Graphs, Free Sets, and Reverse Mathematics

May 3, 2001

Jeffry L. Hirst

Appalachian State University, Boone, NC and University of Notre Dame (visiting)

e-mail: jlh@math.appstate.edu

Copies of these slides can be found at: www.mathsci.appstate.edu/~jlh **Goal:** Determine what set existence axioms are needed to prove familiar theorems.

Method: Prove results of the form

$\mathbf{RCA_0} \vdash \mathbf{AX} \leftrightarrow \mathbf{THM}$

where:

- $\mathbf{RCA}_{\mathbf{0}}$ is a weak axiom system,
- AX is a set existence axiom selected from a small hierarchy of axioms, and
- **THM** is a familiar theorem.

$\mathbf{RCA_0}$ Recursive Comprehension

Language:

x, y, z variables representing integers X, Y, Z variables representing sets of integers $0, 1, +, \times, =, <, \text{ and } \in$

Axioms:

basic arithmetic axioms

 $(0, 1, +, \times, =, \text{ and } < \text{ behave as usual.})$

Restricted induction $(\psi(0) \land \forall n(\psi(n) \rightarrow \psi(n+1))) \rightarrow \forall n\psi(n)$ where $\psi(n)$ has (at most) one x quantifier.

Recursive set comprehension If $\theta \in \Sigma_1^0$ and $\psi \in \Pi_1^0$, and $\forall n(\theta(n) \leftrightarrow \psi(n))$, then there is a set X such that $\forall n(n \in X \leftrightarrow \theta(n))$

What can \mathbf{RCA}_0 prove?

Arithmetic needed for coding.

Lots of finite graph theory, e.g.

Thm (\mathbf{RCA}_0) Every finite graph with no odd cycles is bipartite.

A little analysis, e.g.

Thm (RCA₀) If $\langle I_n \rangle_{n \in \mathbb{N}}$ is a sequence of nested real intervals, then there is a real number in their intersection.

Weak König's Lemma

Statement: Big 0-1 trees are tall.

More formally: If T is an infinite tree in which each node is labeled 0 or 1, then T contains an infinite path.

 $\mathbf{WKL}_{\mathbf{0}}$ is $\mathbf{RCA}_{\mathbf{0}}$ plus Weak König's Lemma.

Note: $\mathbf{RCA_0} \not\vdash \mathbf{WKL_0}$

Some reverse mathematics!

Thm $(\mathbf{RCA_0})$ The following are equivalent:

1) **WKL**₀.

2) Every graph with no cycles of odd length is bipartite.

Proof: To prove that $1) \rightarrow 2$, we should 2-color the nodes of an arbitrary graph with no odd cycles by using a tree.

The reversal Proof that "bipartite thm" implies **WKL**₀

A reversal tool:

Thm $(\mathbf{RCA_0})$ T.F.A.E.:

1) **WKL**₀

2) If f and g are 1-1 functions from \mathbb{N} into \mathbb{N} and $Ran(f) \cap Ran(g) = \emptyset$, then there is a set X such that $Ran(f) \subset X$ and $X \cap Ran(g) = \emptyset$.

Sketch of the reversal: Use a 2-coloring of a graph with no odd cycles to separate the ranges of some arbitrary functions.

Sample construction: Suppose we are given fand g such that \mathbb{N} and $Ran(f) \cap Ran(g) = \emptyset$.

If, for example, f(3) = 0 and g(4) = 2, we will construct the graph G as follows:

Associate straight links with fAssociate shifted links with g

(Bean) There is a computable graph with no cycles of odd length that has no computable 2-coloring.

(Bean) Every computable graph with no cycles of odd length has a low 2-coloring. Arithmetical Comprehension

 ACA_0 consists of RCA_0 plus the following arithmetical comprehension scheme:

For any formula $\theta(n)$ with only number quantifiers, the set $\{n \in \mathbb{N} \mid \theta(n)\}$ exists.

Note: $\mathbf{WKL}_0 \not\vdash \mathbf{ACA}_0$, but $\mathbf{ACA}_0 \vdash \mathbf{WKL}_0$

A reversal tool:

Thm $(\mathbf{RCA_0})$ T.F.A.E.:

1) **ACA**₀

2) If $f : \mathbb{N} \to \mathbb{N}$ is 1-1, then Ran(f) exists.

 $\mathbf{ACA_0}$ and Graph Theory

Thm $(\mathbf{RCA_0})$ T.F.A.E.:

1) **ACA**₀

2) $\mathbf{RT}(3,2)$

Ramsey's theorem for triples and two colors: Given $g : [\mathbb{N}]^3 \to \{0, 1\}$ there is an infinite set $H \subset \mathbb{N}$ such that g is constant on $[H]^3$.

Sketch of the reversal

We will use Ramsey's theorem to define the range of an arbitrary function. Suppose we want to find the range of the function f. Define $g: [\mathbb{N}]^3 \to \{0, 1\}$ by:

$$g(x, y, z) = \begin{cases} 0 \text{ if } \exists j \in [y, z] (f(j) \le x) \\ 1 \text{ otherwise} \end{cases}$$

The range of f can be computed from any infinite homogeneous set for g.

Related computability results

Every computable two coloring of triples has an arithmetically definable infinite homogeneous set.

There is a computable two coloring of triples f such that $\mathbf{0}'$ is computable from every infinite set that is homogeneous for f.

(These follow easily from work of Jockusch.)

Arithmetical Transfinite Recursion

 ATR_0 consists of RCA_0 plus axioms that allow iteration of arithmetical comprehension along any well ordering. This allows transfinite constructions.

A reversal tool:

Thm $(\mathbf{RCA_0})$ T.F.A.E.:

1) **ATR**₀

2) If α and β are well orderings, then $\alpha \leq \beta$ or $\beta \leq \alpha$.

\mathbf{ATR}_0 and Graph Theory

(C, M) is a König cover for the graph G if C contains at least one vertex from each edge of G, M is a collection of disjoint edges, and C consists of exactly one vertex from each edge of M.

Thm $(\mathbf{RCA_0})$ T.F.A.E.:

1) **ATR**₀

2) Countable König's Duality Theorem: Every countable bipartite graph has a König cover.

Proof of 2) \rightarrow 1): Aharoni, Magidor, and Shore Proof of 1) \rightarrow 2): Simpson The system $\Pi_1^1 - \mathbf{CA_0}$ consists of $\mathbf{RCA_0}$ and the axioms asserting the existence of the set $\{n \in \mathbb{N} \mid \theta(n)\}$ for $\theta \in \Pi_1^1$. (That is, θ has one universal set quantifier and no other set quantifiers.)

A reversal tool followed by graph theory: **Thm** (\mathbf{RCA}_0) T.F.A.E.:

1) $\Pi_1^1 - CA_0$

2) If $\langle T_i \rangle_{n \in \mathbb{N}}$ is a sequence of trees then there is a function $f : \mathbb{N} \to \{0, 1\}$ such that f(n) = 1iff T_n is well founded.

3) For any graph H, and any sequence of graphs $\langle G_i \rangle_{i \in \mathbb{N}}$, there is a function $f : \mathbb{N} \to \{0, 1\}$ such that f(n) = 1 iff His isomorphic to a subgraph of G. (Hirst and Lempp) Recently, Friedman has introduced the following combinatorial statements:

 $\begin{aligned} \mathbf{FS}(n) & \text{(Free set theorem): If } f : [\mathbb{N}]^n \to \mathbb{N}, \\ \text{then there is an infinite set } H \text{ such that for all} \\ \vec{x} \in [H]^n, \\ & \text{if } f(\vec{x}) \in H \text{ then } f(\vec{x}) \in \vec{x}. \end{aligned}$

 $\mathbf{TS}(n) \text{ (Thin set theorem): If } f: [\mathbb{N}]^n \to \mathbb{N},$ then there is an infinite set H such that $f([H]^n) \neq \mathbb{N}.$

Results on $\mathbf{FS}(n)$ and $\mathbf{TS}(n)$ $\forall n \in \omega \ \mathbf{ACA_0} \vdash \mathbf{FS}(n)$ $ACA_0 \not\vdash \forall nFS(n)$ $\mathbf{RCA}_{\mathbf{0}} \vdash \forall n(\mathbf{FS}(n) \to \mathbf{TS}(n))$ $\mathbf{RCA}_{\mathbf{0}} \vdash \mathbf{RT}(2,2) \rightarrow \mathbf{FS}(2)$ $\mathbf{RCA_0} + \mathbf{FS}(2) \not\vdash \mathbf{ACA_0}$ $WKL_0 \not\vdash TS(2)$

Does $\mathbf{RCA_0} \vdash \mathbf{TS}(3) \to \mathbf{ACA_0}$?

Does $\mathbf{RCA}_{\mathbf{0}} \vdash \mathbf{TS}(3) \rightarrow \mathbf{RT}(1)$?

A few references

S. Simpson, Subsystems of Second Order Arithmetic, Springer-Verlag, 1999.

S. Simpson, On the strength of König's duality theorem for Countable bipartite graphs, JSL, **59** (1994) 113-123.

J. Hirst, Reverse mathematics and rank functions for directed graphs, Archive for Mathematical Logic, **39** (2000) 569–579.

P. Cholak, M. Guisto and J. Hirst, *Free sets* and reverse mathematics, to appear in Reverse Math 2001, edited by S. Simpson. A draft is available at:

www.mathsci.appstate.edu/~jlh