Reverse mathematics and colorings of hypergraphs

Jeff Hirst
Appalachian State University
Boone, NC USA

in collaboration with Caleb Davis, Jake Pardo and Tim Ransom

April 5, 2019

College of Charleston

Reverse mathematics

Reverse mathematics uses a hierarchy of axioms of second order arithmetic to measure the strength of theorems.

The language has variables for natural numbers and sets of naturals numbers.

The base system, RCA_{0}, includes

- arithmetic facts (e.g. $n+0=n$),
- an induction scheme (restricted to Σ_{1}^{0} formulas), and
- recursive comprehension
(computable sets exist, i.e. sets with programmable characteristic functions exist).

Adding stronger comprehension axioms creates stronger axiom systems.

$A C A_{0}$

The system ACA_{0} adds arithmetical comprehension to RCA_{0} (sets with arithmetically definable characteristic functions exist).

A theorem of reverse mathematics:
Theorem: Over RCA ${ }_{0}$, the following are provably equivalent:

1. $A C A_{0}$.
2. Every injection has a range. (Lemma III.1.3, Simpson [5]).
3. Every countable sequence of reals in $[0,1]$ has a convergent subsequence. (Friedman [3])

Proper colorings of hypergraphs

A hypergraph consists of vertices and edges. Edges may contain any number of vertices.

Proper colorings of hypergraphs

A hypergraph consists of vertices and edges. Edges may contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.

Proper colorings of hypergraphs

A hypergraph consists of vertices and edges. Edges may contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.

Proper colorings of hypergraphs

A hypergraph consists of vertices and edges. Edges may contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.

Proper colorings of hypergraphs

A hypergraph consists of vertices and edges. Edges may contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.

Proper colorings of hypergraphs

A hypergraph consists of vertices and edges. Edges may contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.

Proper colorings of hypergraphs

A hypergraph consists of vertices and edges. Edges may contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.

Proper colorings of hypergraphs

A hypergraph consists of vertices and edges. Edges may contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.

Proper colorings of hypergraphs

A hypergraph consists of vertices and edges. Edges may contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.

Proper colorings of hypergraphs

A hypergraph consists of vertices and edges. Edges may contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.

Proper colorings of hypergraphs

A hypergraph consists of vertices and edges. Edges may contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.

Hypergraphs with finite edges

Theorem: RCA_{0} proves the following are equivalent:
(1) $A C A_{0}$.
(2) Suppose H is a hypergraph with finite edges presented as a sequence of characteristic functions. If every finite partial hypergraph of H has a proper 2-coloring, then H has a proper 2-coloring.

Proof sketch:
$(1) \rightarrow(2)$: For every m, there is a least 2 -coloring of v_{0}, \ldots, v_{m} that can be extended to a proper 2-coloring of every finite partial hypergraph. Nesting these least 2 -colorings yields a 2 -coloring of all of H that is arithmetically definable (in H).

The reversal: Proper 2-colorings $\rightarrow \mathrm{ACA}_{0}$

Given an injection f, we want to build H so that the range of f can be computed from any 2-coloring of H.

For example, suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Range}(f)$.

The reversal: Proper 2-colorings $\rightarrow \mathrm{ACA}_{0}$

Given an injection f, we want to build H so that the range of f can be computed from any 2-coloring of H.

For example, suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Range}(f)$.

The reversal: Proper 2-colorings $\rightarrow \mathrm{ACA}_{0}$

Given an injection f, we want to build H so that the range of f can be computed from any 2 -coloring of H.

For example, suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Range}(f)$.

The reversal: Proper 2-colorings $\rightarrow \mathrm{ACA}_{0}$

Given an injection f, we want to build H so that the range of f can be computed from any 2 -coloring of H.

For example, suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Range}(f)$.

The reversal: Proper 2-colorings $\rightarrow \mathrm{ACA}_{0}$

Given an injection f, we want to build H so that the range of f can be computed from any 2 -coloring of H.

For example, suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Range}(f)$.

The reversal: Proper 2-colorings $\rightarrow \mathrm{ACA}_{0}$

Given an injection f, we want to build H so that the range of f can be computed from any 2 -coloring of H.

For example, suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Range}(f)$.

The reversal: Proper 2-colorings $\rightarrow \mathrm{ACA}_{0}$

Given an injection f, we want to build H so that the range of f can be computed from any 2 -coloring of H.

For example, suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Range}(f)$.

The reversal: Proper 2-colorings $\rightarrow \mathrm{ACA}_{0}$

Given an injection f, we want to build H so that the range of f can be computed from any 2 -coloring of H.

For example, suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Range}(f)$.

The reversal: Proper 2-colorings $\rightarrow \mathrm{ACA}_{0}$

Given an injection f, we want to build H so that the range of f can be computed from any 2 -coloring of H.

For example, suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Range}(f)$.

The reversal: Proper 2-colorings $\rightarrow \mathrm{ACA}_{0}$

Given an injection f, we want to build H so that the range of f can be computed from any 2 -coloring of H.

For example, suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Range}(f)$.

The reversal: Proper 2-colorings $\rightarrow \mathrm{ACA}_{0}$

Given an injection f, we want to build H so that the range of f can be computed from any 2 -coloring of H.

For example, suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Range}(f)$.

The reversal: Proper 2-colorings $\rightarrow \mathrm{ACA}_{0}$

Given an injection f, we want to build H so that the range of f can be computed from any 2 -coloring of H.

For example, suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Range}(f)$.

The reversal: Proper 2-colorings $\rightarrow \mathrm{ACA}_{0}$

Given an injection f, we want to build H so that the range of f can be computed from any 2 -coloring of H.

For example, suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Range}(f)$.

The reversal: Proper 2-colorings $\rightarrow \mathrm{ACA}_{0}$

Given an injection f, we want to build H so that the range of f can be computed from any 2 -coloring of H.

For example, suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Range}(f)$.

The reversal: Proper 2-colorings $\rightarrow \mathrm{ACA}_{0}$

 Given an injection f, we want to build H so that the range of f can be computed from any 2 -coloring of H.For example, suppose $f(0)=1, f(2)=0$, and $2 \notin \operatorname{Range}(f)$.

Hypergraphs with finite edges: Additional observations

Hypergraphs are different from graphs.
Theorem: RCA_{0} proves the following are equivalent:
(1) $A C A_{0}$.
(2) Suppose H is a hypergraph with finite edges presented as a sequence of characteristic functions. If every finite partial hypergraph of H has a proper 2-coloring, then H has a proper 2-coloring.

Theorem: RCA_{0} proves the following are equivalent:
(1) WKL_{0}.
(2) Suppose H is a graph with finite edges presented as a sequence of characteristic functions. If every finite partial graph of H has a proper 2-coloring, then H has a proper 2 -coloring.

Hypergraphs with infinite edges

For hypergraphs with infinite edges, there is no arithmetical characterization of hypergraphs with proper 2-colorings. This is a corollary of:

Theorem: RCA_{0} proves the following are equivalent:
(1) $\Pi_{1}^{1}-\mathrm{CA} A_{0}$, the comprehension scheme for Π_{1}^{1} definable sets.
(2) $\widehat{\mathrm{HC}}$: If $\left\langle H_{i}\right\rangle_{i \in \mathbb{N}}$ is a sequence of hypergraphs, then there is a function $f: \mathbb{N} \rightarrow 2$ such that $f(i)=1$ if and only if H_{i} has a proper 2-coloring.

Proof sketch for (1) \rightarrow (2):
$f(i)=0$ if and only if every 2-coloring fails to be proper for H_{i}.
"Fails to be proper" means that for some j, all the vertices of edge E_{j} of H_{i} match.

Hypergraphs with infinite edges: the reversal

For the reversal, we need a combinatorial version of $\Pi_{1}^{1}-\mathrm{CA}_{0}$.

Theorem: $R C A_{0}$ proves the following are equivalent:
(1) $\Pi_{1}^{1}-\mathrm{CA}_{0}$.
(2) $\widehat{W F}$: If $\left\langle T_{i}\right\rangle_{i \in \mathbb{N}}$ is a sequence of trees with integer labeled nodes, then there is a function $f: \mathbb{N} \rightarrow 2$ such that $f(i)=1$ if and only if T_{i} is well founded. (Lemma IV.1.1, Simpson [5])
(3) $\widehat{W F}_{L}:$ If $\left\langle T_{i}, L_{i}\right\rangle_{i \in \mathbb{N}}$ is a sequence of trees, each equipped with a leaf set L_{i}, then there is a function $f: \mathbb{N} \rightarrow 2$ such that $f(i)=1$ if and only if T_{i} is well founded.

Leaf management

A tree can be converted to a tree with a leaf set by adding an extension with a new label to every existing nodes. The converted tree has the same infinite paths (and the same perfect subtrees).

Leaf management

A tree can be converted to a tree with a leaf set by adding an extension with a new label to every existing nodes. The converted tree has the same infinite paths (and the same perfect subtrees).

Leaf management

A tree can be converted to a tree with a leaf set by adding an extension with a new label to every existing nodes. The converted tree has the same infinite paths (and the same perfect subtrees).

The reversal: $\widehat{H C} \rightarrow \widehat{W F}$
We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{W F}$
We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{W F}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{H C} \rightarrow \widehat{W F}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{H C} \rightarrow \widehat{W F}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{H C} \rightarrow \widehat{W F}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{H C} \rightarrow \widehat{W F}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{H C} \rightarrow \widehat{W F}$
We want to convert a tree into a hypergraph that has a proper 2 -coloring iff the tree has a path.

The reversal: $\widehat{H C} \rightarrow \widehat{W F}$
We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{W F}$
We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{W F}$
We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{W F}$
We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{W F}$
We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{\mathrm{WF}}$
We want to convert a tree into a hypergraph that has a proper 2 -coloring iff the tree has a path.

The reversal: $\widehat{H C} \rightarrow \widehat{W F}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{H C} \rightarrow \widehat{W F}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{H C} \rightarrow \widehat{W F}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{\mathrm{WF}}$
We want to convert a tree into a hypergraph that has a proper 2 -coloring iff the tree has a path.

The reversal: $\widehat{H C} \rightarrow \widehat{W F}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{\mathrm{WF}}$
We want to convert a tree into a hypergraph that has a proper 2 -coloring iff the tree has a path.

The reversal: $\widehat{H C} \rightarrow \widehat{W F}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{H C} \rightarrow \widehat{W F}$
We want to convert a tree into a hypergraph that has a proper 2 -coloring iff the tree has a path.

The reversal: $\widehat{H C} \rightarrow \widehat{W F}$
We want to convert a tree into a hypergraph that has a proper 2 -coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{W F}$
We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{W F}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{\mathrm{WF}}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{\mathrm{WF}}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{\mathrm{WF}}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{\mathrm{WF}}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{\mathrm{WF}}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{\mathrm{WF}}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{\mathrm{WF}}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

The reversal: $\widehat{\mathrm{HC}} \rightarrow \widehat{W F}$

We want to convert a tree into a hypergraph that has a proper 2-coloring iff the tree has a path.

Weihrauch reductions

Sample problems
WF: input a tree T; output 1 iff T is well-founded.
HC: input a hypergraph H; output 1 iff H has a proper
2-coloring.
Parallelization
$\widehat{H C}$: input an infinite sequence of hypergraphs; output list of indices of hypergraphs with proper 2-colorings.
Reductions
$\mathrm{P} \leqslant \mathrm{sw} \mathrm{Q}$ if there are uniformly computable procedures φ and ψ such that

Equivalences

$$
P \equiv s w Q \text { iff } P \leqslant s w Q \text { and } Q \leqslant s w P
$$

Weihrauch equivalences

$$
\begin{aligned}
& W F \equiv_{s W} W F_{L} \equiv_{s W} H C \\
& \widehat{W F} \equiv_{s W} \widehat{W F}_{L} \equiv_{s W} \widehat{H C}
\end{aligned}
$$

Another problem
PK: input a tree T; output the perfect kernel of T.

$$
\widehat{W F} \equiv_{s w} P K
$$

These results appear in Leaf management [4]

References

[1] Caleb Davis, Jeffry L. Hirst, Jake Pardo, and Tim Ransom, Reverse mathematics and colorings of hypergraphs, Archive for Mathematical Logic (2018).
DOI 10.1007/s00153-018-0654-z.
[2] Harvey Friedman, Some systems of second order arithmetic and their use, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, 1975, pp. 235-242. http://www.mathunion.org MR0429508.
[3] Harvey Friedman, Abstracts: Systems of second order arithmetic with restricted induction, I and II, J. Symbolic Logic 41 (1976), 557-559. http://www.jstor.org/stable/2272259.
[4] Jeffry L. Hirst, Leaf management. To appear in Computability. Available at arxiv.org/abs/1812.09762.
[5] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, NY, 2009. 10.1017/CBO9780511581007 MR2517689.

