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OCSA activities

Invited talks
Leaf management, September 2018
Dagstuhl Seminar 18361
Leibniz-Zentrum für Informatik.

Hindman’s theorem and ultrafilters, July 2018
RaTLoCC 2018
Bertinoro International Center for Informatics.

A weak coloring principle, July 2018
Workshop on Ramsey Theory and Computability
Rome Global Gateway of Notre Dame University.

Papers
Combinatorial principles equivalent to weak induction, with C. Davis,
D. Hirschfeldt, J. Pardo, A. Pauly, and K. Yokoyama, submitted. [1]

Leaf management, submitted. [5]

Using Ramsey’s theorem once, with C. Mummert, resubmitted. [7]

Reverse mathematics and colorings of hypergraphs with C. Davis, J.
Pardo, and T. Ransom, Archive for Mathematical Logic. [2]



International contacts support student research

During his senior year, alumnus Noah Hughes gave a talk on
his senior honors thesis in the logic seminar at the University of
Ghent. Paul Shafer was our contact in Ghent.



Contact bait: An example of student work

How many 2-colorings of K5 have no 1-colored K3 ?
Ramsey Interest Group: Anthony Hengst, Sergei Miles, Isaac Medina Silva, Allison Staley Faculty Mentor: Jeff Hirst

Appalachian State University, Department of Mathematical Sciences, Boone, North Carolina 28608

Introduction

Of the 1024 possible 2-colorings of K5, only
12 have no 1-colored triangles.

Claim 1

If any 3 edges match, then there is a
1-colored triangle.

A B

C D

Claim 2

If G has no 1-colored triangles, then G has
a 1-colored 5-cycle.

A B

C D

E F

E: 1-colored 5-cycle
F: Remaining edges form a 5-cycle

Claim 3

There are 12 ways to construct a 1-colored
5-cycle.

A B

C D

E F

4 · 3 · 2 · 1 · 1
2

= 12

The first annual Student Scholar Day: SSD2018



Making contacts, groundwork

International workshops provide opportunities to create new
contacts.

• Smaller than conferences
· greater interaction
· disciplinary focus

• More international participants

• Travel tips

Organization of the workshop may or may not be international.



Workshop example 1: Rome

Workshop on Ramsey Theory and Computability
Rome Global Gateway of Notre Dame University
July 9-13, 2018

Participants from:

Leeds University

University of Bern

Central South University of China

Dartmouth College

Japan Advanced Institute of Science and Technology

Università di Roma Sapienza

Appalachian State

Cornell University

Università di Pisa

National University of Singapore

University of Vienna

Swansea University

University of Pennsylvania

Università degli Studi di Udine



Workshop example 2: Bertinoro, Italy

RaTLoCC18:
Ramsey Theory in Logic, Combinatorics, and Complexity
Bertinoro International Center for Informatics
July 15-20, 2018
37 participants from Spain, Germany, USA, England, Greece,
Czech Republic, Russia, Poland, Italy, Austria, France, and
Canada

Basilica of San Vitale in Ravenna



Workshop example 3: Wadern, Germany

Dagstuhl Seminar 18361:
Measuring the Complexity of Computational Content:

From Combinatorial Problems to Analysis
Leibniz-Zentrum für Informatik
September 2-7, 2018
43 participants from Spain, France, USA, Germany, Austria,
England, Japan, New Zealand, Italy, Singapore, Chile, and
Russia



Faculty from Appalachian can pursue funding from multiple
sources:

• Office of International Education and Development

• Board of Trustees International Research Grants

• Student And Faculty Excellence (SAFE) Fund, College of
Arts and Sciences

https://international.appstate.edu/facultystaff-resources/faculty-staff-funding-opportunities
https://orsp.appstate.edu/find-funding/apply-internal-grants/board-trustees-grants
https://cas.appstate.edu/faculty-staff/student-and-faculty-excellence-safe-fund
https://cas.appstate.edu/faculty-staff/student-and-faculty-excellence-safe-fund


Part II: Reverse mathematics

Reverse mathematics uses a hierarchy of axioms of second
order arithmetic to measure the strength of theorems.

The language has variables for natural numbers and sets of
naturals numbers.

The base system, RCA0, includes
• arithmetic facts (e.g. n + 0 = n),
• an induction scheme (restricted to Σ0

1 formulas), and
• recursive comprehension
(computable sets exist, i.e. sets with programmable
characteristic functions exist).

Adding stronger comprehension axioms creates stronger axiom
systems.



Proper colorings of hypergraphs
A hypergraph consists of vertices and edges. Edges may
contain any number of vertices.
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Hypergraphs with finite edges

The system ACA0 adds arithmetical comprehension to RCA0
(sets with arithmetically definable characteristic functions exist).

A theorem of reverse mathematics:

Theorem: Over RCA0, the following are provably equivalent:
1. ACA0.
2. Every injection has a range. (Friedman [4], Simpson [8]).
3. Suppose H is a hypergraph with finite edges presented as

a sequence of characteristic functions. If every finite partial
hypergraph of H has a proper 2-coloring, then H has a
proper 2-coloring.



Hypergraphs with finite edges: Additional observations

Hypergraphs are different from graphs.

Theorem: RCA0 proves the following are equivalent:
(1) ACA0.
(2) Suppose H is a hypergraph with finite edges presented
as a sequence of characteristic functions. If every finite
partial hypergraph of H has a proper 2-coloring, then H
has a proper 2-coloring.

Theorem: RCA0 proves the following are equivalent:
(1) WKL0.
(2) Suppose H is a graph with finite edges presented as a
sequence of characteristic functions. If every finite partial
graph of H has a proper 2-coloring, then H has a proper
2-coloring.



Hypergraphs with infinite edges

For hypergraphs with infinite edges, there is no arithmetical
characterization of hypergraphs with proper 2-colorings. This is
a corollary of:

Theorem: RCA0 proves the following are equivalent:
(1) Π1

1-CA0, the comprehension scheme for Π1
1 definable

sets.
(2) ĤC: If 〈Hi〉i∈N is a sequence of hypergraphs, then there
is a function f : N→ 2 such that f (i) = 1 if and only if Hi
has a proper 2-coloring.

Proof sketch for (1)→ (2):
f (i) = 0 if and only if every 2-coloring fails to be proper for Hi .
“Fails to be proper” means that for some j , all the vertices of
edge Ej of Hi match.



Hypergraphs with infinite edges: the reversal

For the reversal, we need a combinatorial version of Π1
1-CA0.

Theorem: RCA0 proves the following are equivalent:
(1) Π1

1-CA0.

(2) ŴF: If 〈Ti〉i∈N is a sequence of trees with integer
labeled nodes, then there is a function f : N→ 2 such that
f (i) = 1 if and only if Ti is well founded. (Lemma IV.1.1,
Simpson [8])

(3) ŴFL: If 〈Ti ,Li〉i∈N is a sequence of trees, each
equipped with a leaf set Li , then there is a function
f : N→ 2 such that f (i) = 1 if and only if Ti is well founded.



Leaf management
A tree can be converted to a tree with a leaf set by adding an
extension with a new label to every existing nodes. The
converted tree has the same infinite paths (and the same
perfect subtrees).
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Leaf management
A tree can be converted to a tree with a leaf set by adding an
extension with a new label to every existing nodes. The
converted tree has the same infinite paths (and the same
perfect subtrees).
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The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.
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We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
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The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



Weihrauch reductions
Sample problems

WF: input a tree T ; output 1 iff T is well-founded.
HC: input a hypergraph H; output 1 iff H has a proper
2-coloring.

Parallelization
ĤC: input an infinite sequence of hypergraphs; output list
of indices of hypergraphs with proper 2-colorings.

Reductions
P6sWQ if there are uniformly computable procedures ϕ
and ψ such that

Pinput →ϕ Qinput
↓ ↓

Poutput ←ψ Qoutput

Equivalences
P≡sWQ iff P6sWQ and Q6sWP



Weihrauch equivalences

WF≡sWWFL≡sWHC

ŴF≡sWŴFL≡sWĤC

Another problem
PK: input a tree T ; output the perfect kernel of T .

ŴF≡sWPK

These results appear in Leaf management [5]
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