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2.4 HOMOGENEOUS SYSTEMS

A system of m linear equations in n unknowns

a11x1 + a12x2 + · · · + a1nxn = 0,

a21x1 + a22x2 + · · · + a2nxn = 0,

...
am1x1 + am2x2 + · · · + amnxn = 0,

in which the right-hand side consists entirely of 0’s is said to be a homogeneous
system. If there is at least one nonzero number on the right-hand side, then the
system is called nonhomogeneous. The purpose of this section is to examine
some of the elementary aspects concerning homogeneous systems.

Consistency is never an issue when dealing with homogeneous systems be-
cause the zero solution x1 = x2 = · · · = xn = 0 is always one solution regardless
of the values of the coefficients. Hereafter, the solution consisting of all zeros is
referred to as the trivial solution. The only question is, “Are there solutions
other than the trivial solution, and if so, how can we best describe them?” As
before, Gaussian elimination provides the answer.

While reducing the augmented matrix [A|0] of a homogeneous system to
a row echelon form using Gaussian elimination, the zero column on the right-
hand side can never be altered by any of the three elementary row operations.
That is, any row echelon form derived from [A|0] by means of row operations
must also have the form [E|0]. This means that the last column of 0’s is just
excess baggage that is not necessary to carry along at each step. Just reduce the
coefficient matrix A to a row echelon form E, and remember that the right-
hand side is entirely zero when you execute back substitution. The process is
best understood by considering a typical example.

In order to examine the solutions of the homogeneous system

x1 + 2x2 + 2x3 + 3x4 = 0,

2x1 + 4x2 + x3 + 3x4 = 0,

3x1 + 6x2 + x3 + 4x4 = 0,

(2.4.1)

reduce the coefficient matrix to a row echelon form.

A =

⎛

⎝

1 2 2 3
2 4 1 3
3 6 1 4

⎞

⎠ −→

⎛

⎝

1 2 2 3
0 0 −3 −3
0 0 −5 −5

⎞

⎠ −→

⎛

⎝

1 2 2 3
0 0 −3 −3
0 0 0 0

⎞

⎠ = E.

Therefore, the original homogeneous system is equivalent to the following reduced
homogeneous system:

x1 + 2x2 + 2x3 + 3x4 = 0,

− 3x3 − 3x4 = 0.
(2.4.2)
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Since there are four unknowns but only two equations in this reduced system,
it is impossible to extract a unique solution for each unknown. The best we can
do is to pick two “basic” unknowns—which will be called the basic variables
and solve for these in terms of the other two unknowns—whose values must
remain arbitrary or “free,” and consequently they will be referred to as the free
variables. Although there are several possibilities for selecting a set of basic
variables, the convention is to always solve for the unknowns corresponding to
the pivotal positions—or, equivalently, the unknowns corresponding to the basic
columns. In this example, the pivots (as well as the basic columns) lie in the first
and third positions, so the strategy is to apply back substitution to solve the
reduced system (2.4.2) for the basic variables x1 and x3 in terms of the free
variables x2 and x4. The second equation in (2.4.2) yields

x3 = −x4

and substitution back into the first equation produces

x1 = −2x2 − 2x3 − 3x4,

= −2x2 − 2(−x4)− 3x4,

= −2x2 − x4.

Therefore, all solutions of the original homogeneous system can be described by
saying

x1 = −2x2 − x4,

x2 is “free,”
x3 = −x4,

x4 is “free.”

(2.4.3)

As the free variables x2 and x4 range over all possible values, the above ex-
pressions describe all possible solutions. For example, when x2 and x4 assume
the values x2 = 1 and x4 = −2, then the particular solution

x1 = 0, x2 = 1, x3 = 2, x4 = −2

is produced. When x2 = π and x4 =
√

2, then another particular solution

x1 = −2π −
√

2, x2 = π, x3 = −
√

2, x4 =
√

2

is generated.
Rather than describing the solution set as illustrated in (2.4.3), future de-

velopments will make it more convenient to express the solution set by writing
⎛

⎜

⎝

x1

x2

x3

x4

⎞

⎟

⎠
=

⎛

⎜

⎝

−2x2 − x4

x2

−x4

x4

⎞

⎟

⎠
= x2

⎛

⎜

⎝

−2
1
0
0

⎞

⎟

⎠
+ x4

⎛

⎜

⎝

−1
0
−1

1

⎞

⎟

⎠
(2.4.4)
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with the understanding that x2 and x4 are free variables that can range over
all possible numbers. This representation will be called the general solution
of the homogeneous system. This expression for the general solution emphasizes
that every solution is some combination of the two particular solutions

h1 =

⎛

⎜

⎝

−2
1
0
0

⎞

⎟

⎠
and h2 =

⎛

⎜

⎝

−1
0
−1

1

⎞

⎟

⎠
.

The fact that h1 and h2 are each solutions is clear because h1 is produced
when the free variables assume the values x2 = 1 and x4 = 0, whereas the
solution h2 is generated when x2 = 0 and x4 = 1.

Now consider a general homogeneous system [A|0] of m linear equations
in n unknowns. If the coefficient matrix is such that rank (A) = r, then it
should be apparent from the preceding discussion that there will be exactly r
basic variables—corresponding to the positions of the basic columns in A —and
exactly n − r free variables—corresponding to the positions of the nonbasic
columns in A . Reducing A to a row echelon form using Gaussian elimination
and then using back substitution to solve for the basic variables in terms of the
free variables produces the general solution, which has the form

x = xf1h1 + xf2h2 + · · · + xfn−rhn−r, (2.4.5)

where xf1 , xf2 , . . . , xfn−r are the free variables and where h1,h2, . . . ,hn−r are
n× 1 columns that represent particular solutions of the system. As the free
variables xfi range over all possible values, the general solution generates all
possible solutions.

The general solution does not depend on which row echelon form is used
in the sense that using back substitution to solve for the basic variables in
terms of the nonbasic variables generates a unique set of particular solutions
{h1,h2, . . . ,hn−r}, regardless of which row echelon form is used. Without going
into great detail, one can argue that this is true because using back substitution
in any row echelon form to solve for the basic variables must produce exactly
the same result as that obtained by completely reducing A to EA and then
solving the reduced homogeneous system for the basic variables. Uniqueness of
EA guarantees the uniqueness of the hi ’s.

For example, if the coefficient matrix A associated with the system (2.4.1)
is completely reduced by the Gauss–Jordan procedure to EA

A =

⎛

⎝

1 2 2 3
2 4 1 3
3 6 1 4

⎞

⎠ −→

⎛

⎝

1 2 0 1
0 0 1 1
0 0 0 0

⎞

⎠ = EA,
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then we obtain the following reduced system:

x1 + 2x2 + x4 = 0,

x3 + x4 = 0.

Solving for the basic variables x1 and x3 in terms of x2 and x4 produces
exactly the same result as given in (2.4.3) and hence generates exactly the same
general solution as shown in (2.4.4).

Because it avoids the back substitution process, you may find it more con-
venient to use the Gauss–Jordan procedure to reduce A completely to EA

and then construct the general solution directly from the entries in EA. This
approach usually will be adopted in the examples and exercises.

As was previously observed, all homogeneous systems are consistent because
the trivial solution consisting of all zeros is always one solution. The natural
question is, “When is the trivial solution the only solution?” In other words,
we wish to know when a homogeneous system possesses a unique solution. The
form of the general solution (2.4.5) makes the answer transparent. As long as
there is at least one free variable, then it is clear from (2.4.5) that there will
be an infinite number of solutions. Consequently, the trivial solution is the only
solution if and only if there are no free variables. Because the number of free
variables is given by n− r, where r = rank (A), the previous statement can be
reformulated to say that a homogeneous system possesses a unique solution—the
trivial solution—if and only if rank (A) = n.

Example 2.4.1
The homogeneous system

x1 + 2x2 + 2x3 = 0,

2x1 + 5x2 + 7x3 = 0,

3x1 + 6x2 + 8x3 = 0,

has only the trivial solution because

A =

⎛

⎝

1 2 2
2 5 7
3 6 8

⎞

⎠ −→

⎛

⎝

1 2 2
0 1 3
0 0 2

⎞

⎠ = E

shows that rank (A) = n = 3. Indeed, it is also obvious from E that applying
back substitution in the system [E|0] yields only the trivial solution.

Example 2.4.2
Problem: Explain why the following homogeneous system has infinitely many
solutions, and exhibit the general solution:

x1 + 2x2 + 2x3 = 0,

2x1 + 5x2 + 7x3 = 0,

3x1 + 6x2 + 6x3 = 0.
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Solution:

A =

⎛

⎝

1 2 2
2 5 7
3 6 6

⎞

⎠ −→

⎛

⎝

1 2 2
0 1 3
0 0 0

⎞

⎠ = E

shows that rank (A) = 2 < n = 3. Since the basic columns lie in positions
one and two, x1 and x2 are the basic variables while x3 is free. Using back
substitution on [E|0] to solve for the basic variables in terms of the free variable
produces x2 = −3x3 and x1 = −2x2 − 2x3 = 4x3, so the general solution is

⎛

⎝

x1

x2

x3

⎞

⎠ = x3

⎛

⎝

4
−3

1

⎞

⎠ , where x3 is free.

That is, every solution is a multiple of the one particular solution h1 =

⎛

⎝

4
−3

1

⎞

⎠ .

Summary
Let Am×n be the coefficient matrix for a homogeneous system of m
linear equations in n unknowns, and suppose rank (A) = r.

• The unknowns that correspond to the positions of the basic columns
(i.e., the pivotal positions) are called the basic variables, and the
unknowns corresponding to the positions of the nonbasic columns
are called the free variables.

• There are exactly r basic variables and n− r free variables.
• To describe all solutions, reduce A to a row echelon form using

Gaussian elimination, and then use back substitution to solve for
the basic variables in terms of the free variables. This produces the
general solution that has the form

x = xf1h1 + xf2h2 + · · · + xfn−rhn−r,

where the terms xf1 , xf2 , . . . , xfn−r are the free variables and where
h1,h2, . . . ,hn−r are n× 1 columns that represent particular solu-
tions of the homogeneous system. The hi ’s are independent of which
row echelon form is used in the back substitution process. As the free
variables xfi range over all possible values, the general solution gen-
erates all possible solutions.

• A homogeneous system possesses a unique solution (the trivial solu-
tion) if and only if rank (A) = n —i.e., if and only if there are no
free variables.
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Exercises for section 2.4

2.4.1. Determine the general solution for each of the following homogeneous
systems.

(a)
x1 + 2x2 + x3 + 2x4 = 0,

2x1 + 4x2 + x3 + 3x4 = 0,

3x1 + 6x2 + x3 + 4x4 = 0.

(b)

2x + y + z = 0,

4x + 2y + z = 0,

6x + 3y + z = 0,

8x + 4y + z = 0.

(c)

x1 + x2 + 2x3 = 0,

3x1 + 3x3 + 3x4 = 0,

2x1 + x2 + 3x3 + x4 = 0,

x1 + 2x2 + 3x3 − x4 = 0.

(d)

2x + y + z = 0,

4x + 2y + z = 0,

6x + 3y + z = 0,

8x + 5y + z = 0.

2.4.2. Among all solutions that satisfy the homogeneous system

x + 2y + z = 0,

2x + 4y + z = 0,

x + 2y − z = 0,

determine those that also satisfy the nonlinear constraint y − xy = 2z.

2.4.3. Consider a homogeneous system whose coefficient matrix is

A =

⎛

⎜

⎜

⎜

⎝

1 2 1 3 1
2 4 −1 3 8
1 2 3 5 7
2 4 2 6 2
3 6 1 7 −3

⎞

⎟

⎟

⎟

⎠

.

First transform A to an unreduced row echelon form to determine the
general solution of the associated homogeneous system. Then reduce A
to EA, and show that the same general solution is produced.

2.4.4. If A is the coefficient matrix for a homogeneous system consisting of
four equations in eight unknowns and if there are five free variables,
what is rank (A)?
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2.4.5. Suppose that A is the coefficient matrix for a homogeneous system of
four equations in six unknowns and suppose that A has at least one
nonzero row.

(a) Determine the fewest number of free variables that are possible.
(b) Determine the maximum number of free variables that are pos-

sible.

2.4.6. Explain why a homogeneous system of m equations in n unknowns
where m < n must always possess an infinite number of solutions.

2.4.7. Construct a homogeneous system of three equations in four unknowns
that has

x2

⎛

⎜

⎝

−2
1
0
0

⎞

⎟

⎠
+ x4

⎛

⎜

⎝

−3
0
2
1

⎞

⎟

⎠

as its general solution.

2.4.8. If c1 and c2 are columns that represent two particular solutions of
the same homogeneous system, explain why the sum c1 + c2 must also
represent a solution of this system.
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Solutions for exercises in section 2. 4

2.4.1. (a) x2

⎛

⎜⎝

−2
1
0
0

⎞

⎟⎠+ x4

⎛

⎜⎝

−1
0
−1

1

⎞

⎟⎠ (b) y

⎛

⎝
− 1

2
1
0

⎞

⎠ (c) x3

⎛

⎜⎝

−1
−1

1
0

⎞

⎟⎠+ x4

⎛

⎜⎝

−1
1
0
1

⎞

⎟⎠

(d) The trivial solution is the only solution.

2.4.2.

⎛

⎝
0
0
0

⎞

⎠ and

⎛

⎝
1
− 1

2
0

⎞

⎠

2.4.3. x2

⎛

⎜⎜⎜⎝

−2
1
0
0
0

⎞

⎟⎟⎟⎠
+ x4

⎛

⎜⎜⎜⎝

−2
0
−1

1
0

⎞

⎟⎟⎟⎠

2.4.4. rank (A) = 3
2.4.5. (a) 2—because the maximum rank is 4. (b) 5—because the minimum rank is

1.
2.4.6. Because r = rank (A) ≤ m < n =⇒ n− r > 0.

2.4.7. There are many different correct answers. One approach is to answer the question
“What must EA look like?” The form of the general solution tells you that
rank (A) = 2 and that the first and third columns are basic. Consequently,

EA =

⎛

⎝
1 α 0 β
0 0 1 γ
0 0 0 0

⎞

⎠ so that x1 = −αx2 − βx4 and x3 = −γx4 gives rise

to the general solution x2

⎛

⎜⎝

−α
1
0
0

⎞

⎟⎠ + x4

⎛

⎜⎝

−β
0
−γ

1

⎞

⎟⎠ . Therefore, α = 2, β = 3,

and γ = −2. Any matrix A obtained by performing row operations to EA

will be the coefficient matrix for a homogeneous system with the desired general
solution.

2.4.8. If
∑

i xfihi is the general solution, then there must exist scalars αi and βi such
that c1 =

∑
i αihi and c2 =

∑
i βihi. Therefore, c1 + c2 =

∑
i(αi + βi)hi,

and this shows that c1 + c2 is the solution obtained when the free variables xfi

assume the values xfi = αi + βi.

Solutions for exercises in section 2. 5

2.5.1. (a)

⎛

⎜⎝

1
0
2
0

⎞

⎟⎠+ x2

⎛

⎜⎝

−2
1
0
0

⎞

⎟⎠+ x4

⎛

⎜⎝

−1
0
−1

1

⎞

⎟⎠ (b)

⎛

⎝
1
0
2

⎞

⎠+ y

⎛

⎝
− 1

2
1
0

⎞

⎠


