Leaf Management

Jeff Hirst Appalachian State University Boone, NC USA

September 2018

Dagstuhl Seminar 18361 Leibniz-Zentrum für Informatik

Leaf sets

A leaf in a tree is a node with no extensions.

Given a computable subtree T of $\mathbb{N}^{\mathbb{N}}$, we have two situations:

- If there is function *f* such that *f*(*n*) is a bound on the node labels at level *n*, then we can compute the set of leaves of *T*.
- In the absence of such a function, the leaf set may not be computable.

For computable subtrees of $2^{\mathbb{N}}$, we can always compute a leaf set. On the other hand, ω branching trees often present difficulties.

Here is a recipe for transforming a tree with a potentially uncomputable leaf set to one with a leaf set computable from the tree.

Here is a recipe for transforming a tree with a potentially uncomputable leaf set to one with a leaf set computable from the tree.

Start with a copy of the tree.

Here is a recipe for transforming a tree with a potentially uncomputable leaf set to one with a leaf set computable from the tree.

Add 1 to each node.

Here is a recipe for transforming a tree with a potentially uncomputable leaf set to one with a leaf set computable from the tree.

Extend the root node by concatenating with 0.

Here is a recipe for transforming a tree with a potentially uncomputable leaf set to one with a leaf set computable from the tree.

Repeat with the remaining nodes.

The transformed tree

A sequence is a leaf in the transformed tree iff it is τ 0 for some τ in the original tree.

The new tree is well-founded iff the original tree is. It has a unique infinite path iff the original tree does.

A reverse math consequence

Thm: (RCA_0) The follow are equivalent.

- **1**. Π¹₁-CA₀.
- 2. If $\langle T_i \rangle_{i \in \mathbb{N}}$ is a sequence of trees in $\mathbb{N}^{<\mathbb{N}}$, then there is a function $f : \mathbb{N} \to 2$ such that f(i) = 1 if and only if T_i contains an infinite path. (Lemma VI.1.1 of Simpson [2])
- 3. If $\langle T_i \rangle_{i \in \mathbb{N}}$ is a sequence of trees and $\langle L_i \rangle_{i \in \mathbb{N}}$ is a sequence of sets such that for each *i*, L_i is the set of leaves of T_i , then there is a function $f : \mathbb{N} \to 2$ such that f(i) = 1 if and only if T_i contains an infinite path.

Joint work with C. Davis and J. Pardo.

A theorem on hypergraphs

Hypergraphs generalize graphs by allowing more than two vertices in an edge.

A proper coloring of a hypergraph is a function that is not constant on any edge.

Thm: (RCA₀) For each $k \ge 2$, the following are equivalent.

- **1**. Π¹₁-CA₀.
- 2. If $\langle H_i \rangle_{i \in \mathbb{N}}$ is a sequence of hypergraphs, then there is a function $f : \mathbb{N} \to 2$ such that f(i) = 1 if and only if H_i has a proper *k*-coloring.

In the reversal, we construct hypergraphs corresponding to trees. By using trees with leaf sets, we were able to avoid an initial proof of ACA_0 from item 2 (i.e. bootstrapping).

Joint work with C. Davis and J. Pardo.

Other uses

It should be easy to formulate "foliated" versions of theorems of reverse mathematics.

Thm: (RCA_0) The follow are equivalent.

- 1. ATR₀.
- If ⟨*T_i*⟩_{*i*∈ℕ} is a sequence of trees in ℕ^{<ℕ} each with at most one infinite path, then there is a function *f* : ℕ → 2 such that *f*(*i*) = 1 if and only if *T_i* contains an infinite path. (Lemma V.5.2 of Simpson [2])

Similary, we could formulate "foliated" versions of many principles (e.g. Σ_1^1 -CA⁻) and show that they are Weihrauch equivalent to the usual forms. This may help in finding lower bounds for the Weihrauch strength of combinatorial principles.

References

- Caleb Davis, Jeffry Hirst, Jake Pardo, and Tim Ransom, *Reverse mathematics and colorings of hypergraphs* (2018), 1-13. Submitted. arXiv:1804.09638.
- Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, NY, 2009.
 DOI 10.1017/CBO9780511581007. MR2517689