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Reverse mathematics

Reverse mathematics examines the logical strength of
theorems via proofs in a hierarchy of subsystems of second
order arithmetic.

Language:
Variables for numbers (type 0) and sets of numbers (type 1)

Base axiom system: RCA0
Axioms: Basic arithmetic

IΣ0
1: Induction for ∃n formulas

Recursive comprehension
(sets with computable characteristic functions)

Induction and bounding schemes:
IΣ0

1 < BΠ0
1 < IΣ0

2 <BΠ0
2 < . . .

RCA0 cannot prove BΠ0
1. For details, see Chapter 6 of

Dzhafarov and Mummert’s text [1].
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An old pigeonhole theorem

Theorem: (RCA0) The following are equivalent:

(1) BΠ0
1: If θ(x , y , z) is a quantifier free formula, and

(∀x < a)(∃y)(∀z)θ(x , y , z) then
(∃b)(∀x < a)(∃y < b)(∀z)θ(x , y , z)

(2) RT1: If f : N → m then for some j < m, the set {n | f (n) = j}
is infinite.

This theorem is included in Hirst’s thesis, but it’s easier to find
the proof in Dzhafarov and Mummert’s text [1].



A preliminary result

Theorem [H,K,M,R1] (RCA0) The following are equivalent:

(1) PHB: If f : N → m then f has a pigeonhole basis, that is, a
set B of exactly those colors that appear infinitely often in
the range of f .

(2) IΣ0
2: the induction scheme for ∃x∀y formulas.

1 Authors include the members of the 2024 Noncomputability
course at Appalachian State University: Silva Keohulian, Brody
Miller, and Jessica Ross.
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(1) PHB: If f : N → m then f has a pigeonhole basis, that is, a
set B of exactly those colors that appear infinitely often in
the range of f .

(2) IΣ0
2: the induction scheme for ∃x∀y formulas.

This shows that PHB is strictly stronger than RT1.

Blueprint for the proof: Prove that PHB is equivalent to bounded
Π0

2 comprehension, and invoke Ex. II.3.13 of Simpson [5].
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Ideas from the proof

• Bounded Π0
2 comprehension → PHB

Suppose f : N → m. The pigeonhole basis is
{j < m | ∀s∃n(n > s ∧ f (n) = j)}

bound Π0
2 formula

•PHB → bounded Π0
2 comprehension

A concrete example: We want to find
S = {j < 2 | ∀s∃n θ(j , s,n)}.

Suppose θ(0,0,1), θ(0,1,3), θ(0,2,10), and so on.
Suppose θ(1,0,0), but ¬∃n θ(1,1,n). (Want S = {0}.)

Computation of the function f Markers
n 0 1 2 3 4 5 6

f for j = 0
f for j = 1

j = 0 0
j = 1 0
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Ideas from the proof
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A concrete example: We want to find
S = {j < 2 | ∀s∃n θ(j , s,n)}.

Suppose θ(0,0,1), θ(0,1,3), θ(0,2,10), and so on.
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Values of f are 3, 1, 0, 3, 0, 3, 3, . . . (Infinitely many 0s and 3s.)

PHB(f)={0, 3}. Delete the 3 to get S = {0}.



Enumerated matroids

Theorem [H,Mummert] (RCA0) The following are equivalent:
(1) EMB: Every finite dimensional e-matroid has a basis.
(2) IΣ0

2.

An e-matroid (M,e) consists of a set (like vectors) and a
function e : N → M<N that enumerates all the finite dependent
sets. Requirements:
(1) ∅ is independent.
(2) Finite supersets of dependent sets are dependent.
(3) Exchange principle: If X and Y are independent and

|X | < |Y |, then for some y ∈ Y , X ∪ {y } is independent.

A basis is a maximal independent set.

(e,M) is finite dimensional if e enumerates all the sets bigger
than size b for some b.



A direct proof
Theorem (RCA0) EMB → PHB.

Sketch: Suppose f : N → m is a PHB instance.

Preprocessing: Turn f into an EMB instance.

Let f ′(n) be the identity if n < m and f (n) if n ⩾ m. Note that
PHB(f ′)=PHB(f ). List all finite subsets of N (S0,S1, . . . ) with
each set repeated infinitely many times. The set
Sn = {x0, x1, . . . , xk } is dependent if there is an xi < m ⩽ n such
that f ′(xi) = f ′(m). Define e(n) = Sn if Sn is dependent, and
e(n) = [0,m] otherwise.

Apply EMB to find a basis for (e,N). Call it B′.

Postprocessing: Turn B′ into a PHB for f .

x ∈ B′ if and only if x is the largest value colored f ′(x). So
B = [0,m) − {f ′(x) | x ∈ B′} is the pigeonhole basis for f ′ (and
also for f ).



Weihrauch reductions

Problems: Input a set and output a set (or number)
PHB is a problem.
An instance of PHB is a function f : N → m.

Realizer: A function mapping instances to solutions.

We say P is Weihrauch reducible to Q (and write P ⩽W Q) if
there are (partial) computable procedures
Φ (for preprocessing) and Ψ (for postprocessing)
such that if p is an instance of P, then

• Φ(p) is an instance of Q and
• for any solution s of Φ(p), Ψ(s,p) is a solution of p.

That is, if RQ is any realizer of Q, then Ψ(RQ(Φ(p)),p) is a
realizer for P.



Weihrauch analysis of PHB

Thm [H,K,M,R] PHB⩽WEMB.

Proof: Use the sketch for EMB→PHB.

Another example:

The problem LPO (Limited Principle of Omniscience)
Input: f : N → 2 Output: 0 if 0 is in the range of f , 1 if not.

Thm [H,K,M,R] LPO⩽WPHB.

Sketch: If f is (for example):
n 0 1 2 3 4

f(n) 1 1 0 1 0
then

Φ(f ) is
n 0 1 2 3 4

Φ(f)(n) 1 1 0 0 0
. For an arbitrary g : N → 2,

if g has a zero, then PHB(Φ(g)) = {0}, and if g has no zeros
then PHB(Φ(g)) = {1}, matching LPO(g).
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Comparison of results

• Reverse mathematics:

RCA0 proves PHB↔EMB.

RCA0 proves LPO (by classical logic), so LPO̸→PHB.

• Weihrauch reducibility

LPO<WPHB<WEMB

The proofs that PHB̸⩽WLPO and EMB̸⩽WPHB are somewhat
technical proofs by contradiction.

• In both settings, LPO is strictly weaker than PHB.
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Higher order reverse mathematics

Kohlenbach [4] introduced an extension of reverse mathematics
to higher types. The language is richer, including functions from
sets to numbers (type 2), for example.

If P is a Weihrauch problem, we can write (P) for the principle
that asserts the existence of a realizer for P.

The relationship between P ⩽W Q and the theorem (Q) → (P)
is often surprising.



A higher order result

Theorem [H,K,M,R] (RCAω
0 ) The following are equivalent:

(1) (PHB): There is a function RPHB such that if f : N → m,
then RPHB(f ) is the pigeonhole basis for f .

(2) (LPO): There is a function RLPO such that if f : N → 2, then
RLPO(f ) is 0 if 0 is in the range of f and 1 otherwise.

Comments on the proof:

(1) implies (2) is a formalization of LPO⩽WPHB

(2) implies (1) depends on the fact that RCAω
0 allows sequential

applications of RLPO. We could formalize a proof of
PHB⩽W L̂PO.

(LPO) is the same as Kohlenbach’s (∃2), and related to
Kleene’s E2.



Immediate questions

Does RCAω
0 prove (LPO)↔(EMB)?

What about results for fixed (rather than bounded) dimension?

What about similar basis results for RT2 or RT3 or HT?
(Lists of infinite monochromatic sets in each possible color?)
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