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Abstract

These notes give additional details for results presented at a talk
in Baltimore on January 18, 2003.

1 Terminology

A countable field of sets is a countable collection of subsets of N which is
closed under intersection, union, and relative complementation. We use Xc

to denote {x ∈ N | x /∈ X}, the complement of X relative to N.
Given a set X ⊆ N and an integer n ∈ N, we use X −n to denote the set

{x−n | x ∈ X ∧ x ≥ n}, the translation of X by n. A downward translation
algebra is countable field of sets which is closed under translation.

Given a set G ⊆ N, RCA0 suffices to prove the existence of the set 〈G〉 of
all finite unions of finite intersections of translations of G and complements
of translations of G. RCA0 can also prove that 〈G〉 is a downward translation
algebra. Note that in RCA0, we encode 〈G〉 as a countable sequence of
countable sets, and that each set in 〈G〉 may be repeated many times in the
sequence.

An ultrafilter on a countable field of sets F is a subset U ⊆ F satisfying
the following four properties.

1. ∅ /∈ U .

2. if X1, X2 ∈ U then X1 ∩X2 ∈ U .
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3. ∀X ∈ U ∀Y ∈ F (X ⊆ Y → Y ∈ U).

4. ∀X ∈ F (X ∈ U ∨Xc ∈ U).

An ultrafilter U is an almost downward translation invariant ultrafilter if
∀X ∈ U ∃x ∈ X (x 6= 0 ∧X − x ∈ U).

Comment: Note that the restriction to fields of sets other than the full
power set of N affects the formulation of the last definition. An alternate def-
inition of almost downward translation invariant ultrafilter is one in which
{x ∈ N | A − x ∈ U} ∈ U whenever A ∈ U . Lemma 3.1 of [3] shows
that the two definitions are equivalent for ultrafilters on the full power set
of N. Because countable fields of sets fail to contain many subsets of N,
the definitions are not interchangeable in the countable setting. The relative
sparseness of the fields of sets considered here is a primary factor contribut-
ing to the technical difficulty of adapting ultrafilter based arguments to the
reverse mathematical setting.

Lemma 1. (RCA0) If U is an almost downward translation invariant ultra-
filter and X is an element of U , then the set {x ∈ X | X − x ∈ U} is
unbounded.

Proof. Suppose by way of contradiction that x is the largest number in X
such that X −x ∈ U . Since X −x ∈ U , there is a y ∈ X −x such that y 6= 0
and (X − x) − y ∈ U . Since y ∈ X − x, we have x + y ∈ X. Additionally,
(X−x)−y = X−(x+y), so we have x+y ∈ X, x+y > x, and X−(x+y) ∈ U ,
contradicting our choice of x.

If X ⊆ N, then the notation FS(X) denotes the set of all nonrepeat-
ing sums of nonempty finite subsets of X. For example, FS({1, 2, 5}) =
{1, 2, 3, 5, 6, 7, 8}.

Theorem 2 (Hindman’s Theorem). If 〈Ci〉i<m is a partition of N into
m disjoint subsets, then there is an infinite set X ⊆ N and a value c < m
such that FS(X) ⊆ Cc.

Proof. See [4].

The set X in the statement of Theorem 2 is called an infinite homogeneous
set for the partition. Given any set G ⊆ N, we refer to the statement of
Theorem 2 with C0 = G and C1 = Gc as Hindman’s Theorem for G.
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2 Ultrafilters and Hindman’s Theorem

Theorem 3.3 of [3] states that assuming the continuum hypothesis, Hind-
man’s Theorem holds if and only if there is an almost downward translation
invariant ultrafilter on the field of all subsets of N. The easy direction of this
theorem can be reformulated and proved in the countable setting as follows.

Theorem 3. (RCA0) Fix G ⊆ N . If there is an almost downward translation
invariant ultrafilter on the downward translation algebra 〈G〉, then Hindman’s
Theorem holds for G.

Proof. Assume RCA0, suppose that G ⊆ N , and let U be an almost down-
ward translation invariant ultrafilter on 〈G〉. Define a decreasing sequence
of sets 〈Xi〉 and an increasing sequence of integers 〈xi〉 as follows. Let X0

be whichever of G and Gc is in U . Let x0 = 0. Suppose that Xn ∈ U and
xn have been chosen. Since U is an almost downward translation invariant
ultrafilter, by Lemma 1 we can find a least xn+1 ∈ Xn such that xn+1 > xn
and Xn − xn+1 ∈ U . Let Xn+1 = Xn ∩ (Xn − xn+1).

We will show that FS(〈xn〉n>0) ⊆ X0, thereby proving that Hindman’s
Theorem holds for G. Let xi1 , . . . , xik be a finite sequence of elements of
〈xn〉n>0. Note that ik > 0, so Xik−1 exists, and xik ∈ Xik−1. Treating this as

the base case in an induction, we have
∑k

m=k xim ∈ Xik−1. For the induction

step, suppose that
∑k

m=j+1 xim ∈ Xij+1−1. Since ij ≤ ij+1− 1,
∑k

m=j+1 xim ∈
Xij . Since ij ≥ 1, by the definition of Xn, Xij = Xij−1 ∩ (Xij−1 − xij),

so
∑k

m=j+1 xim ∈ Xij−1 − xij . That is,
∑k

m=j xim ∈ Xij−1, completing the
induction step. By induction on quantifier-free formulas, we have shown that∑k

m=1 xim ∈ Xi1−1 ⊆ X0. Generalizing, we can conclude that every finite
sum of elements of 〈xn〉n>0 is an element of X0, witnessing that Hindman’s
theorem holds for G.

3 A special case of Hindman’s Theorem

The main result of this section is that RCA0 proves Hindman’s Theorem for
those partitions G such that 〈G〉 does not contain all the singleton sets.

Lemma 4. (RCA0) If the downward translation algebra 〈G〉 contains no sin-
gletons, then Hindman’s Theorem holds for G.
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Proof. Suppose 〈G〉 contains no singletons. Let U be the principal ultrafilter
generated by 0, so U = {X ∈ 〈G〉 | 0 ∈ X}. Pick X ∈ U . Since X is
not a singleton, there is an x 6= 0 such that x ∈ X. Since x ∈ X, we have
0 ∈ X − x, so X − x ∈ U . Thus U is an almost downward translation
invariant ultrafilter. By Theorem 3, Hindman’s theorem holds for G.

Alternate Proof. Suppose 〈G〉 contains no singletons. Since 〈G〉 = 〈Gc〉, we
may relabel as needed to insure 0 ∈ G. Suppose by way of contradiction that
F is a finite nonempty subset of N and F ∈ 〈G〉. Let n denote the maximum
element of F . then F − n = {0} ∈ 〈G〉, contradicting the hypothesis that
〈G〉 contains no singletons. Thus every nonempty element of 〈G〉 is infinite.

Let X0 = G and x0 = 0. Given a nonempty set Xn in 〈G〉 and xn, let
xn+1 be the least element of Xn greater than xn. Since Xn is a nonempty set
in 〈G〉, it is infinite, so xn+1 must exist. Let Xn+1 = Xn ∩ (Xn−xn+1). Note
that if Xn contains 0, then so does Xn+1. Consequently, for every n, Xn+1 is
a nonempty element of 〈G〉.

Repeating the argument from the proof of Theorem 3, FS(〈xn〉n>0) ⊆
X0 = G, so Hindman’s Theorem holds for G.

Lemma 5. (RCA0 + Σ0
2 induction) If the downward translation algebra 〈G〉

contains finitely many singletons, then Hindman’s Theorem holds for G.

Proof. Suppose that 〈G〉 contains finitely many singletons. We will show
that there is a set H differing from G only on a finite initial interval, such
that 〈H〉 contains no singletons.

If 〈G〉 contains no singletons, let H = G. Otherwise, let {m} be the
largest singleton in 〈G〉. Let G0, . . . G2m+1−1 be an enumeration of all subsets
of N differing from G only at or below m. Note that by applying translations
and Boolean operations to G and {m}, we may construct each Gi. Thus for
each i, 〈Gi〉 ⊆ 〈G〉 and in particular, the singletons of each 〈Gi〉 are a subset
of the singletons of 〈G〉. Furthermore, the assertion “{j} is an element of
〈Gi〉” holds if and only if there is a finite collection of translations of Gi

and Gc
i such that for every n, n is in the intersection of the translations

if and only if n = j. This assertion is expressible by a Σ2
0 formula. By

bounded Σ2
0 comprehension (which is provable in RCA0 from Σ2

0 induction
[5]), there is a set X such that for every i < 2m+1 − 1 and j ≤ m, (i, j) ∈ X
if and only if {j} ∈ Gi. If there is an i such that Gi contains no singletons,
pick the first such i and let H = Gi. Otherwise use X to define the set
Y = {mi | i < 2m+1 − 1}, the collection containing the maximum singleton
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from each Gi. Let p be the minimum of Y , and let H be the first Gi for
which p is the largest singleton.

We will now show that 〈H〉 contains no singletons. If 〈H〉 contains a
singleton, then it contains {p} as constructed above. Since 〈H〉 = 〈Hc〉 we
may relabel as needed to insure p ∈ H.

Because 〈H〉 is a boolean algebra generated by downward translations of
H and Hc, {p} is expressible as a union of intersections of translations of H
and Hc. Furthermore, because {p} is a singleton, we may discard all but the
first element of the union, and write {p} as an intersection of translations
of H and Hc. By way of contradiction, suppose {p} is expressed as the
intersection of a collection of such translations, and H itself is not in the
collection. Since p /∈ Hc, the collection must consist entirely of non-zero
translations of H and Hc. Adding the value of the smallest translation to
each of these sets yields a collection of elements of 〈H〉 whose intersection is a
singleton which is greater than p, contradicting the fact that {p} is the largest
singleton in 〈H〉. Thus, H must be included in any intersection defining {p},
and we may write

{p} = H ∩
⋂
k∈F

(Hdk − k)

where F is a finite set of positive natural numbers and dk indicates whether
or not to take the complement of H. Note that ∩k∈F (Hdk − k) ⊆ Hc ∪ {p}.

Now consider 〈H ′〉 where H ′ = H−{p}. Suppose by way of contradiction
that {p} ∈ 〈H ′〉. As argued above, we must be able to express {p} as the
intersection of a collection of translations of H ′ and H ′c. Since p /∈ H ′,
we know H ′ is not in the collection. If H ′c is not in the collection, then
〈H ′〉 contains a singleton larger than p. However, H ′ = H ∩ {p}c ∈ 〈H〉,
so 〈H ′〉 ⊆ 〈H〉, implying that 〈H ′〉 can contain no singletons larger than p.
Thus any intersection defining {p} in 〈H ′〉 includes H ′c, and we may write

{p} = H ′
c ∩

⋂
k∈W

(H ′
dk − k)

where W is a finite collection of positive integers. Note that ∩k∈W (H ′dk−k) ⊆
(H ′c)c ∪ {p} = H.

Combining the preceding two centered equations, we have

{p} ⊆
⋂
k∈F

(Hdk − k) ∩
⋂
k∈W

(H ′
dk − k) ⊆ (Hc ∪ {p}) ∩H = {p}.
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SinceH ′ ∈ 〈G〉, this shows that {p} is expressible as an intersection consisting
entirely of nonzero translations of H and Hc, yielding a contradiction. Thus,
{p} /∈ 〈H ′〉. Since 〈H ′〉 is closed under downward translation, this shows
that any singletons in 〈H ′〉 must be strictly less than p. However, H ′ differs
from G only at or below m ≥ p, so H ′ must contain a singleton greater than
or equal to p, yielding a final contradiction and proving that 〈H〉 contains
no singletons.

We have shown that H differs from G only at or below m, and H has
no singletons. By Lemma 4, Hindman’s Theorem holds for H. Given an
infinite homogeneous set Z for H, the set {n ∈ Z | n > m} is an infinite
homogeneous set for G. Thus Hindman’s Theorem holds for G.

Theorem 6. (RCA0 + Σ0
2 induction) If the downward translation algebra 〈G〉

doesn’t contain all the singletons, then Hindman’s Theorem holds for G.

Proof. By closure under downward translation, if 〈G〉 contains a singleton
{p}, it contains all singletons {n} such that n < p. Thus, if 〈G〉 doesn’t
contain all the singletons, it must contain at most finitely many singletons.
By Lemma 5, Hindman’s Theorem holds for G.

4 A proof of Stone’s Theorem

A (code for a) countable Boolean algebra consists of a set of elements A (in-
cluding 0 and 1 as designated elements) and operations ∩, ∪, and c satisfying
the usual axioms. (For a list of the usual axioms see page 5 of [1].)

Theorem 7 (Stone’s Representation Theorem). (ACA0) Every count-
able Boolean algebra is isomorphic to a countable field of sets.

Proof sketch. Given a Boolean algebra A, form the 0–1 tree T of finite initial
segments of characteristic functions for ultrafilters on A. The set of infinite
paths through T is a closed subset of Cantor space. Applying Brown’s result
(Theorem 3.3 of [2]), select a countable dense set of paths, {Pi | i ∈ N}.
To each element a ∈ A, assign the set Xa = {n | a ∈ Pn}. The collection
{Xa | A ∈ A} and the function f : a→ {Xa | A ∈ A} defined by f(a) = Xa

both exist by arithmetical comprehension. The verification that f is an
isomorphism is straightforward.
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Corollary 8. If A is an arithmetical countable Boolean algebra, then there
is an arithmetically definable sequence B of subsets of N which is a countable
Boolean algebra, and there is an arithmetical Boolean algebra isomorphism
between A and B.
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