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1.2 GAUSSIAN ELIMINATION AND MATRICES

The problem is to calculate, if possible, a common solution for a system of m
linear algebraic equations in n unknowns

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,
...

am1x1 + am2x2 + · · · + amnxn = bm,

where the xi ’s are the unknowns and the aij ’s and the bi ’s are known constants.
The aij ’s are called the coefficients of the system, and the set of bi ’s is referred
to as the right-hand side of the system. For any such system, there are exactly
three possibilities for the set of solutions.

Three Possibilities

• UNIQUE SOLUTION: There is one and only one set of values
for the xi ’s that satisfies all equations simultaneously.

• NO SOLUTION: There is no set of values for the xi ’s that
satisfies all equations simultaneously—the solution set is empty.

• INFINITELY MANY SOLUTIONS: There are infinitely
many different sets of values for the xi ’s that satisfy all equations
simultaneously. It is not difficult to prove that if a system has more
than one solution, then it has infinitely many solutions. For example,
it is impossible for a system to have exactly two different solutions.

Part of the job in dealing with a linear system is to decide which one of these
three possibilities is true. The other part of the task is to compute the solution
if it is unique or to describe the set of all solutions if there are many solutions.
Gaussian elimination is a tool that can be used to accomplish all of these goals.

Gaussian elimination is a methodical process of systematically transform-
ing one system into another simpler, but equivalent, system (two systems are
called equivalent if they possess equal solution sets) by successively eliminating
unknowns and eventually arriving at a system that is easily solvable. The elimi-
nation process relies on three simple operations by which to transform one system
to another equivalent system. To describe these operations, let Ek denote the
kth equation

Ek : ak1x1 + ak2x2 + · · · + aknxn = bk
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and write the system as
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For a linear system S , each of the following three elementary operations
results in an equivalent system S ′.

(1) Interchange the ith and jth equations. That is, if
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. (1.2.1)

(2) Replace the ith equation by a nonzero multiple of itself. That is,
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, where α ̸= 0. (1.2.2)

(3) Replace the jth equation by a combination of itself plus a multiple of
the ith equation. That is,
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Providing explanations for why each of these operations cannot change the
solution set is left as an exercise.

The most common problem encountered in practice is the one in which there
are n equations as well as n unknowns—called a square system—for which
there is a unique solution. Since Gaussian elimination is straightforward for this
case, we begin here and later discuss the other possibilities. What follows is a
detailed description of Gaussian elimination as applied to the following simple
(but typical) square system:

2x + y + z = 1,

6x + 2y + z = − 1,

−2x + 2y + z = 7.

(1.2.4)

At each step, the strategy is to focus on one position, called the pivot po-
sition, and to eliminate all terms below this position using the three elementary
operations. The coefficient in the pivot position is called a pivotal element (or
simply a pivot), while the equation in which the pivot lies is referred to as the
pivotal equation. Only nonzero numbers are allowed to be pivots. If a coef-
ficient in a pivot position is ever 0, then the pivotal equation is interchanged
with an equation below the pivotal equation to produce a nonzero pivot. (This is
always possible for square systems possessing a unique solution.) Unless it is 0,
the first coefficient of the first equation is taken as the first pivot. For example,
the circled ⃝2 in the system below is the pivot for the first step:

⃝2 x + y + z = 1,

6x + 2y + z = − 1,

−2x + 2y + z = 7.

Step 1. Eliminate all terms below the first pivot.

• Subtract three times the first equation from the second so as to produce the
equivalent system:

⃝2 x + y + z = 1,

− y − 2z = − 4 (E2 − 3E1),
−2x + 2y + z = 7.

• Add the first equation to the third equation to produce the equivalent system:

⃝2 x + y + z = 1,

− y − 2z = − 4,

3y + 2z = 8 (E3 + E1).
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Step 2. Select a new pivot.

• For the time being, select a new pivot by moving down and to the right. 2 If
this coefficient is not 0, then it is the next pivot. Otherwise, interchange
with an equation below this position so as to bring a nonzero number into
this pivotal position. In our example, −1 is the second pivot as identified
below:

2x + y + z = 1,

⃝-1 y − 2z = − 4,

3y + 2z = 8.

Step 3. Eliminate all terms below the second pivot.

• Add three times the second equation to the third equation so as to produce
the equivalent system:

2x + y + z = 1,

⃝-1 y − 2z = − 4,

− 4z = − 4 (E3 + 3E2).
(1.2.5)

• In general, at each step you move down and to the right to select the next
pivot, then eliminate all terms below the pivot until you can no longer pro-
ceed. In this example, the third pivot is −4, but since there is nothing below
the third pivot to eliminate, the process is complete.

At this point, we say that the system has been triangularized. A triangular
system is easily solved by a simple method known as back substitution in which
the last equation is solved for the value of the last unknown and then substituted
back into the penultimate equation, which is in turn solved for the penultimate
unknown, etc., until each unknown has been determined. For our example, solve
the last equation in (1.2.5) to obtain

z = 1.

Substitute z = 1 back into the second equation in (1.2.5) and determine

y = 4 − 2z = 4 − 2(1) = 2.

2
The strategy of selecting pivots in numerical computation is usually a bit more complicated
than simply using the next coefficient that is down and to the right. Use the down-and-right
strategy for now, and later more practical strategies will be discussed.
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Finally, substitute z = 1 and y = 2 back into the first equation in (1.2.5) to
get

x =
1
2
(1 − y − z) =

1
2
(1 − 2 − 1) = −1,

which completes the solution.
It should be clear that there is no reason to write down the symbols such

as “ x, ” “ y, ” “ z, ” and “ = ” at each step since we are only manipulating the
coefficients. If such symbols are discarded, then a system of linear equations
reduces to a rectangular array of numbers in which each horizontal line represents
one equation. For example, the system in (1.2.4) reduces to the following array:

⎛

⎝

2 1 1 1
6 2 1 −1

−2 2 1 7

⎞

⎠ . (The line emphasizes where = appeared.)

The array of coefficients—the numbers on the left-hand side of the vertical
line—is called the coefficient matrix for the system. The entire array—the
coefficient matrix augmented by the numbers from the right-hand side of the
system—is called the augmented matrix associated with the system. If the
coefficient matrix is denoted by A and the right-hand side is denoted by b ,
then the augmented matrix associated with the system is denoted by [A|b].

Formally, a scalar is either a real number or a complex number, and a
matrix is a rectangular array of scalars. It is common practice to use uppercase
boldface letters to denote matrices and to use the corresponding lowercase letters
with two subscripts to denote individual entries in a matrix. For example,

A =

⎛

⎜
⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎞

⎟
⎟
⎠

.

The first subscript on an individual entry in a matrix designates the row (the
horizontal line), and the second subscript denotes the column (the vertical line)
that the entry occupies. For example, if

A =

⎛

⎝

2 1 3 4
8 6 5 −9

−3 8 3 7

⎞

⎠ , then a11 = 2, a12 = 1, . . . , a34 = 7. (1.2.6)

A submatrix of a given matrix A is an array obtained by deleting any
combination of rows and columns from A. For example, B =

(
2 4

−3 7

)

is a
submatrix of the matrix A in (1.2.6) because B is the result of deleting the
second row and the second and third columns of A.
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Matrix A is said to have shape or size m × n —pronounced “m by n”—
whenever A has exactly m rows and n columns. For example, the matrix
in (1.2.6) is a 3 × 4 matrix. By agreement, 1 × 1 matrices are identified with
scalars and vice versa. To emphasize that matrix A has shape m × n, subscripts
are sometimes placed on A as Am×n. Whenever m = n (i.e., when A has the
same number of rows as columns), A is called a square matrix. Otherwise, A
is said to be rectangular. Matrices consisting of a single row or a single column
are often called row vectors or column vectors, respectively.

The symbol Ai∗ is used to denote the ith row, while A∗j denotes the jth

column of matrix A . For example, if A is the matrix in (1.2.6), then

A2∗ = ( 8 6 5 −9 ) and A∗2 =

⎛

⎝

1
6
8

⎞

⎠ .

For a linear system of equations
a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,
...

am1x1 + am2x2 + · · · + amnxn = bm,

Gaussian elimination can be executed on the associated augmented matrix [A|b]
by performing elementary operations to the rows of [A|b]. These row operations
correspond to the three elementary operations (1.2.1), (1.2.2), and (1.2.3) used
to manipulate linear systems. For an m × n matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M1∗
...

Mi∗
...

Mj∗
...

Mm∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

the three types of elementary row operations on M are as follows.

• Type I: Interchange rows i and j to produce

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M1∗
...

Mj∗
...

Mi∗
...

Mm∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1.2.7)
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• Type II: Replace row i by a nonzero multiple of itself to produce
⎛

⎜
⎜
⎜
⎜
⎜
⎝

M1∗
...

αMi∗
...

Mm∗

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, where α ̸= 0. (1.2.8)

• Type III: Replace row j by a combination of itself plus a multiple of row
i to produce

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M1∗
...

Mi∗
...

Mj∗ + αMi∗
...

Mm∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1.2.9)

To solve the system (1.2.4) by using elementary row operations, start with
the associated augmented matrix [A|b] and triangularize the coefficient matrix
A by performing exactly the same sequence of row operations that corresponds
to the elementary operations executed on the equations themselves:

⎛

⎝

⃝2 1 1 1
6 2 1 −1

−2 2 1 7

⎞

⎠ R2 − 3R1

R3 + R1

−→

⎛

⎝

2 1 1 1
0 ⃝-1 −2 −4
0 3 2 8

⎞

⎠

R3 + 3R2

−→

⎛

⎝

2 1 1 1
0 −1 −2 −4
0 0 −4 −4

⎞

⎠ .

The final array represents the triangular system

2x + y + z = 1,

− y − 2z = − 4,

− 4z = − 4
that is solved by back substitution as described earlier. In general, if an n × n
system has been triangularized to the form

⎛

⎜
⎜
⎝

t11 t12 · · · t1n c1

0 t22 · · · t2n c2
...

...
. . .

...
...

0 0 · · · tnn cn

⎞

⎟
⎟
⎠

(1.2.10)

in which each tii ̸= 0 (i.e., there are no zero pivots), then the general algorithm
for back substitution is as follows.
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Algorithm for Back Substitution
Determine the xi ’s from (1.2.10) by first setting xn = cn/tnn and then
recursively computing

xi =
1
tii

(ci − ti,i+1xi+1 − ti,i+2xi+2 − · · ·− tinxn)

for i = n − 1, n − 2, . . . , 2, 1.

One way to gauge the efficiency of an algorithm is to count the number of
arithmetical operations required.3 For a variety of reasons, no distinction is made
between additions and subtractions, and no distinction is made between multipli-
cations and divisions. Furthermore, multiplications/divisions are usually counted
separately from additions/subtractions. Even if you do not work through the de-
tails, it is important that you be aware of the operational counts for Gaussian
elimination with back substitution so that you will have a basis for comparison
when other algorithms are encountered.

Gaussian Elimination Operation Counts
Gaussian elimination with back substitution applied to an n × n system
requires

n3

3
+ n2 − n

3
multiplications/divisions

and
n3

3
+

n2

2
− 5n

6
additions/subtractions.

As n grows, the n3/3 term dominates each of these expressions. There-
fore, the important thing to remember is that Gaussian elimination with
back substitution on an n × n system requires about n3/3 multiplica-
tions/divisions and about the same number of additions/subtractions.

3
Operation counts alone may no longer be as important as they once were in gauging the ef-
ficiency of an algorithm. Older computers executed instructions sequentially, whereas some
contemporary machines are capable of executing instructions in parallel so that different nu-
merical tasks can be performed simultaneously. An algorithm that lends itself to parallelism
may have a higher operational count but might nevertheless run faster on a parallel machine
than an algorithm with a lesser operational count that cannot take advantage of parallelism.
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Example 1.2.1
Problem: Solve the following system using Gaussian elimination with back sub-
stitution:

v − w = 3,

−2u + 4v − w = 1,

−2u + 5v − 4w = − 2.

Solution: The associated augmented matrix is
⎛

⎝

0 1 −1 3
−2 4 −1 1
−2 5 −4 −2

⎞

⎠ .

Since the first pivotal position contains 0, interchange rows one and two before
eliminating below the first pivot:
⎛

⎝

⃝0 1 −1 3
−2 4 −1 1
−2 5 −4 −2

⎞

⎠
Interchange R1 and R2

−−−−−−−−→

⎛

⎝

⃝-2 4 −1 1
0 1 −1 3

−2 5 −4 −2

⎞

⎠

R3 − R1

−→

⎛

⎝

−2 4 −1 1
0 ⃝1 −1 3
0 1 −3 −3

⎞

⎠

R3 − R2

−→

⎛

⎝

−2 4 −1 1
0 1 −1 3
0 0 −2 −6

⎞

⎠ .

Back substitution yields

w =
−6
−2

= 3,

v = 3 + w = 3 + 3 = 6,

u =
1
−2

(1 − 4v + w) =
1
−2

(1 − 24 + 3) = 10.

Exercises for section 1.2

1.2.1. Use Gaussian elimination with back substitution to solve the following
system:

x1 + x2 + x3 = 1,

x1 + 2x2 + 2x3 = 1,

x1 + 2x2 + 3x3 = 1.
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1.2.2. Apply Gaussian elimination with back substitution to the following sys-
tem:

2x1 − x2 = 0,

−x1 + 2x2 − x3 = 0,

−x2 + x3 = 1.

1.2.3. Use Gaussian elimination with back substitution to solve the following
system:

4x2 − 3x3 = 3,

−x1 + 7x2 − 5x3 = 4,

−x1 + 8x2 − 6x3 = 5.

1.2.4. Solve the following system:

x1 + x2 + x3 + x4 = 1,

x1 + x2 + 3x3 + 3x4 = 3,

x1 + x2 + 2x3 + 3x4 = 3,

x1 + 3x2 + 3x3 + 3x4 = 4.

1.2.5. Consider the following three systems where the coefficients are the same
for each system, but the right-hand sides are different (this situation
occurs frequently):

4x − 8y + 5z = 1 0 0,

4x − 7y + 4z = 0 1 0,

3x − 4y + 2z = 0 0 1.

Solve all three systems at one time by performing Gaussian elimination
on an augmented matrix of the form

[

A
∣
∣ b1

∣
∣ b2

∣
∣ b3

]

.

1.2.6. Suppose that matrix B is obtained by performing a sequence of row
operations on matrix A . Explain why A can be obtained by performing
row operations on B .

1.2.7. Find angles α, β, and γ such that

2 sinα − cos β + 3 tan γ = 3,

4 sinα + 2 cos β − 2 tan γ = 2,

6 sinα − 3 cos β + tan γ = 9,

where 0 ≤ α ≤ 2π, 0 ≤ β ≤ 2π, and 0 ≤ γ < π.
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1.2.8. The following system has no solution:

−x1 + 3x2 − 2x3 = 1,

−x1 + 4x2 − 3x3 = 0,

−x1 + 5x2 − 4x3 = 0.

Attempt to solve this system using Gaussian elimination and explain
what occurs to indicate that the system is impossible to solve.

1.2.9. Attempt to solve the system

−x1 + 3x2 − 2x3 = 4,

−x1 + 4x2 − 3x3 = 5,

−x1 + 5x2 − 4x3 = 6,

using Gaussian elimination and explain why this system must have in-
finitely many solutions.

1.2.10. By solving a 3 × 3 system, find the coefficients in the equation of the
parabola y = α+βx+γx2 that passes through the points (1, 1), (2, 2),
and (3, 0).

1.2.11. Suppose that 100 insects are distributed in an enclosure consisting of
four chambers with passageways between them as shown below.

#1

#2

#3

#4

At the end of one minute, the insects have redistributed themselves.
Assume that a minute is not enough time for an insect to visit more than
one chamber and that at the end of a minute 40% of the insects in each
chamber have not left the chamber they occupied at the beginning of
the minute. The insects that leave a chamber disperse uniformly among
the chambers that are directly accessible from the one they initially
occupied—e.g., from #3, half move to #2 and half move to #4.
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(a) If at the end of one minute there are 12, 25, 26, and 37 insects
in chambers #1, #2, #3, and #4, respectively, determine what
the initial distribution had to be.

(b) If the initial distribution is 20, 20, 20, 40, what is the distribution
at the end of one minute?

1.2.12. Show that the three types of elementary row operations discussed on
p. 8 are not independent by showing that the interchange operation
(1.2.7) can be accomplished by a sequence of the other two types of row
operations given in (1.2.8) and (1.2.9).

1.2.13. Suppose that [A|b] is the augmented matrix associated with a linear
system. You know that performing row operations on [A|b] does not
change the solution of the system. However, no mention of column oper-
ations was ever made because column operations can alter the solution.

(a) Describe the effect on the solution of a linear system when
columns A∗j and A∗k are interchanged.

(b) Describe the effect when column A∗j is replaced by αA∗j for
α ̸= 0.

(c) Describe the effect when A∗j is replaced by A∗j + αA∗k.
Hint: Experiment with a 2 × 2 or 3 × 3 system.

1.2.14. Consider the n × n Hilbert matrix defined by

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1
2

1
3 · · · 1

n

1
2

1
3

1
4 · · · 1

n+1

1
3

1
4

1
5 · · · 1

n+2
...

...
... · · ·

...

1
n

1
n+1

1
n+2 · · · 1

2n−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Express the individual entries hij in terms of i and j.

1.2.15. Verify that the operation counts given in the text for Gaussian elimi-
nation with back substitution are correct for a general 3 × 3 system.
If you are up to the challenge, try to verify these counts for a general
n × n system.

1.2.16. Explain why a linear system can never have exactly two different solu-
tions. Extend your argument to explain the fact that if a system has more
than one solution, then it must have infinitely many different solutions.
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Solutions for exercises in section 1. 2

1.2.1. (1, 0, 0)
1.2.2. (1, 2, 3)
1.2.3. (1, 0,−1)
1.2.4. (−1/2, 1/2, 0, 1)

1.2.5.

⎛

⎝
2 −4 3
4 −7 4
5 −8 4

⎞

⎠

1.2.6. Every row operation is reversible. In particular the “inverse” of any row operation
is again a row operation of the same type.

1.2.7. π
2 , π, 0

1.2.8. The third equation in the triangularized form is 0x3 = 1, which is impossible
to solve.

1.2.9. The third equation in the triangularized form is 0x3 = 0, and all numbers are
solutions. This means that you can start the back substitution with any value
whatsoever and consequently produce infinitely many solutions for the system.

1.2.10. α = −3, β = 11
2 , and γ = − 3

2
1.2.11. (a) If xi = the number initially in chamber #i, then

.4x1 + 0x2 + 0x3 + .2x4 = 12
0x1 + .4x2 + .3x3 + .2x4 = 25
0x1 + .3x2 + .4x3 + .2x4 = 26
.6x1 + .3x2 + .3x3 + .4x4 = 37

and the solution is x1 = 10, x2 = 20, x3 = 30, and x4 = 40.
(b) 16, 22, 22, 40

1.2.12. To interchange rows i and j, perform the following sequence of Type II and
Type III operations.

Rj ← Rj + Ri (replace row j by the sum of row j and i)
Ri ← Ri −Rj (replace row i by the difference of row i and j)
Rj ← Rj + Ri (replace row j by the sum of row j and i)
Ri ← −Ri (replace row i by its negative)

1.2.13. (a) This has the effect of interchanging the order of the unknowns— xj and
xk are permuted. (b) The solution to the new system is the same as the
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solution to the old system except that the solution for the jth unknown of the
new system is x̂j = 1

αxj . This has the effect of “changing the units” of the jth

unknown. (c) The solution to the new system is the same as the solution for
the old system except that the solution for the kth unknown in the new system
is x̂k = xk − αxj .

1.2.14. hij = 1
i+j−1

1.2.16. If x =

⎛

⎜⎜⎝

x1

x2
...

xm

⎞

⎟⎟⎠ and y =

⎛

⎜⎜⎝

y1

y2
...

ym

⎞

⎟⎟⎠ are two different solutions, then

z =
x + y

2
=

⎛

⎜⎜⎜⎝

x1+y1
2

x2+y2
2
...

xm+ym

2

⎞

⎟⎟⎟⎠

is a third solution different from both x and y.

Solutions for exercises in section 1. 3

1.3.1. (1, 0,−1)
1.3.2. (2,−1, 0, 0)

1.3.3.

⎛

⎝
1 1 1
1 2 2
1 2 3

⎞

⎠

Solutions for exercises in section 1. 4

1.4.2. Use y′(tk) = y′
k ≈

yk+1 − yk−1

2h
and y′′(tk) = y′′

k ≈
yk−1 − 2yk + yk+1

h2
to write

f(tk) = fk = y′′
k−y′

k ≈
2yk−1 − 4yk + 2yk+1

2h2
− hyk+1 − hyk−1

2h2
, k = 1, 2, . . . , n,

with y0 = yn+1 = 0. These discrete approximations form the tridiagonal system

⎛

⎜⎜⎜⎜⎝

−4 2− h
2 + h −4 2− h

. . . . . . . . .
2 + h −4 2− h

2 + h −4

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

y1

y2
...

yn−1

yn

⎞

⎟⎟⎟⎟⎠
= 2h2

⎛

⎜⎜⎜⎜⎝

f1

f2
...

fn−1

fn

⎞

⎟⎟⎟⎟⎠
.


