
CHAPTER 2

Rectangular Systems
and

Echelon Forms

2.1 ROW ECHELON FORM AND RANK

We are now ready to analyze more general linear systems consisting of m linear
equations involving n unknowns

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,
...

am1x1 + am2x2 + · · · + amnxn = bm,

where m may be different from n. If we do not know for sure that m and n
are the same, then the system is said to be rectangular. The case m = n is
still allowed in the discussion—statements concerning rectangular systems also
are valid for the special case of square systems.

The first goal is to extend the Gaussian elimination technique from square
systems to completely general rectangular systems. Recall that for a square sys-
tem with a unique solution, the pivotal positions are always located along the
main diagonal—the diagonal line from the upper-left-hand corner to the lower-
right-hand corner—in the coefficient matrix A so that Gaussian elimination
results in a reduction of A to a triangular matrix, such as that illustrated
below for the case n = 4:

T =

⎛

⎜

⎝

⃝* ∗ ∗ ∗
0 ⃝* ∗ ∗
0 0 ⃝* ∗
0 0 0 ⃝*

⎞

⎟

⎠
.
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Remember that a pivot must always be a nonzero number. For square sys-
tems possessing a unique solution, it is a fact (proven later) that one can al-
ways bring a nonzero number into each pivotal position along the main diag-
onal. 8 However, in the case of a general rectangular system, it is not always
possible to have the pivotal positions lying on a straight diagonal line in the
coefficient matrix. This means that the final result of Gaussian elimination will
not be triangular in form. For example, consider the following system:

x1 + 2x2 + x3 + 3x4 + 3x5 = 5,

2x1 + 4x2 + 4x4 + 4x5 = 6,

x1 + 2x2 + 3x3 + 5x4 + 5x5 = 9,

2x1 + 4x2 + 4x4 + 7x5 = 9.

Focus your attention on the coefficient matrix

A =

⎛

⎜

⎝

1 2 1 3 3
2 4 0 4 4
1 2 3 5 5
2 4 0 4 7

⎞

⎟

⎠
, (2.1.1)

and ignore the right-hand side for a moment. Applying Gaussian elimination to
A yields the following result:

⎛

⎜

⎝

⃝1 2 1 3 3
2 4 0 4 4
1 2 3 5 5
2 4 0 4 7

⎞

⎟

⎠
−→

⎛

⎜

⎝

1 2 1 3 3
0 ⃝0 −2 −2 −2
0 0 2 2 2
0 0 −2 −2 1

⎞

⎟

⎠
.

In the basic elimination process, the strategy is to move down and to the right
to the next pivotal position. If a zero occurs in this position, an interchange with
a row below the pivotal row is executed so as to bring a nonzero number into
the pivotal position. However, in this example, it is clearly impossible to bring
a nonzero number into the (2, 2) -position by interchanging the second row with
a lower row.

In order to handle this situation, the elimination process is modified as
follows.

8
This discussion is for exact arithmetic. If floating-point arithmetic is used, this may no longer
be true. Part (a) of Exercise 1.6.1 is one such example.
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Modified Gaussian Elimination
Suppose that U is the augmented matrix associated with the system
after i − 1 elimination steps have been completed. To execute the ith

step, proceed as follows:

• Moving from left to right in U , locate the first column that contains
a nonzero entry on or below the ith position—say it is U∗j .

• The pivotal position for the ith step is the (i, j) -position.

• If necessary, interchange the ith row with a lower row to bring a
nonzero number into the (i, j) -position, and then annihilate all en-
tries below this pivot.

• If row Ui∗ as well as all rows in U below Ui∗ consist entirely of
zeros, then the elimination process is completed.

Illustrated below is the result of applying this modified version of Gaussian
elimination to the matrix given in (2.1.1).

Example 2.1.1
Problem: Apply modified Gaussian elimination to the following matrix and
circle the pivot positions:

A =

⎛

⎜

⎝

1 2 1 3 3
2 4 0 4 4
1 2 3 5 5
2 4 0 4 7

⎞

⎟

⎠
.

Solution:
⎛

⎜

⎝

⃝1 2 1 3 3
2 4 0 4 4
1 2 3 5 5
2 4 0 4 7

⎞

⎟

⎠
−→

⎛

⎜

⎝

⃝1 2 1 3 3
0 0 ⃝-2 −2 −2
0 0 2 2 2
0 0 −2 −2 1

⎞

⎟

⎠

−→

⎛

⎜

⎝

⃝1 2 1 3 3
0 0 ⃝-2 −2 −2
0 0 0 0 ⃝0
0 0 0 0 3

⎞

⎟

⎠
−→

⎛

⎜

⎝

⃝1 2 1 3 3
0 0 ⃝-2 −2 −2
0 0 0 0 ⃝3
0 0 0 0 0

⎞

⎟

⎠
.
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Notice that the final result of applying Gaussian elimination in the above
example is not a purely triangular form but rather a jagged or “stair-step” type
of triangular form. Hereafter, a matrix that exhibits this stair-step structure will
be said to be in row echelon form.

Row Echelon Form
An m× n matrix E with rows Ei∗ and columns E∗j is said to be in
row echelon form provided the following two conditions hold.

• If Ei∗ consists entirely of zeros, then all rows below Ei∗ are also
entirely zero; i.e., all zero rows are at the bottom.

• If the first nonzero entry in Ei∗ lies in the jth position, then all
entries below the ith position in columns E∗1,E∗2, . . . ,E∗j are zero.

These two conditions say that the nonzero entries in an echelon form
must lie on or above a stair-step line that emanates from the upper-
left-hand corner and slopes down and to the right. The pivots are the
first nonzero entries in each row. A typical structure for a matrix in row
echelon form is illustrated below with the pivots circled.

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⃝* ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ⃝* ∗ ∗ ∗ ∗ ∗
0 0 0 ⃝* ∗ ∗ ∗ ∗
0 0 0 0 0 0 ⃝* ∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Because of the flexibility in choosing row operations to reduce a matrix A
to a row echelon form E, the entries in E are not uniquely determined by A.
Nevertheless, it can be proven that the “form” of E is unique in the sense that
the positions of the pivots in E (and A) are uniquely determined by the entries
in A . 9 Because the pivotal positions are unique, it follows that the number of
pivots, which is the same as the number of nonzero rows in E, is also uniquely
determined by the entries in A . This number is called the rank

10 of A, and it

9
The fact that the pivotal positions are unique should be intuitively evident. If it isn’t, take the
matrix given in (2.1.1) and try to force some different pivotal positions by a different sequence
of row operations.

10
The word “rank” was introduced in 1879 by the German mathematician Ferdinand Georg
Frobenius (p. 662), who thought of it as the size of the largest nonzero minor determinant
in A. But the concept had been used as early as 1851 by the English mathematician James
J. Sylvester (1814–1897).
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is extremely important in the development of our subject.

Rank of a Matrix
Suppose Am×n is reduced by row operations to an echelon form E.
The rank of A is defined to be the number

rank (A) = number of pivots
= number of nonzero rows in E
= number of basic columns in A,

where the basic columns of A are defined to be those columns in A
that contain the pivotal positions.

Example 2.1.2
Problem: Determine the rank, and identify the basic columns in

A =

⎛

⎝

1 2 1 1
2 4 2 2
3 6 3 4

⎞

⎠ .

Solution: Reduce A to row echelon form as shown below:

A =

⎛

⎝

⃝1 2 1 1
2 4 2 2
3 6 3 4

⎞

⎠ −→

⎛

⎝

⃝1 2 1 1
0 0 0 ⃝0
0 0 0 1

⎞

⎠ −→

⎛

⎝

⃝1 2 1 1
0 0 0 ⃝1
0 0 0 0

⎞

⎠ = E.

Consequently, rank (A) = 2. The pivotal positions lie in the first and fourth
columns so that the basic columns of A are A∗1 and A∗4. That is,

Basic Columns =

⎧

⎨

⎩

⎛

⎝

1
2
3

⎞

⎠ ,

⎛

⎝

1
2
4

⎞

⎠

⎫

⎬

⎭

.

Pay particular attention to the fact that the basic columns are extracted from
A and not from the row echelon form E .
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Exercises for section 2.1

2.1.1. Reduce each of the following matrices to row echelon form, determine
the rank, and identify the basic columns.

(a)

⎛

⎝

1 2 3 3
2 4 6 9
2 6 7 6

⎞

⎠ (b)

⎛

⎜

⎜

⎜

⎝

1 2 3
2 6 8
2 6 0
1 2 5
3 8 6

⎞

⎟

⎟

⎟

⎠

(c)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2 1 1 3 0 4 1
4 2 4 4 1 5 5
2 1 3 1 0 4 3
6 3 4 8 1 9 5
0 0 3 −3 0 0 3
8 4 2 14 1 13 3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2.1.2. Determine which of the following matrices are in row echelon form:

(a)

⎛

⎝

1 2 3
0 0 4
0 1 0

⎞

⎠ . (b)

⎛

⎝

0 0 0 0
0 1 0 0
0 0 0 1

⎞

⎠ .

(c)

⎛

⎝

2 2 3 −4
0 0 7 −8
0 0 0 −1

⎞

⎠ . (d)

⎛

⎜

⎝

1 2 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞

⎟

⎠
.

2.1.3. Suppose that A is an m× n matrix. Give a short explanation of why
each of the following statements is true.

(a) rank (A) ≤ min{m, n}.
(b) rank (A) < m if one row in A is entirely zero.
(c) rank (A) < m if one row in A is a multiple of another row.
(d) rank (A) < m if one row in A is a combination of other rows.
(e) rank (A) < n if one column in A is entirely zero.

2.1.4. Let A =

⎛

⎝

.1 .2 .3

.4 .5 .6

.7 .8 .901

⎞

⎠ .

(a) Use exact arithmetic to determine rank (A).
(b) Now use 3-digit floating-point arithmetic (without partial piv-

oting or scaling) to determine rank (A). This number might be
called the “3-digit numerical rank.”

(c) What happens if partial pivoting is incorporated?

2.1.5. How many different “forms” are possible for a 3× 4 matrix that is in
row echelon form?

2.1.6. Suppose that [A|b] is reduced to a matrix [E|c].
(a) Is [E|c] in row echelon form if E is?
(b) If [E|c] is in row echelon form, must E be in row echelon form?
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Solutions for exercises in section 2. 1

2.1.1. (a)

⎛

⎝
1 2 3 3
0 2 1 0
0 0 0 3

⎞

⎠ is one possible answer. Rank = 3 and the basic columns

are {A∗1,A∗2,A∗4}. (b)

⎛

⎜⎜⎜⎝

1 2 3
0 2 2
0 0 −8
0 0 0
0 0 0

⎞

⎟⎟⎟⎠
is one possible answer. Rank = 3 and

every column in A is basic.

(c)

⎛

⎜⎜⎜⎜⎜⎝

2 1 1 3 0 4 1
0 0 2 −2 1 −3 3
0 0 0 0 −1 3 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
is one possible answer. The rank is 3, and

the basic columns are {A∗1,A∗3,A∗5}.
2.1.2. (c) and (d) are in row echelon form.
2.1.3. (a) Since any row or column can contain at most one pivot, the number of pivots

cannot exceed the number of rows nor the number of columns. (b) A zero row
cannot contain a pivot. (c) If one row is a multiple of another, then one of
them can be annihilated by the other to produce a zero row. Now the result
of the previous part applies. (d) One row can be annihilated by the associated
combination of row operations. (e) If a column is zero, then there are fewer than
n basic columns because each basic column must contain a pivot.

2.1.4. (a) rank (A) = 3 (b) 3-digit rank (A) = 2 (c) With PP, 3-digit rank (A) = 3
2.1.5. 15

2.1.6. (a) No, consider the form

⎛

⎝
∗ ∗ ∗ ∗
0 0 0 0
0 0 0 ∗

⎞

⎠ (b) Yes—in fact, E is a row

echelon form obtainable from A .

Solutions for exercises in section 2. 2

2.2.1. (a)

⎛

⎝
1 0 2 0
0 1 1

2 0
0 0 0 1

⎞

⎠ and A∗3 = 2A∗1 + 1
2A∗2


