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1.3 GAUSS–JORDAN METHOD

The purpose of this section is to introduce a variation of Gaussian elimination
that is known as the Gauss–Jordan method.

4 The two features that dis-
tinguish the Gauss–Jordan method from standard Gaussian elimination are as
follows.

• At each step, the pivot element is forced to be 1.

• At each step, all terms above the pivot as well as all terms below the pivot
are eliminated.

In other words, if
⎛

⎜
⎜
⎝

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

an1 an2 · · · ann bn

⎞

⎟
⎟
⎠

is the augmented matrix associated with a linear system, then elementary row
operations are used to reduce this matrix to

⎛

⎜
⎜
⎝

1 0 · · · 0 s1

0 1 · · · 0 s2
...

...
. . .

...
...

0 0 · · · 1 sn

⎞

⎟
⎟
⎠

.

The solution then appears in the last column (i.e., xi = si ) so that this procedure
circumvents the need to perform back substitution.

Example 1.3.1
Problem: Apply the Gauss–Jordan method to solve the following system:

2x1 + 2x2 + 6x3 = 4,

2x1 + x2 + 7x3 = 6,

−2x1 − 6x2 − 7x3 = − 1.

4
Although there has been some confusion as to which Jordan should receive credit for this
algorithm, it now seems clear that the method was in fact introduced by a geodesist named
Wilhelm Jordan (1842–1899) and not by the more well known mathematician Marie Ennemond
Camille Jordan (1838–1922), whose name is often mistakenly associated with the technique, but
who is otherwise correctly credited with other important topics in matrix analysis, the “Jordan
canonical form” being the most notable. Wilhelm Jordan was born in southern Germany,
educated in Stuttgart, and was a professor of geodesy at the technical college in Karlsruhe.
He was a prolific writer, and he introduced his elimination scheme in the 1888 publication
Handbuch der Vermessungskunde. Interestingly, a method similar to W. Jordan’s variation
of Gaussian elimination seems to have been discovered and described independently by an
obscure Frenchman named Clasen, who appears to have published only one scientific article,
which appeared in 1888—the same year as W. Jordan’s Handbuch appeared.
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Solution: The sequence of operations is indicated in parentheses and the pivots
are circled.
⎛

⎝

⃝2 2 6 4
2 1 7 6

−2 −6 −7 −1

⎞

⎠

R1/2
−→

⎛

⎝

⃝1 1 3 2
2 1 7 6

−2 −6 −7 −1

⎞

⎠ R2 − 2R1

R3 + 2R1

−→

⎛

⎝

⃝1 1 3 2
0 −1 1 2
0 −4 −1 3

⎞

⎠ (−R2) −→

⎛

⎝

1 1 3 2
0 ⃝1 −1 −2
0 −4 −1 3

⎞

⎠

R1 − R2

R3 + 4R2

−→

⎛

⎝

1 0 4 4
0 ⃝1 −1 −2
0 0 −5 −5

⎞

⎠

−R3/5
−→

⎛

⎝

1 0 4 4
0 1 −1 −2
0 0 ⃝1 1

⎞

⎠

R1 − 4R3

R2 + R3

−→

⎛

⎝

1 0 0 0
0 1 0 −1
0 0 ⃝1 1

⎞

⎠ .

Therefore, the solution is

⎛

⎝

x1

x2

x3

⎞

⎠ =

⎛

⎝

0
−1

1

⎞

⎠ .

On the surface it may seem that there is little difference between the Gauss–
Jordan method and Gaussian elimination with back substitution because elimi-
nating terms above the pivot with Gauss–Jordan seems equivalent to performing
back substitution. But this is not correct. Gauss–Jordan requires more arithmetic
than Gaussian elimination with back substitution.

Gauss–Jordan Operation Counts
For an n × n system, the Gauss–Jordan procedure requires

n3

2
+

n2

2
multiplications/divisions

and
n3

2
− n

2
additions/subtractions.

In other words, the Gauss–Jordan method requires about n3/2 multipli-
cations/divisions and about the same number of additions/subtractions.

Recall from the previous section that Gaussian elimination with back sub-
stitution requires only about n3/3 multiplications/divisions and about the same
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number of additions/subtractions. Compare this with the n3/2 factor required
by the Gauss–Jordan method, and you can see that Gauss–Jordan requires about
50% more effort than Gaussian elimination with back substitution. For small sys-
tems of the textbook variety (e.g., n = 3 ), these comparisons do not show a great
deal of difference. However, in practical work, the systems that are encountered
can be quite large, and the difference between Gauss–Jordan and Gaussian elim-
ination with back substitution can be significant. For example, if n = 100, then
n3/3 is about 333,333, while n3/2 is 500,000, which is a difference of 166,667
multiplications/divisions as well as that many additions/subtractions.

Although the Gauss–Jordan method is not recommended for solving linear
systems that arise in practical applications, it does have some theoretical advan-
tages. Furthermore, it can be a useful technique for tasks other than computing
solutions to linear systems. We will make use of the Gauss–Jordan procedure
when matrix inversion is discussed—this is the primary reason for introducing
Gauss–Jordan.

Exercises for section 1.3

1.3.1. Use the Gauss–Jordan method to solve the following system:

4x2 − 3x3 = 3,

−x1 + 7x2 − 5x3 = 4,

−x1 + 8x2 − 6x3 = 5.

1.3.2. Apply the Gauss–Jordan method to the following system:

x1 + x2 + x3 + x4 = 1,

x1 + 2x2 + 2x3 + 2x4 = 0,

x1 + 2x2 + 3x3 + 3x4 = 0,

x1 + 2x2 + 3x3 + 4x4 = 0.

1.3.3. Use the Gauss–Jordan method to solve the following three systems at
the same time.

2x1 − x2 = 1 0 0,

−x1 + 2x2 − x3 = 0 1 0,

−x2 + x3 = 0 0 1.

1.3.4. Verify that the operation counts given in the text for the Gauss–Jordan
method are correct for a general 3 × 3 system. If you are up to the
challenge, try to verify these counts for a general n × n system.



2 Solutions

solution to the old system except that the solution for the jth unknown of the
new system is x̂j = 1

αxj . This has the effect of “changing the units” of the jth

unknown. (c) The solution to the new system is the same as the solution for
the old system except that the solution for the kth unknown in the new system
is x̂k = xk − αxj .

1.2.14. hij = 1
i+j−1

1.2.16. If x =

⎛

⎜⎜⎝

x1

x2
...

xm

⎞

⎟⎟⎠ and y =

⎛

⎜⎜⎝

y1

y2
...

ym

⎞

⎟⎟⎠ are two different solutions, then

z =
x + y

2
=

⎛

⎜⎜⎜⎝

x1+y1
2

x2+y2
2
...

xm+ym

2

⎞

⎟⎟⎟⎠

is a third solution different from both x and y.

Solutions for exercises in section 1. 3

1.3.1. (1, 0,−1)
1.3.2. (2,−1, 0, 0)

1.3.3.

⎛

⎝
1 1 1
1 2 2
1 2 3

⎞

⎠

Solutions for exercises in section 1. 4

1.4.2. Use y′(tk) = y′
k ≈

yk+1 − yk−1

2h
and y′′(tk) = y′′

k ≈
yk−1 − 2yk + yk+1

h2
to write

f(tk) = fk = y′′
k−y′

k ≈
2yk−1 − 4yk + 2yk+1

2h2
− hyk+1 − hyk−1

2h2
, k = 1, 2, . . . , n,

with y0 = yn+1 = 0. These discrete approximations form the tridiagonal system

⎛

⎜⎜⎜⎜⎝

−4 2− h
2 + h −4 2− h

. . . . . . . . .
2 + h −4 2− h

2 + h −4

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

y1

y2
...

yn−1

yn

⎞

⎟⎟⎟⎟⎠
= 2h2

⎛

⎜⎜⎜⎜⎝

f1

f2
...

fn−1

fn

⎞

⎟⎟⎟⎟⎠
.


