and
• for all X either X ∈ u or X c ∈ u.

For the countable field of sets {A0, A1, A2, . . . }, we can identify
an ultrafilter with a string of binary digits. For example,
〈1, 1, 0, 1 . . . 〉 would indicate that A0 ∈ u, A1 ∈ u, A2 /∈ u,
A3 ∈ u, and so on. Indeed, the ultrafilters on a countable field of
sets can be viewed as a closed subset of Cantor space.



IHT and ultrafilters

An ultrafilter u is called an almost downward translation
invariant ultrafilter if for every X ∈ u, there is a non-zero n ∈ X
such that X − n ∈ u.

a.d.t.i. ultrafilters are closely related to Hindman’s theorem. The
article [2] includes:

Thm: RCA0 proves the following are equivalent:
(1) IHT.
(2) Every countable translation algebra has an

a.d.t.i. ultrafilter.
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Addition on ultrafilters

There are well-known connections between Galvin-Glazer
addition on ultrafilters and Hindman’s Theorem. If u and v are
ultrafilters, we can define the ultrafilter u+̇v by:

A ∈ u+̇v iff {x | A − x ∈ u} ∈ v

In the countable translation algebra setting, this definition is
problematic. For some choices of A and u, the set
{x | A − x ∈ u} may not be an element of the algebra. When
working with ultrafilters over the full power set of N, this is not
an issue.



Addition on ultrafilters

However, in the countable translation algebra setting, we can
add 1 to an ultrafilter. Define:

A ∈ u + 1 iff A − 1 ∈ u

If we write [1] for the principal ultrafilter consisting of the sets
containing 1, then u + 1 is the same as u+̇[1].

Adding 1 is well behaved on the principle ultrafilters. For
example,

A ∈ [3] + 1 ↔ A − 1 ∈ [3]
↔ 3 ∈ A − 1
↔ 4 ∈ A
↔ A ∈ [4]



More importantly, the map S : u → u + 1 is continuous.

To see this, fix u and consider a basic open neighborhood of
u + 1. The neighborhood consists of the ultrafilters that agree
with u + 1 on some finite initial segment of the list of sets in the
translation algebra. Suppose this list is A0, A1 . . . An. If v agrees
with u on A0 − 1, A1 − 1 . . . An − 1, then u + 1 and v + 1 will
agree on A0, A1 . . . An. Thus for every ultrafilter v in the basic
open neighborhood that agrees with u on an initial segment of
the list of sets including A0 − 1, A1 − 1 . . . An − 1, v + 1 will be in
the desired open neighborhood of u + 1.

S is continuous on a closed compact set. We can do
topological dynamics!
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Topological dynamics
Here is a lemma from Blass, Hirst, and Simpson [1]:

Lemma 5.10: The following is provable in ACA0. Let X be a
compact metric space and let S : X → X be a continuous
function. For all x ∈ X there exists y ∈ x̄ such that every z ∈ ȳ
is uniformly recurrent.

What does it mean?

x̄ denotes the orbit closure of x , that is, (roughly) the collection
of all points that are accumulation points of the set
{x , S(x), S(S(x)), . . . }.

z is uniformly recurrent means that for every ε > 0 there is an
m ∈ N such that for any n, there is a j 6 m such that Sn+j(z) is
ε close to z. Informally, z is closely revisited remarkably
regularly.
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The question

Question: Suppose p is a point such that every point in p̄ is
uniformly recurrent for S. Does p̄ contain an almost downward
translation invariant ultrafilter?

We can prove that p exists in ACA0. If we can answer the
question affirmatively in ACA0, then we have a proof of
Hindman’s theorem in ACA0.

Note that such a proof would rely on the representation of the
ultrafilter space (on a countable Boolean algebra) as a
complete separable metric space. We’re not working in the
Stone-Cech compactification.
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Ultrafilters that are not a.d.t.i.

An ultrafilter p is a.d.t.i. (almost downward translation invariant)
if for every X ∈ p, there is an x ∈ X such that X − x ∈ p.

If p is not a.d.t.i., then there must be a witness, namely, a set
X ∈ p such that for every x ∈ X , X − x /∈ p.

If x ∈ X , then for every ultrafilter p such that X witnesses that p
is not a.d.t.i., p is an element of the open set of all ultrafilters for
which X ∩ (X − x)c is an element.

Conclusion: There are natural countable open covers of the
ultrafilters that are not a.d.t.i.



Two strategies

Question: Suppose p is a point such that every point in p̄ is
uniformly recurrent for S. Does p̄ contain an almost downward
translation invariant ultrafilter?

Strategy 1: Assume that every ultrafilter in p̄ is not a.d.t.i.
Enumerate potential witnesses and build a countable cover of
p̄. Apply Heine-Borel and find a finite subcover. Use it to
contradict the construction of p.

Strategy 2: Build a tree of initial segments of ultrafilters in p̄ so
that every length n sequence can be extended to an ultrafilter u
such that none of A0, . . . , An−1 witness that u is not a.d.t.i. Any
path through the tree codes an element of p̄ that is a.d.t.i..

Both of these strategies boil down to finding an a.d.t.i. ultrafilter
by avoiding the ultrafilters that are not a.d.t.i.
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Another strategy
Suppose p is a point such that every point in p̄ is uniformly
recurrent for S. Try to adjust p to create an a.d.t.i.

Observations:
• The principle ultrafilters are a dense subset of the space of

ultrafilters (on a countable Boolean algebra).
• Every ultrafilter can be approximated by a sequence of

principle ultrafilters.
• Using Ramsey’s theorem, we can find an approximating

sequence for p such that p u p makes sense.
• For p uniformly recurrent, we can find an ultrafilter r such

p u p u r = p.
• If r could be chosen so that p u r u p = p, then p u r would

be an idempotent for Glazer addition, and an a.d.t.i.
• I tried this. I think the strategies on the previous slide hold

more promise.
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