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2.2 REDUCED ROW ECHELON FORM

At each step of the Gauss–Jordan method, the pivot is forced to be a 1, and then
all entries above and below the pivotal 1 are annihilated. If A is the coefficient
matrix for a square system with a unique solution, then the end result of applying
the Gauss–Jordan method to A is a matrix with 1’s on the main diagonal and
0’s everywhere else. That is,

A
Gauss–Jordan
−−−−−−−−→

⎛

⎜

⎜

⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞

⎟

⎟

⎠

.

But if the Gauss–Jordan technique is applied to a more general m× n matrix,
then the final result is not necessarily the same as described above. The following
example illustrates what typically happens in the rectangular case.

Example 2.2.1
Problem: Apply Gauss–Jordan elimination to the following 4× 5 matrix and
circle the pivot positions. This is the same matrix used in Example 2.1.1:

A =

⎛

⎜

⎝

1 2 1 3 3
2 4 0 4 4
1 2 3 5 5
2 4 0 4 7

⎞

⎟

⎠
.

Solution:

⎛

⎜

⎝

⃝1 2 1 3 3
2 4 0 4 4
1 2 3 5 5
2 4 0 4 7

⎞

⎟

⎠
→

⎛

⎜

⎝

⃝1 2 1 3 3
0 0 ⃝-2 −2 −2
0 0 2 2 2
0 0 −2 −2 1

⎞

⎟

⎠
→

⎛

⎜

⎝

⃝1 2 1 3 3
0 0 ⃝1 1 1
0 0 2 2 2
0 0 −2 −2 1

⎞

⎟

⎠

→

⎛

⎜

⎝

⃝1 2 0 2 2
0 0 ⃝1 1 1
0 0 0 0 ⃝0
0 0 0 0 3

⎞

⎟

⎠
→

⎛

⎜

⎝

⃝1 2 0 2 2
0 0 ⃝1 1 1
0 0 0 0 ⃝3
0 0 0 0 0

⎞

⎟

⎠
→

⎛

⎜

⎝

⃝1 2 0 2 2
0 0 ⃝1 1 1
0 0 0 0 ⃝1
0 0 0 0 0

⎞

⎟

⎠

→

⎛

⎜

⎝

⃝1 2 0 2 0
0 0 ⃝1 1 0
0 0 0 0 ⃝1
0 0 0 0 0

⎞

⎟

⎠
.
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Compare the results of this example with the results of Example 2.1.1, and
notice that the “form” of the final matrix is the same in both examples, which
indeed must be the case because of the uniqueness of “form” mentioned in the
previous section. The only difference is in the numerical value of some of the
entries. By the nature of Gauss–Jordan elimination, each pivot is 1 and all entries
above and below each pivot are 0. Consequently, the row echelon form produced
by the Gauss–Jordan method contains a reduced number of nonzero entries, so
it seems only natural to refer to this as a reduced row echelon form.

11

Reduced Row Echelon Form
A matrix Em×n is said to be in reduced row echelon form provided
that the following three conditions hold.
• E is in row echelon form.
• The first nonzero entry in each row (i.e., each pivot) is 1.
• All entries above each pivot are 0.
A typical structure for a matrix in reduced row echelon form is illustrated
below, where entries marked * can be either zero or nonzero numbers:

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⃝1 ∗ 0 0 ∗ ∗ 0 ∗
0 0 ⃝1 0 ∗ ∗ 0 ∗
0 0 0 ⃝1 ∗ ∗ 0 ∗
0 0 0 0 0 0 ⃝1 ∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

As previously stated, if matrix A is transformed to a row echelon form
by row operations, then the “form” is uniquely determined by A, but the in-
dividual entries in the form are not unique. However, if A is transformed by
row operations to a reduced row echelon form EA, then it can be shown12 that
both the “form” as well as the individual entries in EA are uniquely determined
by A. In other words, the reduced row echelon form EA produced from A is
independent of whatever elimination scheme is used. Producing an unreduced
form is computationally more efficient, but the uniqueness of EA makes it more
useful for theoretical purposes.

11
In some of the older books this is called the Hermite normal form in honor of the French
mathematician Charles Hermite (1822–1901), who, around 1851, investigated reducing matrices
by row operations.

12
A formal uniqueness proof must wait until Example 3.9.2, but you can make this intuitively
clear right now with some experiments. Try to produce two different reduced row echelon forms
from the same matrix.
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EA Notation
For a matrix A, the symbol EA will hereafter denote the unique re-
duced row echelon form derived from A by means of row operations.

Example 2.2.2
Problem: Determine EA, deduce rank (A), and identify the basic columns of

A =

⎛

⎜

⎝

1 2 2 3 1
2 4 4 6 2
3 6 6 9 6
1 2 4 5 3

⎞

⎟

⎠
.

Solution:
⎛

⎜

⎝

⃝1 2 2 3 1
2 4 4 6 2
3 6 6 9 6
1 2 4 5 3

⎞

⎟

⎠
−→

⎛

⎜

⎝

⃝1 2 2 3 1
0 0 ⃝0 0 0
0 0 0 0 3
0 0 2 2 2

⎞

⎟

⎠
−→

⎛

⎜

⎝

⃝1 2 2 3 1
0 0 ⃝2 2 2
0 0 0 0 3
0 0 0 0 0

⎞

⎟

⎠

−→

⎛

⎜

⎝

⃝1 2 2 3 1
0 0 ⃝1 1 1
0 0 0 0 3
0 0 0 0 0

⎞

⎟

⎠
−→

⎛

⎜

⎝

⃝1 2 0 1 −1
0 0 ⃝1 1 1
0 0 0 0 ⃝3
0 0 0 0 0

⎞

⎟

⎠

−→

⎛

⎜

⎝

⃝1 2 0 1 −1
0 0 ⃝1 1 1
0 0 0 0 ⃝1
0 0 0 0 0

⎞

⎟

⎠
−→

⎛

⎜

⎝

⃝1 2 0 1 0
0 0 ⃝1 1 0
0 0 0 0 ⃝1
0 0 0 0 0

⎞

⎟

⎠

Therefore, rank (A) = 3, and {A∗1,A∗3,A∗5} are the three basic columns.

The above example illustrates another important feature of EA and ex-
plains why the basic columns are indeed “basic.” Each nonbasic column is ex-
pressible as a combination of basic columns. In Example 2.2.2,

A∗2 = 2A∗1 and A∗4 = A∗1 + A∗3. (2.2.1)

Notice that exactly the same set of relationships hold in EA. That is,

E∗2 = 2E∗1 and E∗4 = E∗1 + E∗3. (2.2.2)

This is no coincidence—it’s characteristic of what happens in general. There’s
more to observe. The relationships between the nonbasic and basic columns in a
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general matrix A are usually obscure, but the relationships among the columns
in EA are absolutely transparent. For example, notice that the multipliers used
in the relationships (2.2.1) and (2.2.2) appear explicitly in the two nonbasic
columns in EA —they are just the nonzero entries in these nonbasic columns.
This is important because it means that EA can be used as a “map” or “key”
to discover or unlock the hidden relationships among the columns of A .

Finally, observe from Example 2.2.2 that only the basic columns to the left
of a given nonbasic column are needed in order to express the nonbasic column
as a combination of basic columns—e.g., representing A∗2 requires only A∗1
and not A∗3 or A∗5, while representing A∗4 requires only A∗1 and A∗3.
This too is typical. For the time being, we accept the following statements to be
true. A rigorous proof is given later on p. 136.

Column Relationships in A and EA
• Each nonbasic column E∗k in EA is a combination (a sum of mul-

tiples) of the basic columns in EA to the left of E∗k. That is,

E∗k = µ1E∗b1 + µ2E∗b2 + · · · + µjE∗bj

= µ1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
0
...
0
...
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ µ2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
1
...
0
...
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ · · · + µj

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0
...
1
...
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

µ1

µ2
...

µj

...
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where the E∗bi’s are the basic columns to the left of E∗k and where
the multipliers µi are the first j entries in E∗k.

• The relationships that exist among the columns of A are exactly
the same as the relationships that exist among the columns of EA.
In particular, if A∗k is a nonbasic column in A , then

A∗k = µ1A∗b1 + µ2A∗b2 + · · · + µjA∗bj , (2.2.3)

where the A∗bi’s are the basic columns to the left of A∗k, and
where the multipliers µi are as described above—the first j entries
in E∗k.
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Example 2.2.3
Problem: Write each nonbasic column as a combination of basic columns in

A =

⎛

⎝

2 −4 −8 6 3
0 1 3 2 3
3 −2 0 0 8

⎞

⎠ .

Solution: Transform A to EA as shown below.
⎛

⎝

⃝2 −4 −8 6 3
0 1 3 2 3
3 −2 0 0 8

⎞

⎠→

⎛

⎝

⃝1 −2 −4 3 3
2

0 1 3 2 3
3 −2 0 0 8

⎞

⎠→

⎛

⎝

⃝1 −2 −4 3 3
2

0 ⃝1 3 2 3
0 4 12 −9 7

2

⎞

⎠→

⎛

⎝

⃝1 0 2 7 15
2

0 ⃝1 3 2 3
0 0 0 −17 − 17

2

⎞

⎠→

⎛

⎝

⃝1 0 2 7 15
2

0 ⃝1 3 2 3
0 0 0 ⃝1 1

2

⎞

⎠→

⎛

⎝

⃝1 0 2 0 4
0 ⃝1 3 0 2
0 0 0 ⃝1 1

2

⎞

⎠

The third and fifth columns are nonbasic. Looking at the columns in EA reveals

E∗3 = 2E∗1 + 3E∗2 and E∗5 = 4E∗1 + 2E∗2 +
1
2
E∗4.

The relationships that exist among the columns of A must be exactly the same
as those in EA, so

A∗3 = 2A∗1 + 3A∗2 and A∗5 = 4A∗1 + 2A∗2 +
1
2
A∗4.

You can easily check the validity of these equations by direct calculation.

In summary, the utility of EA lies in its ability to reveal dependencies in
data stored as columns in an array A. The nonbasic columns in A represent
redundant information in the sense that this information can always be expressed
in terms of the data contained in the basic columns.

Although data compression is not the primary reason for introducing EA,
the application to these problems is clear. For a large array of data, it may be
more efficient to store only “independent data” (i.e., the basic columns of A )
along with the nonzero multipliers µi obtained from the nonbasic columns in
EA. Then the redundant data contained in the nonbasic columns of A can
always be reconstructed if and when it is called for.

Exercises for section 2.2

2.2.1. Determine the reduced row echelon form for each of the following matri-
ces and then express each nonbasic column in terms of the basic columns:

(a)

⎛

⎝

1 2 3 3
2 4 6 9
2 6 7 6

⎞

⎠ , (b)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2 1 1 3 0 4 1
4 2 4 4 1 5 5
2 1 3 1 0 4 3
6 3 4 8 1 9 5
0 0 3 −3 0 0 3
8 4 2 14 1 13 3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.
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2.2.2. Construct a matrix A whose reduced row echelon form is

EA =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 2 0 −3 0 0 0
0 0 1 −4 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Is A unique?

2.2.3. Suppose that A is an m× n matrix. Give a short explanation of why
rank (A) < n whenever one column in A is a combination of other
columns in A .

2.2.4. Consider the following matrix:

A =

⎛

⎝

.1 .2 .3

.4 .5 .6

.7 .8 .901

⎞

⎠ .

(a) Use exact arithmetic to determine EA.
(b) Now use 3-digit floating-point arithmetic (without partial piv-

oting or scaling) to determine EA and formulate a statement
concerning “near relationships” between the columns of A .

2.2.5. Consider the matrix

E =

⎛

⎝

1 0 −1
0 1 2
0 0 0

⎞

⎠ .

You already know that E∗3 can be expressed in terms of E∗1 and E∗2.
However, this is not the only way to represent the column dependencies
in E . Show how to write E∗1 in terms of E∗2 and E∗3 and then
express E∗2 as a combination of E∗1 and E∗3. Note: This exercise
illustrates that the set of pivotal columns is not the only set that can
play the role of “basic columns.” Taking the basic columns to be the
ones containing the pivots is a matter of convenience because everything
becomes automatic that way.



Solutions for Chapter 2

Solutions for exercises in section 2. 1

2.1.1. (a)

⎛

⎝
1 2 3 3
0 2 1 0
0 0 0 3

⎞

⎠ is one possible answer. Rank = 3 and the basic columns

are {A∗1,A∗2,A∗4}. (b)

⎛

⎜⎜⎜⎝

1 2 3
0 2 2
0 0 −8
0 0 0
0 0 0

⎞

⎟⎟⎟⎠
is one possible answer. Rank = 3 and

every column in A is basic.

(c)

⎛

⎜⎜⎜⎜⎜⎝

2 1 1 3 0 4 1
0 0 2 −2 1 −3 3
0 0 0 0 −1 3 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
is one possible answer. The rank is 3, and

the basic columns are {A∗1,A∗3,A∗5}.
2.1.2. (c) and (d) are in row echelon form.
2.1.3. (a) Since any row or column can contain at most one pivot, the number of pivots

cannot exceed the number of rows nor the number of columns. (b) A zero row
cannot contain a pivot. (c) If one row is a multiple of another, then one of
them can be annihilated by the other to produce a zero row. Now the result
of the previous part applies. (d) One row can be annihilated by the associated
combination of row operations. (e) If a column is zero, then there are fewer than
n basic columns because each basic column must contain a pivot.

2.1.4. (a) rank (A) = 3 (b) 3-digit rank (A) = 2 (c) With PP, 3-digit rank (A) = 3
2.1.5. 15

2.1.6. (a) No, consider the form

⎛

⎝
∗ ∗ ∗ ∗
0 0 0 0
0 0 0 ∗

⎞

⎠ (b) Yes—in fact, E is a row

echelon form obtainable from A .

Solutions for exercises in section 2. 2

2.2.1. (a)

⎛

⎝
1 0 2 0
0 1 1

2 0
0 0 0 1

⎞

⎠ and A∗3 = 2A∗1 + 1
2A∗2
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(b)

⎛

⎜⎜⎜⎜⎜⎝

1 1
2 0 2 0 2 0

0 0 1 −1 0 0 1
0 0 0 0 1 −3 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
and

A∗2 = 1
2A∗1, A∗4 = 2A∗1−A∗3, A∗6 = 2A∗1−3A∗5, A∗7 = A∗3+A∗5

2.2.2. No.
2.2.3. The same would have to hold in EA, and there you can see that this means not

all columns can be basic. Remember, rank (A) = number of basic columns.

2.2.4. (a)

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ (b)

⎛

⎝
1 0 −1
0 1 2
0 0 0

⎞

⎠ A∗3 is almost a combination of A∗1

and A∗2. In particular, A∗3 ≈ −A∗1 + 2A∗2.
2.2.5. E∗1 = 2E∗2 −E∗3 and E∗2 = 1

2E∗1 + 1
2E∗3

Solutions for exercises in section 2. 3

2.3.1. (a), (b)—There is no need to do any arithmetic for this one because the right-
hand side is entirely zero so that you know (0,0,0) is automatically one solution.
(d), (f)

2.3.3. It is always true that rank (A) ≤ rank[A|b] ≤ m. Since rank (A) = m, it
follows that rank[A|b] = rank (A).

2.3.4. Yes—Consistency implies that b and c are each combinations of the basic
columns in A . If b =

∑
βiA∗bi and c =

∑
γiA∗bi where the A∗bi ’s are the

basic columns, then b + c =
∑

(βi + γi)A∗bi =
∑

ξiA∗bi , where ξi = βi + γi

so that b + c is also a combination of the basic columns in A .
2.3.5. Yes—because the 4× 3 system α + βxi + γx2

i = yi obtained by using the four
given points (xi, yi) is consistent.

2.3.6. The system is inconsistent using 5-digits but consistent when 6-digits are used.
2.3.7. If x, y, and z denote the number of pounds of the respective brands applied,

then the following constraints must be met.

total # units of phosphorous = 2x + y + z = 10
total # units of potassium = 3x + 3y = 9

total # units of nitrogen = 5x + 4y + z = 19

Since this is a consistent system, the recommendation can be satisfied exactly.
Of course, the solution tells how much of each brand to apply.

2.3.8. No—if one or more such rows were ever present, how could you possibly eliminate
all of them with row operations? You could eliminate all but one, but then there
is no way to eliminate the last remaining one, and hence it would have to appear
in the final form.


