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Reverse Mathematics

Goal: Determine what set existence axioms are needed to
prove familiar theorems.

Method: Prove results of the form

RCA0 ` AX ↔ THM

where:
• RCA0 is a weak axiom system,
• AX is a set existence axiom selected from
a small hierarchy of axioms, and
• THM is a familiar theorem.



RCA0: Recursive Comprehension
Language:

Integer variables: x, y, z Set variables: X , Y , Z

Axioms:

basic arithmetic axioms
(0, 1, +, ×, =, and < behave as usual.)

Restricted induction
(ψ(0) ∧ ∀n(ψ(n) → ψ(n + 1))) → ∀nψ(n)
where ψ(n) has (at most) one x quantifier.

Recursive set comprehension
If θ ∈ Σ0

1 and ψ ∈ Π0
1, and ∀n(θ(n) ↔ ψ(n)), then

there is a set X such that ∀n(n ∈ X ↔ θ(n))



What can RCA0 prove?

Arithmetic needed for coding.

Lots of finite graph theory, e.g.

Theorem 1. (RCA0) Every finite graph with no odd cy-
cles is bipartite.

A little analysis, e.g.

Theorem 2. (RCA0) If 〈In〉n∈N is a sequence of nested
real intervals, then there is a real number in their in-
tersection.



What can RCA0 prove?

A little infinite graph theory:

Theorem 3. (RCA0) Every 2-regular graph with no odd
cycles and exactly two connected components can be 2-
colored.

Proof. Given one designated vertex in each connected com-
ponent, the 2-coloring can be “computed.”



Weak König’s Lemma

Statement: Big very skinny trees are tall.

More formally: If T is an infinite tree in which each node
is labeled 0 or 1, then T contains an infinite path.

WKL0 is RCA0 plus Weak König’s Lemma.

Note: RCA0 6` WKL0



Some reverse mathematics!

Theorem 4. (RCA0) The following are equivalent:

1. WKL0

2. If 〈Gi〉i∈N is an infinite sequence of infinite 2-regular
graphs each of which has no odd cycles and exactly
two connected components, then there is a sequence
〈fi〉i∈N of functions such that for each i, fi is a 2-
coloring of Gi.

The proof of 1 → 2 consists of a construction of an infinite
0 − 1 tree such that any path through the tree codes all
the desired 2-colorings. The converse is (perhaps) more
entertaining. . .



Toward the reversal:

Theorem 5. (RCA0) The following are equivalent:

1. WKL0

2. If f and g are one to one functions with disjoint
ranges, then there is a set X such that for all x,
f (x) ∈ X and g(x) /∈ X.

To prove that 2 → 1, we work in RCA0 and use the state-
ment about sequences of graphs to deduce the existence of
a separating set.



Suppose that f and g are injections with disjoint ranges,
f (2) = 0, g(1) = 1, and 2 is in the range of neither function.
Build G0, G1, and G2 as follows:



Nonuniformity

RCA0 proves our statement about 2-colorings for a single
graph, but does not prove the statement for infinite se-
quences of graphs.

In general, we are interested in situations where

RCA0 ` ∀X∃Y θ(X, Y )

but

RCA0 6` ∀〈Xi〉 ∃〈Yi〉 ∀nθ(Xn, Yn).



Encoding the reals
A real number is a function x : N → Q such that

∀k∀i |x(k)− x(k + i)| ≤ 2−k

(that is, 〈x(i)〉i∈N is a rapidly converging Cauchy sequence
of rationals.)

Examples of reals
√

2 : 1, 1.4, 1.41, 1.414, 1.4142, . . .

π : 3, 3.1, 3.14, 3.141, 3.1415, . . .

0 : 1, 1
2,

1
4,

1
8,

1
16, . . .

0 : 0, 0, 0, 0, 0, . . .



Relationships between reals

x = y means: ∀k |x(k)− y(k)| ≤ 2−k+1

x ≤ y means: ∀k (x(k) ≤ y(k) + 2−k+1)

y < x means x 6≤ y,
which is ∃k (y(k) + 2−k+1 < x(k))



Theorem 6. (RCA0) If 〈xi〉i≤n is a finite sequence of
reals, then there is a j ≤ n such that xj is the minimum
of the sequence.

Theorem 7. (RCA0) The following are equivalent:

1. WKL0

2. If 〈xk〉k∈N is a sequence of reals, then there is a se-
quence of integers 〈µk〉k∈N such that

∀k(xµk = min{xj | j ≤ k}).



Sketch of (2) implies WKL0

Suppose f and g are injections with disjoint ranges. Use
a sequence of indices of minima to construct a separating
set.

If f (3) = 0, g(2)=1, and 2 /∈ Ranf ∪ Rang, build:

x0,f : 0 0 0 -.0001 . . .
x0,g : 0 0 0 0 . . .
x1,f : -1 -1 -1 -1 . . .
x1,g : -1 -1 -1.001 -1.001 . . .
x2,f : -2 -2 -2 -2 . . .
x2,g : -2 -2 -2 -2 . . .



A stronger axiom system: Arithmetical Comprehension

ACA0 is RCA0 plus the following comprehension scheme:

For any formula θ(n) with only number quantifiers, the
set {n ∈ N | θ(n)} exists.

Note: WKL0 6` ACA0, but ACA0 ` WKL0

The tool:

Theorem 8. (RCA0) The following are equivalent:

1. ACA0

2. If f : N → N is 1-1, then Ran(f ) exists.



Two forms of Dedekind cuts
Lower Dedekind cuts: a set ∅ ( λ ( Q such that

∀s ∈ Q∀s′ ∈ Q
(
(s ∈ λ ∧ s′ /∈ λ) → s < s′

)
.

Open Dedekind cuts: a lower Dedekind cut σ with no
greatest element.

Theorem 9. (RCA0) Every Dedekind cut is equal to an
open cut.

Theorem 10. (RCA0) The following are equivalent:

1. ACA0.

2. If 〈λi〉i∈N is a sequence of Dedekind cuts, then there
is a sequence 〈σi〉i∈N of open cuts such that for every
i ∈ N, λi = σi.



Part of the proof of Theorem 10

We want: Dedekind cuts → open cuts implies ACA0.

Suppose f : N+ → N is an injection. We’ll find its range.

Define the sequence 〈λi〉i∈N of Dedekind cuts by putting
q ∈ Q in λi if and only if:

q ≤ 0 or q > 0 and (∃t < 1/q)(f (t) = i).

Informally,

if i /∈ Range(f ), then λi = (−∞, 0] ∩Q, and

if f (t) = i, then λi = (−∞, 1/t) ∩Q.

If σi is an open cut with σi = λi, then i ∈ Range(f ) if and
only if 0 ∈ σi.



Carl Mummert’s nice example

Theorem 11. (RCA0) Every 2 × 2 real valued matrix
has a Jordan decomposition.

Theorem 12. (RCA0) The following are equivalent:

1. ACA0.

2. Given a sequence of 2 × 2 real valued matrices, we
can find the sequence of their Jordan forms.



Carl and Jeff’s conjecture

Conjecture 13. If ĤA# proves a Π1
2 statement of the

form ∀A∃B Θ(A,B), where Θ is arithmetical, then the
uniformized statement

∀〈An〉n∈N ∃〈Bn〉n∈N ∀nΘ(An, Bn)

is provable in RCA0.

The contrapositive essentially asserts that if we can reverse
the uniformized version of a Π1

2 statement, then the orig-
inal statement is not provable in an axiomatization of a
substantial fragment of intuitionistic analysis.
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