
Reverse mathematics and colorings of
hypergraphs

Jeff Hirst
Appalachian State University

Boone, NC USA

in collaboration with Caleb Davis, Jake Pardo
and Tim Ransom

April 5, 2019

College of Charleston



Reverse mathematics

Reverse mathematics uses a hierarchy of axioms of second
order arithmetic to measure the strength of theorems.

The language has variables for natural numbers and sets of
naturals numbers.

The base system, RCA0, includes
• arithmetic facts (e.g. n + 0 = n),
• an induction scheme (restricted to Σ0

1 formulas), and
• recursive comprehension
(computable sets exist, i.e. sets with programmable
characteristic functions exist).

Adding stronger comprehension axioms creates stronger axiom
systems.



ACA0

The system ACA0 adds arithmetical comprehension to RCA0
(sets with arithmetically definable characteristic functions exist).

A theorem of reverse mathematics:

Theorem: Over RCA0, the following are provably equivalent:
1. ACA0.
2. Every injection has a range. (Lemma III.1.3, Simpson [5]).
3. Every countable sequence of reals in [0,1] has a

convergent subsequence. (Friedman [3])



Proper colorings of hypergraphs
A hypergraph consists of vertices and edges. Edges may
contain any number of vertices.



Proper colorings of hypergraphs
A hypergraph consists of vertices and edges. Edges may
contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.



Proper colorings of hypergraphs
A hypergraph consists of vertices and edges. Edges may
contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.



Proper colorings of hypergraphs
A hypergraph consists of vertices and edges. Edges may
contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.



Proper colorings of hypergraphs
A hypergraph consists of vertices and edges. Edges may
contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.



Proper colorings of hypergraphs
A hypergraph consists of vertices and edges. Edges may
contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.



Proper colorings of hypergraphs
A hypergraph consists of vertices and edges. Edges may
contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.



Proper colorings of hypergraphs
A hypergraph consists of vertices and edges. Edges may
contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.



Proper colorings of hypergraphs
A hypergraph consists of vertices and edges. Edges may
contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.



Proper colorings of hypergraphs
A hypergraph consists of vertices and edges. Edges may
contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.



Proper colorings of hypergraphs
A hypergraph consists of vertices and edges. Edges may
contain any number of vertices.

A 2-coloring is proper if no edge is monochromatic.



Hypergraphs with finite edges

Theorem: RCA0 proves the following are equivalent:
(1) ACA0.
(2) Suppose H is a hypergraph with finite edges presented
as a sequence of characteristic functions. If every finite
partial hypergraph of H has a proper 2-coloring, then H
has a proper 2-coloring.

Proof sketch:

(1)→(2): For every m, there is a least 2-coloring of v0, . . . , vm
that can be extended to a proper 2-coloring of every finite
partial hypergraph. Nesting these least 2-colorings yields a
2-coloring of all of H that is arithmetically definable (in H).



The reversal: Proper 2-colorings→ ACA0
Given an injection f , we want to build H so that the range of f
can be computed from any 2-coloring of H.

For example, suppose f (0) = 1, f (2) = 0, and 2 /∈Range(f ).



The reversal: Proper 2-colorings→ ACA0
Given an injection f , we want to build H so that the range of f
can be computed from any 2-coloring of H.

For example, suppose f (0) = 1, f (2) = 0, and 2 /∈Range(f ).

0 21



The reversal: Proper 2-colorings→ ACA0
Given an injection f , we want to build H so that the range of f
can be computed from any 2-coloring of H.

For example, suppose f (0) = 1, f (2) = 0, and 2 /∈Range(f ).

0 21



The reversal: Proper 2-colorings→ ACA0
Given an injection f , we want to build H so that the range of f
can be computed from any 2-coloring of H.

For example, suppose f (0) = 1, f (2) = 0, and 2 /∈Range(f ).

0 21



The reversal: Proper 2-colorings→ ACA0
Given an injection f , we want to build H so that the range of f
can be computed from any 2-coloring of H.

For example, suppose f (0) = 1, f (2) = 0, and 2 /∈Range(f ).

0 21



The reversal: Proper 2-colorings→ ACA0
Given an injection f , we want to build H so that the range of f
can be computed from any 2-coloring of H.

For example, suppose f (0) = 1, f (2) = 0, and 2 /∈Range(f ).

0 21



The reversal: Proper 2-colorings→ ACA0
Given an injection f , we want to build H so that the range of f
can be computed from any 2-coloring of H.

For example, suppose f (0) = 1, f (2) = 0, and 2 /∈Range(f ).

0 21



The reversal: Proper 2-colorings→ ACA0
Given an injection f , we want to build H so that the range of f
can be computed from any 2-coloring of H.

For example, suppose f (0) = 1, f (2) = 0, and 2 /∈Range(f ).

0 21



The reversal: Proper 2-colorings→ ACA0
Given an injection f , we want to build H so that the range of f
can be computed from any 2-coloring of H.

For example, suppose f (0) = 1, f (2) = 0, and 2 /∈Range(f ).

0 21



The reversal: Proper 2-colorings→ ACA0
Given an injection f , we want to build H so that the range of f
can be computed from any 2-coloring of H.

For example, suppose f (0) = 1, f (2) = 0, and 2 /∈Range(f ).

0 21



The reversal: Proper 2-colorings→ ACA0
Given an injection f , we want to build H so that the range of f
can be computed from any 2-coloring of H.

For example, suppose f (0) = 1, f (2) = 0, and 2 /∈Range(f ).

0 21



The reversal: Proper 2-colorings→ ACA0
Given an injection f , we want to build H so that the range of f
can be computed from any 2-coloring of H.

For example, suppose f (0) = 1, f (2) = 0, and 2 /∈Range(f ).

0 21



The reversal: Proper 2-colorings→ ACA0
Given an injection f , we want to build H so that the range of f
can be computed from any 2-coloring of H.

For example, suppose f (0) = 1, f (2) = 0, and 2 /∈Range(f ).

0 21



The reversal: Proper 2-colorings→ ACA0
Given an injection f , we want to build H so that the range of f
can be computed from any 2-coloring of H.

For example, suppose f (0) = 1, f (2) = 0, and 2 /∈Range(f ).

0 21



The reversal: Proper 2-colorings→ ACA0
Given an injection f , we want to build H so that the range of f
can be computed from any 2-coloring of H.

For example, suppose f (0) = 1, f (2) = 0, and 2 /∈Range(f ).

0 21



Hypergraphs with finite edges: Additional observations

Hypergraphs are different from graphs.

Theorem: RCA0 proves the following are equivalent:
(1) ACA0.
(2) Suppose H is a hypergraph with finite edges presented
as a sequence of characteristic functions. If every finite
partial hypergraph of H has a proper 2-coloring, then H
has a proper 2-coloring.

Theorem: RCA0 proves the following are equivalent:
(1) WKL0.
(2) Suppose H is a graph with finite edges presented as a
sequence of characteristic functions. If every finite partial
graph of H has a proper 2-coloring, then H has a proper
2-coloring.



Hypergraphs with infinite edges

For hypergraphs with infinite edges, there is no arithmetical
characterization of hypergraphs with proper 2-colorings. This is
a corollary of:

Theorem: RCA0 proves the following are equivalent:
(1) Π1

1-CA0, the comprehension scheme for Π1
1 definable

sets.
(2) ĤC: If 〈Hi〉i∈N is a sequence of hypergraphs, then there
is a function f : N→ 2 such that f (i) = 1 if and only if Hi
has a proper 2-coloring.

Proof sketch for (1)→ (2):
f (i) = 0 if and only if every 2-coloring fails to be proper for Hi .
“Fails to be proper” means that for some j , all the vertices of
edge Ej of Hi match.



Hypergraphs with infinite edges: the reversal

For the reversal, we need a combinatorial version of Π1
1-CA0.

Theorem: RCA0 proves the following are equivalent:
(1) Π1

1-CA0.

(2) ŴF: If 〈Ti〉i∈N is a sequence of trees with integer
labeled nodes, then there is a function f : N→ 2 such that
f (i) = 1 if and only if Ti is well founded. (Lemma IV.1.1,
Simpson [5])

(3) ŴFL: If 〈Ti ,Li〉i∈N is a sequence of trees, each
equipped with a leaf set Li , then there is a function
f : N→ 2 such that f (i) = 1 if and only if Ti is well founded.



Leaf management
A tree can be converted to a tree with a leaf set by adding an
extension with a new label to every existing nodes. The
converted tree has the same infinite paths (and the same
perfect subtrees).

2

50

2

1

4

0



Leaf management
A tree can be converted to a tree with a leaf set by adding an
extension with a new label to every existing nodes. The
converted tree has the same infinite paths (and the same
perfect subtrees).

2

50

2

1

4

0

3

61

3

2

5

1



Leaf management
A tree can be converted to a tree with a leaf set by adding an
extension with a new label to every existing nodes. The
converted tree has the same infinite paths (and the same
perfect subtrees).

0 0

2

50

2

1

4

0

3

61

3

2

5

1
0

0 0

0

0



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



The reversal: ĤC→ ŴF
We want to convert a tree into a hypergraph that has a proper
2-coloring iff the tree has a path.



Weihrauch reductions
Sample problems

WF: input a tree T ; output 1 iff T is well-founded.
HC: input a hypergraph H; output 1 iff H has a proper
2-coloring.

Parallelization
ĤC: input an infinite sequence of hypergraphs; output list
of indices of hypergraphs with proper 2-colorings.

Reductions
P6sWQ if there are uniformly computable procedures ϕ
and ψ such that

Pinput →ϕ Qinput
↓ ↓

Poutput ←ψ Qoutput

Equivalences
P≡sWQ iff P6sWQ and Q6sWP



Weihrauch equivalences

WF≡sWWFL≡sWHC

ŴF≡sWŴFL≡sWĤC

Another problem
PK: input a tree T ; output the perfect kernel of T .

ŴF≡sWPK

These results appear in Leaf management [4]



References

[1] Caleb Davis, Jeffry L. Hirst, Jake Pardo, and Tim Ransom, Reverse
mathematics and colorings of hypergraphs, Archive for Mathematical
Logic (2018).
DOI 10.1007/s00153-018-0654-z.

[2] Harvey Friedman, Some systems of second order arithmetic and their
use, Proceedings of the International Congress of Mathematicians
(Vancouver, B. C., 1974), Vol. 1, 1975, pp. 235–242.
http://www.mathunion.org MR0429508.

[3] Harvey Friedman, Abstracts: Systems of second order arithmetic with
restricted induction, I and II, J. Symbolic Logic 41 (1976), 557–559.
http://www.jstor.org/stable/2272259.

[4] Jeffry L. Hirst, Leaf management. To appear in Computability. Available at
arxiv.org/abs/1812.09762.

[5] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed.,
Perspectives in Logic, Cambridge University Press, Cambridge;
Association for Symbolic Logic, Poughkeepsie, NY, 2009.
10.1017/CBO9780511581007 MR2517689.

http://dx.doi.org/10.1007/s00153-018-0654-z
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.457.4194&rep=rep1&type=pdf
http://www.ams.org/mathscinet-getitem?mr=429508
http://www.jstor.org/stable/2272259
https://arxiv.org/abs/1812.09762
http://dx.doi.org/10.1017/CBO9780511581007
https://mathscinet.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=2517689

	Reverse mathematics
	hypergraphs
	Theorem4
	Theorem12
	Weihrauch
	Endmatter

