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3.10 THE LU FACTORIZATION

We have now come full circle, and we are back to where the text began—solving
a nonsingular system of linear equations using Gaussian elimination with back
substitution. This time, however, the goal is to describe and understand the
process in the context of matrices.

If Ax = b is a nonsingular system, then the object of Gaussian elimination
is to reduce A to an upper-triangular matrix using elementary row operations.
If no zero pivots are encountered, then row interchanges are not necessary, and
the reduction can be accomplished by using only elementary row operations of
Type III. For example, consider reducing the matrix

A =

⎛

⎝

2 2 2
4 7 7
6 18 22

⎞

⎠

to upper-triangular form as shown below:

⎛

⎝

2 2 2
4 7 7
6 18 22

⎞

⎠ R2 − 2R1

R3 − 3R1

−→

⎛

⎝

2 2 2
0 3 3
0 12 16

⎞

⎠

R3 − 4R2

−→

⎛

⎝

2 2 2
0 3 3
0 0 4

⎞

⎠ = U.

(3.10.1)

We learned in the previous section that each of these Type III operations can be
executed by means of a left-hand multiplication with the corresponding elemen-
tary matrix Gi, and the product of all of these Gi ’s is

G3G2G1 =

⎛

⎝

1 0 0
0 1 0
0 −4 1

⎞

⎠

⎛

⎝

1 0 0
0 1 0
−3 0 1

⎞

⎠

⎛

⎝

1 0 0
−2 1 0

0 0 1

⎞

⎠ =

⎛

⎝

1 0 0
−2 1 0

5 −4 1

⎞

⎠ .

In other words, G3G2G1A = U, so that A = G−1
1 G−1

2 G−1
3 U = LU, where

L is the lower-triangular matrix

L = G−1
1 G−1

2 G−1
3 =

⎛

⎝

1 0 0
2 1 0
3 4 1

⎞

⎠ .

Thus A = LU is a product of a lower-triangular matrix L and an upper-
triangular matrix U. Naturally, this is called an LU factorization of A.
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Observe that U is the end product of Gaussian elimination and has the
pivots on its diagonal, while L has 1’s on its diagonal. Moreover, L has the
remarkable property that below its diagonal, each entry ℓij is precisely the
multiplier used in the elimination (3.10.1) to annihilate the (i, j)-position.

This is characteristic of what happens in general. To develop the gen-
eral theory, it’s convenient to introduce the concept of an elementary lower-
triangular matrix, which is defined to be an n× n triangular matrix of the
form

Tk = I− ckeT
k ,

where ck is a column with zeros in the first k positions. In particular, if

ck =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
...

µk+1
...

µn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, then Tk =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · 1 0 · · · 0
0 0 · · · −µk+1 1 · · · 0
...

...
...

...
. . .

...
0 0 · · · −µn 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.10.2)

By observing that eT
k ck = 0, the formula for the inverse of an elementary matrix

given in (3.9.1) produces

T−1
k = I + ckeT

k =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · 1 0 · · · 0
0 0 · · · µk+1 1 · · · 0
...

...
...

...
. . .

...
0 0 · · · µn 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.10.3)

which is also an elementary lower-triangular matrix. The utility of elementary
lower-triangular matrices lies in the fact that all of the Type III row operations
needed to annihilate the entries below the kth pivot can be accomplished with
one multiplication by Tk. If

Ak−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ ∗ · · · α1 ∗ · · · ∗
0 ∗ · · · α2 ∗ · · · ∗
...

...
. . .

...
...

...
0 0 · · · αk ∗ · · · ∗
0 0 · · · αk+1 ∗ · · · ∗
...

...
...

...
. . .

...
0 0 · · · αn ∗ · · · ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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is the partially triangularized result after k − 1 elimination steps, then

TkAk−1 =
(

I− ckeT
k

)

Ak−1 = Ak−1 − ckeT
k Ak−1

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ ∗ · · · α1 ∗ · · · ∗
0 ∗ · · · α2 ∗ · · · ∗
...

...
. . .

...
...

...
0 0 · · · αk ∗ · · · ∗
0 0 · · · 0 ∗ · · · ∗
...

...
...

...
. . .

...
0 0 · · · 0 ∗ · · · ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, where ck =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
...
0

αk+1/αk
...

αn/αk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

contains the multipliers used to annihilate those entries below αk. Notice that
Tk does not alter the first k − 1 columns of Ak−1 because eT

k [Ak−1]∗j = 0
whenever j ≤ k−1. Therefore, if no row interchanges are required, then reducing
A to an upper-triangular matrix U by Gaussian elimination is equivalent to
executing a sequence of n− 1 left-hand multiplications with elementary lower-
triangular matrices. That is, Tn−1 · · ·T2T1A = U, and hence

A = T−1
1 T−1

2 · · ·T−1
n−1U. (3.10.4)

Making use of the fact that eT
j ck = 0 whenever j ≤ k and applying (3.10.3)

reveals that

T−1
1 T−1

2 · · ·T−1
n−1 =

(

I + c1eT
1

) (

I + c2eT
2

)

· · ·
(

I + cn−1eT
n−1

)

= I + c1eT
1 + c2eT

2 + · · · + cn−1eT
n−1.

(3.10.5)

By observing that

ckeT
k =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · 0 0 · · · 0
0 0 · · · ℓk+1,k 0 · · · 0
...

...
...

...
. . .

...
0 0 · · · ℓnk 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the ℓik ’s are the multipliers used at the kth stage to annihilate the entries
below the kth pivot, it now follows from (3.10.4) and (3.10.5) that

A = LU,
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where

L = I + c1eT
1 + c2eT

2 + · · · + cn−1eT
n−1 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 · · · 0
ℓ21 1 0 · · · 0
ℓ31 ℓ32 1 · · · 0
...

...
...

. . .
...

ℓn1 ℓn2 ℓn3 · · · 1

⎞

⎟
⎟
⎟
⎟
⎠

(3.10.6)

is the lower-triangular matrix with 1’s on the diagonal, and where ℓij is precisely
the multiplier used to annihilate the (i, j) -position during Gaussian elimination.
Thus the factorization A = LU can be viewed as the matrix formulation of
Gaussian elimination, with the understanding that no row interchanges are used.

LU Factorization
If A is an n× n matrix such that a zero pivot is never encountered
when applying Gaussian elimination with Type III operations, then A
can be factored as the product A = LU, where the following hold.
• L is lower triangular and U is upper triangular. (3.10.7)
• ℓii = 1 and uii ̸= 0 for each i = 1, 2, . . . , n. (3.10.8)
• Below the diagonal of L, the entry ℓij is the multiple of row j that

is subtracted from row i in order to annihilate the (i, j) -position
during Gaussian elimination.

• U is the final result of Gaussian elimination applied to A.

• The matrices L and U are uniquely determined by properties
(3.10.7) and (3.10.8).

The decomposition of A into A = LU is called the LU factorization
of A, and the matrices L and U are called the LU factors of A.

Proof. Except for the statement concerning the uniqueness of the LU fac-
tors, each point has already been established. To prove uniqueness, observe
that LU factors must be nonsingular because they have nonzero diagonals. If
L1U1 = A = L2U2 are two LU factorizations for A, then

L−1
2 L1 = U2U−1

1 . (3.10.9)

Notice that L−1
2 L1 is lower triangular, while U2U−1

1 is upper triangular be-
cause the inverse of a matrix that is upper (lower) triangular is again up-
per (lower) triangular, and because the product of two upper (lower) trian-
gular matrices is also upper (lower) triangular. Consequently, (3.10.9) implies
L−1

2 L1 = D = U2U−1
1 must be a diagonal matrix. However, [L2]ii = 1 =

[L−1
2 ]ii, so it must be the case that L−1

2 L1 = I = U2U−1
1 , and thus L1 = L2

and U1 = U2.
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Example 3.10.1
Once L and U are known, there is usually no need to manipulate with A. This
together with the fact that the multipliers used in Gaussian elimination occur in
just the right places in L means that A can be successively overwritten with the
information in L and U as Gaussian elimination evolves. The rule is to store
the multiplier ℓij in the position it annihilates—namely, the (i, j)-position of
the array. For a 3× 3 matrix, the result looks like this:

⎛

⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠
Type III operations
−−−−−−−−→

⎛

⎝

u11 u12 u13

ℓ21 u22 u23

ℓ31 ℓ32 u33

⎞

⎠ .

For example, generating the LU factorization of

A =

⎛

⎝

2 2 2
4 7 7
6 18 22

⎞

⎠

by successively overwriting a single 3× 3 array would evolve as shown below:
⎛

⎝

2 2 2
4 7 7
6 18 22

⎞

⎠ R2 − 2R1

R3 − 3R1

−→

⎛

⎝

2 2 2
⃝2 3 3
⃝3 12 16

⎞

⎠

R3 − 4R2

−→

⎛

⎝

2 2 2
⃝2 3 3
⃝3 ⃝4 4

⎞

⎠ .

Thus

L =

⎛

⎝

1 0 0
2 1 0
3 4 1

⎞

⎠ and U =

⎛

⎝

2 2 2
0 3 3
0 0 4

⎞

⎠ .

This is an important feature in practical computation because it guarantees that
an LU factorization requires no more computer memory than that required to
store the original matrix A.

Once the LU factors for a nonsingular matrix An×n have been obtained,
it’s relatively easy to solve a linear system Ax = b. By rewriting Ax = b as

L(Ux) = b and setting y = Ux,

we see that Ax = b is equivalent to the two triangular systems

Ly = b and Ux = y.

First, the lower-triangular system Ly = b is solved for y by forward substi-
tution. That is, if

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 · · · 0
ℓ21 1 0 · · · 0
ℓ31 ℓ32 1 · · · 0
...

...
...

. . .
...

ℓn1 ℓn2 ℓn3 · · · 1

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

y1

y2

y3
...

yn

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

b1

b2

b3
...

bn

⎞

⎟
⎟
⎟
⎟
⎠

,
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set
y1 = b1, y2 = b2 − ℓ21y1, y3 = b3 − ℓ31y1 − ℓ32y2, etc.

The forward substitution algorithm can be written more concisely as

y1 = b1 and yi = bi −
i−1
∑

k=1

ℓikyk for i = 2, 3, . . . , n. (3.10.10)

After y is known, the upper-triangular system Ux = y is solved using the
standard back substitution procedure by starting with xn = yn/unn, and setting

xi =
1

uii

(

yi −
n
∑

k=i+1

uikxk

)

for i = n− 1, n− 2, . . . , 1. (3.10.11)

It can be verified that only n2 multiplications/divisions and n2 − n addi-
tions/subtractions are required when (3.10.10) and (3.10.11) are used to solve
the two triangular systems Ly = b and Ux = y, so it’s relatively cheap to
solve Ax = b once L and U are known—recall from §1.2 that these operation
counts are about n3/3 when we start from scratch.

If only one system Ax = b is to be solved, then there is no significant
difference between the technique of reducing the augmented matrix [A|b] to
a row echelon form and the LU factorization method presented here. However,
suppose it becomes necessary to later solve other systems Ax = b̃ with the
same coefficient matrix but with different right-hand sides, which is frequently
the case in applied work. If the LU factors of A were computed and saved
when the original system was solved, then they need not be recomputed, and
the solutions to all subsequent systems Ax = b̃ are therefore relatively cheap
to obtain. That is, the operation counts for each subsequent system are on the
order of n2, whereas these counts would be on the order of n3/3 if we would
start from scratch each time.

Summary
• To solve a nonsingular system Ax = b using the LU factorization

A = LU, first solve Ly = b for y with the forward substitution
algorithm (3.10.10), and then solve Ux = y for x with the back
substitution procedure (3.10.11).

• The advantage of this approach is that once the LU factors for
A have been computed, any other linear system Ax = b̃ can
be solved with only n2 multiplications/divisions and n2 − n ad-
ditions/subtractions.
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Example 3.10.2
Problem 1: Use the LU factorization of A to solve Ax = b, where

A =

⎛

⎝

2 2 2
4 7 7
6 18 22

⎞

⎠ and b =

⎛

⎝

12
24
12

⎞

⎠ .

Problem 2: Suppose that after solving the original system new information is
received that changes b to

b̃ =

⎛

⎝

6
24
70

⎞

⎠ .

Use the LU factors of A to solve the updated system Ax = b̃.

Solution 1: The LU factors of the coefficient matrix were determined in Example
3.10.1 to be

L =

⎛

⎝

1 0 0
2 1 0
3 4 1

⎞

⎠ and U =

⎛

⎝

2 2 2
0 3 3
0 0 4

⎞

⎠ .

The strategy is to set Ux = y and solve Ax = L(Ux) = b by solving the two
triangular systems

Ly = b and Ux = y.

First solve the lower-triangular system Ly = b by using forward substitution:
⎛

⎝

1 0 0
2 1 0
3 4 1

⎞

⎠

⎛

⎝

y1

y2

y3

⎞

⎠ =

⎛

⎝

12
24
12

⎞

⎠ =⇒
y1 = 12,
y2 = 24− 2y1 = 0,
y3 = 12− 3y1 − 4y2 = −24.

Now use back substitution to solve the upper-triangular system Ux = y:
⎛

⎝

2 2 2
0 3 3
0 0 4

⎞

⎠

⎛

⎝

x1

x2

x3

⎞

⎠ =

⎛

⎝

12
0

−24

⎞

⎠ =⇒
x1 = (12− 2x2 − 2x3)/2 = 6,
x2 = (0− 3x3)/3 = 6,
x3 = −24/4 = −6.

Solution 2: To solve the updated system Ax = b̃, simply repeat the forward
and backward substitution steps with b replaced by b̃. Solving Ly = b̃ with
forward substitution gives the following:

⎛

⎝

1 0 0
2 1 0
3 4 1

⎞

⎠

⎛

⎝

y1

y2

y3

⎞

⎠ =

⎛

⎝

6
24
70

⎞

⎠ =⇒
y1 = 6,
y2 = 24− 2y1 = 12,
y3 = 70− 3y1 − 4y2 = 4.

Using back substitution to solve Ux = y gives the following updated solution:
⎛

⎝

2 2 2
0 3 3
0 0 4

⎞

⎠

⎛

⎝

x1

x2

x3

⎞

⎠ =

⎛

⎝

6
12
4

⎞

⎠ =⇒
x1 = (6− 2x2 − 2x3)/2 = −1,
x2 = (12− 3x3)/3 = 3,
x3 = 4/4 = 1.
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Example 3.10.3
Computing A−1. Although matrix inversion is not used for solving Ax = b,
there are a few applications where explicit knowledge of A−1 is desirable.

Problem: Explain how to use the LU factors of a nonsingular matrix An×n to
compute A−1 efficiently.

Solution: The strategy is to solve the matrix equation AX = I. Recall from
(3.5.5) that AA−1 = I implies A[A−1]∗j = ej , so the jth column of A−1

is the solution of a system Axj = ej . Each of these n systems has the same
coefficient matrix, so, once the LU factors for A are known, each system Axj =
LUxj = ej can be solved by the standard two-step process.

(1) Set yj = Uxj , and solve Lyj = ej for yj by forward substitution.
(2) Solve Uxj = yj for xj = [A−1]∗j by back substitution.

This method has at least two advantages: it’s efficient, and any code written to
solve Ax = b can also be used to compute A−1.

Note: A tempting alternate solution might be to use the fact A−1 = (LU)−1 =
U−1L−1. But computing U−1 and L−1 explicitly and then multiplying the
results is not as computationally efficient as the method just described.

Not all nonsingular matrices possess an LU factorization. For example, there
is clearly no nonzero value of u11 that will satisfy

(

0 1
1 1

)

=
(

1 0
ℓ21 1

)(

u11 u12

0 u22

)

.

The problem here is the zero pivot in the (1,1)-position. Our development of
the LU factorization using elementary lower-triangular matrices shows that if no
zero pivots emerge, then no row interchanges are necessary, and the LU factor-
ization can indeed be carried to completion. The converse is also true (its proof
is left as an exercise), so we can say that a nonsingular matrix A has an LU
factorization if and only if a zero pivot does not emerge during row reduction to
upper-triangular form with Type III operations.

Although it is a bit more theoretical, there is another interesting way to
characterize the existence of LU factors. This characterization is given in terms
of the leading principal submatrices of A that are defined to be those
submatrices taken from the upper-left-hand corner of A. That is,

A1 =
(

a11

)

, A2 =
(

a11 a12

a21 a22

)

, . . . ,Ak =

⎛

⎜
⎜
⎝

a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · akk

⎞

⎟
⎟
⎠

, . . . .
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Existence of LU Factors
Each of the following statements is equivalent to saying that a nonsin-
gular matrix An×n possesses an LU factorization.
• A zero pivot does not emerge during row reduction to upper-

triangular form with Type III operations.
• Each leading principal submatrix Ak is nonsingular. (3.10.12)

Proof. We will prove the statement concerning the leading principal submatri-
ces and leave the proof concerning the nonzero pivots as an exercise. Assume
first that A possesses an LU factorization and partition A as

A = LU =
(

L11 0
L21 L22

)(

U11 U12

0 U22

)

=
(

L11U11 ∗
∗ ∗

)

,

where L11 and U11 are each k × k. Thus Ak = L11U11 must be nonsingular
because L11 and U11 are each nonsingular—they are triangular with nonzero
diagonal entries. Conversely, suppose that each leading principal submatrix in
A is nonsingular. Use induction to prove that each Ak possesses an LU fac-
torization. For k = 1, this statement is clearly true because if A1 = (a11) is
nonsingular, then A1 = (1)(a11) is its LU factorization. Now assume that Ak

has an LU factorization and show that this together with the nonsingularity
condition implies Ak+1 must also possess an LU factorization. If Ak = LkUk

is the LU factorization for Ak, then A−1
k = U−1

k L−1
k so that

Ak+1 =

(

Ak b

cT αk+1

)

=

(

Lk 0

cT U−1
k 1

)(

Uk L−1
k b

0 αk+1 − cT A−1
k b

)

, (3.10.13)

where cT and b contain the first k components of Ak+1∗ and A∗k+1, re-
spectively. Observe that this is the LU factorization for Ak+1 because

Lk+1 =

(

Lk 0

cT U−1
k 1

)

and Uk+1 =

(

Uk L−1
k b

0 αk+1 − cT A−1
k b

)

are lower- and upper-triangular matrices, respectively, and L has 1’s on its
diagonal while the diagonal entries of U are nonzero. The fact that

αk+1 − cT A−1
k b ̸= 0

follows because Ak+1 and Lk+1 are each nonsingular, so Uk+1 = L−1
k+1Ak+1

must also be nonsingular. Therefore, the nonsingularity of the leading principal
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submatrices implies that each Ak possesses an LU factorization, and hence
An = A must have an LU factorization.

Up to this point we have avoided dealing with row interchanges because if
a row interchange is needed to remove a zero pivot, then no LU factorization is
possible. However, we know from the discussion in §1.5 that practical computa-
tion necessitates row interchanges in the form of partial pivoting. So even if no
zero pivots emerge, it is usually the case that we must still somehow account for
row interchanges.

To understand the effects of row interchanges in the framework of an LU
decomposition, let Tk = I− ckeT

k be an elementary lower-triangular matrix as
described in (3.10.2), and let E = I−uuT with u = ek+i−ek+j be the Type I
elementary interchange matrix associated with an interchange of rows k + i and
k + j. Notice that eT

k E = eT
k because eT

k has 0’s in positions k + i and k + j.
This together with the fact that E2 = I guarantees

ETkE = E2 −EckeT
k E = I− c̃keT

k , where c̃k = Eck.

In other words, the matrix

T̃k = ETkE = I− c̃keT
k (3.10.14)

is also an elementary lower-triangular matrix, and T̃k agrees with Tk in all
positions except that the multipliers µk+i and µk+j have traded places. As be-
fore, assume we are row reducing an n× n nonsingular matrix A, but suppose
that an interchange of rows k + i and k + j is necessary immediately after the
kth stage so that the sequence of left-hand multiplications ETkTk−1 · · ·T1 is
applied to A. Since E2 = I, we may insert E2 to the right of each T to obtain

ETkTk−1 · · ·T1 = ETkE2Tk−1E2 · · ·E2T1E2

= (ETkE) (ETk−1E) · · · (ET1E)E

= T̃kT̃k−1 · · · T̃1E.

In such a manner, the necessary interchange matrices E can be “factored” to
the far-right-hand side, and the matrices T̃ retain the desirable feature of be-
ing elementary lower-triangular matrices. Furthermore, (3.10.14) implies that
T̃kT̃k−1 · · · T̃1 differs from TkTk−1 · · ·T1 only in the sense that the multipli-
ers in rows k + i and k + j have traded places. Therefore, row interchanges in
Gaussian elimination can be accounted for by writing T̃n−1 · · · T̃2T̃1PA = U,
where P is the product of all elementary interchange matrices used during the
reduction and where the T̃k ’s are elementary lower-triangular matrices in which
the multipliers have been permuted according to the row interchanges that were
implemented. Since all of the T̃k ’s are elementary lower-triangular matrices, we
may proceed along the same lines discussed in (3.10.4)—(3.10.6) to obtain

PA = LU, where L = T̃−1
1 T̃−1

2 · · · T̃−1
n−1. (3.10.15)
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When row interchanges are allowed, zero pivots can always be avoided when the
original matrix A is nonsingular. Consequently, we may conclude that for every
nonsingular matrix A, there exists a permutation matrix P (a product of
elementary interchange matrices) such that PA has an LU factorization. Fur-
thermore, because of the observation in (3.10.14) concerning how the multipliers
in Tk and T̃k trade places when a row interchange occurs, and because

T̃−1
k =

(

I− c̃keT
k

)−1
= I + c̃keT

k ,

it is not difficult to see that the same line of reasoning used to arrive at (3.10.6)
can be applied to conclude that the multipliers in the matrix L in (3.10.15) are
permuted according to the row interchanges that are executed. More specifically,
if rows k and k+i are interchanged to create the kth pivot, then the multipliers

( ℓk1 ℓk2 · · · ℓk,k−1 ) and ( ℓk+i,1 ℓk+i,2 · · · ℓk+i,k−1 )

trade places in the formation of L.
This means that we can proceed just as in the case when no interchanges are

used and successively overwrite the array originally containing A with each mul-
tiplier replacing the position it annihilates. Whenever a row interchange occurs,
the corresponding multipliers will be correctly interchanged as well. The per-
mutation matrix P is simply the cumulative record of the various interchanges
used, and the information in P is easily accounted for by a simple technique
that is illustrated in the following example.

Example 3.10.4
Problem: Use partial pivoting on the matrix

A =

⎛

⎜
⎝

1 2 −3 4
4 8 12 −8
2 3 2 1
−3 −1 1 −4

⎞

⎟
⎠

and determine the LU decomposition PA = LU, where P is the associated
permutation matrix.

Solution: As explained earlier, the strategy is to successively overwrite the array
A with components from L and U. For the sake of clarity, the multipliers ℓij

are shown in boldface type. Adjoin a “permutation counter column” p that
is initially set to the natural order 1,2,3,4. Permuting components of p as the
various row interchanges are executed will accumulate the desired permutation.
The matrix P is obtained by executing the final permutation residing in p to
the rows of an appropriate size identity matrix:

[A|p] =

⎛

⎜
⎝

1 2 −3 4 1
4 8 12 −8 2
2 3 2 1 3
−3 −1 1 −4 4

⎞

⎟
⎠ −→

⎛

⎜
⎝

4 8 12 −8 2
1 2 −3 4 1
2 3 2 1 3
−3 −1 1 −4 4

⎞

⎟
⎠



152 Chapter 3 Matrix Algebra

−→

⎛

⎜
⎝

4 8 12 −8 2
1/4 0 −6 6 1
1/2 −1 −4 5 3
−3/4 5 10 −10 4

⎞

⎟
⎠ −→

⎛

⎜
⎝

4 8 12 −8 2
−3/4 5 10 −10 4

1/2 −1 −4 5 3
1/4 0 −6 6 1

⎞

⎟
⎠

−→

⎛

⎜
⎝

4 8 12 −8 2
−3/4 5 10 −10 4

1/2 −1/5 −2 3 3
1/4 0 −6 6 1

⎞

⎟
⎠−→

⎛

⎜
⎝

4 8 12 −8 2
−3/4 5 10 −10 4

1/4 0 −6 6 1
1/2 −1/5 −2 3 3

⎞

⎟
⎠

−→

⎛

⎜
⎝

4 8 12 −8 2
−3/4 5 10 −10 4

1/4 0 −6 6 1
1/2 −1/5 1/3 1 3

⎞

⎟
⎠ .

Therefore,

L=

⎛

⎜
⎝

1 0 0 0
−3/4 1 0 0

1/4 0 1 0
1/2 −1/5 1/3 1

⎞

⎟
⎠, U=

⎛

⎜
⎝

4 8 12 −8
0 5 10 −10
0 0 −6 6
0 0 0 1

⎞

⎟
⎠, P=

⎛

⎜
⎝

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎞

⎟
⎠.

It is easy to combine the advantages of partial pivoting with the LU decom-
position in order to solve a nonsingular system Ax = b. Because permutation
matrices are nonsingular, the system Ax = b is equivalent to

PAx = Pb,

and hence we can employ the LU solution techniques discussed earlier to solve
this permuted system. That is, if we have already performed the factorization
PA = LU —as illustrated in Example 3.10.4—then we can solve Ly = Pb for
y by forward substitution, and then solve Ux = y by back substitution.

It should be evident that the permutation matrix P is not really needed.
All that is necessary is knowledge of the LU factors along with the final permu-
tation contained in the permutation counter column p illustrated in Example
3.10.4. The column b̃ = Pb is simply a rearrangement of the components of
b according to the final permutation shown in p. In other words, the strategy
is to first permute b into b̃ according to the permutation p, and then solve
Ly = b̃ followed by Ux = y.

Example 3.10.5
Problem: Use the LU decomposition obtained with partial pivoting to solve
the system Ax = b, where

A =

⎛

⎜
⎝

1 2 −3 4
4 8 12 −8
2 3 2 1
−3 −1 1 −4

⎞

⎟
⎠ and b =

⎛

⎜
⎝

3
60
1
5

⎞

⎟
⎠ .
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Solution: The LU decomposition with partial pivoting was computed in Ex-
ample 3.10.4. Permute the components in b according to the permutation
p = ( 2 4 1 3 ) , and call the result b̃. Now solve Ly = b̃ by applying
forward substitution:

⎛

⎜
⎝

1 0 0 0
−3/4 1 0 0

1/4 0 1 0
1/2 −1/5 1/3 1

⎞

⎟
⎠

⎛

⎜
⎝

y1

y2

y3

y4

⎞

⎟
⎠ =

⎛

⎜
⎝

60
5
3
1

⎞

⎟
⎠ =⇒ y =

⎛

⎜
⎝

y1

y2

y3

y4

⎞

⎟
⎠ =

⎛

⎜
⎝

60
50
−12
−15

⎞

⎟
⎠ .

Then solve Ux = y by applying back substitution:

⎛

⎜
⎝

4 8 12 −8
0 5 10 −10
0 0 −6 6
0 0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

x1

x2

x3

x4

⎞

⎟
⎠ =

⎛

⎜
⎝

60
50
−12
−15

⎞

⎟
⎠ =⇒ x =

⎛

⎜
⎝

12
6

−13
−15

⎞

⎟
⎠ .

LU Factorization with Row Interchanges
• For each nonsingular matrix A, there exists a permutation matrix

P such that PA possesses an LU factorization PA = LU.

• To compute L, U, and P, successively overwrite the array origi-
nally containing A. Replace each entry being annihilated with the
multiplier used to execute the annihilation. Whenever row inter-
changes such as those used in partial pivoting are implemented, the
multipliers in the array will automatically be interchanged in the
correct manner.

• Although the entire permutation matrix P is rarely called for, it
can be constructed by permuting the rows of the identity matrix
I according to the various interchanges used. These interchanges
can be accumulated in a “permutation counter column” p that is
initially in natural order ( 1, 2, . . . , n )—see Example 3.10.4.

• To solve a nonsingular linear system Ax = b using the LU de-
composition with partial pivoting, permute the components in b to
construct b̃ according to the sequence of interchanges used—i.e.,
according to p —and then solve Ly = b̃ by forward substitution
followed by the solution of Ux = y using back substitution.



154 Chapter 3 Matrix Algebra

Example 3.10.6
The LDU factorization. There’s some asymmetry in an LU factorization be-
cause the lower factor has 1’s on its diagonal while the upper factor has a nonunit
diagonal. This is easily remedied by factoring the diagonal entries out of the up-
per factor as shown below:

⎛

⎜
⎜
⎝

u11 u12 · · · u1n

0 u22 · · · u2n
...

...
. . .

...
0 0 · · · unn

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

u11 0 · · · 0
0 u22 · · · 0
...

...
. . .

...
0 0 · · · unn

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1 u12/u11 · · · u1n/u11

0 1 · · · u2n/u22
...

...
. . .

...
0 0 · · · 1

⎞

⎟
⎟
⎠

.

Setting D = diag (u11, u22, . . . , unn) (the diagonal matrix of pivots) and redefin-
ing U to be the rightmost upper-triangular matrix shown above allows any LU
factorization to be written as A = LDU, where L and U are lower- and upper-
triangular matrices with 1’s on both of their diagonals. This is called the LDU
factorization of A. It is uniquely determined, and when A is symmetric, the
LDU factorization is A = LDLT (Exercise 3.10.9).

Example 3.10.7
The Cholesky Factorization.22 A symmetric matrix A possessing an LU fac-
torization in which each pivot is positive is said to be positive definite .

Problem: Prove that A is positive definite if and only if A can be uniquely
factored as A = RT R, where R is an upper-triangular matrix with positive
diagonal entries. This is known as the Cholesky factorization of A, and R is
called the Cholesky factor of A.

Solution: If A is positive definite, then, as pointed out in Example 3.10.6,
it has an LDU factorization A = LDLT in which D = diag (p1, p2, . . . , pn)
is the diagonal matrix containing the pivots pi > 0. Setting R = D1/2LT

where D1/2 = diag
(√

p1,
√

p2, . . . ,
√

pn

)

yields the desired factorization because
A = LD1/2D1/2LT = RT R, and R is upper triangular with positive diagonal

22
This is named in honor of the French military officer Major André-Louis Cholesky (1875–
1918). Although originally assigned to an artillery branch, Cholesky later became attached to
the Geodesic Section of the Geographic Service in France where he became noticed for his
extraordinary intelligence and his facility for mathematics. From 1905 to 1909 Cholesky was
involved with the problem of adjusting the triangularization grid for France. This was a huge
computational task, and there were arguments as to what computational techniques should be
employed. It was during this period that Cholesky invented the ingenious procedure for solving
a positive definite system of equations that is the basis for the matrix factorization that now
bears his name. Unfortunately, Cholesky’s mathematical talents were never allowed to flower.
In 1914 war broke out, and Cholesky was again placed in an artillery group—but this time
as the commander. On August 31, 1918, Major Cholesky was killed in battle. Cholesky never
had time to publish his clever computational methods—they were carried forward by word-
of-mouth. Issues surrounding the Cholesky factorization have been independently rediscovered
several times by people who were unaware of Cholesky, and, in some circles, the Cholesky
factorization is known as the square root method.
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entries. Conversely, if A = RRT , where R is lower triangular with a positive
diagonal, then factoring the diagonal entries out of R as illustrated in Example
3.10.6 produces R = LD, where L is lower triangular with a unit diagonal and
D is the diagonal matrix whose diagonal entries are the rii ’s. Consequently,
A = LD2LT is the LDU factorization for A, and thus the pivots must be
positive because they are the diagonal entries in D2. We have now proven that
A is positive definite if and only if it has a Cholesky factorization. To see why
such a factorization is unique, suppose A = R1RT

1 = R2RT
2 , and factor out

the diagonal entries as illustrated in Example 3.10.6 to write R1 = L1D1 and
R2 = L2D2, where each Ri is lower triangular with a unit diagonal and Di

contains the diagonal of Ri so that A = L1D2
1LT

1 = L2D2
2LT

2 . The uniqueness
of the LDU factors insures that L1 = L2 and D1 = D2, so R1 = R2. Note:
More is said about the Cholesky factorization and positive definite matrices on
pp. 313, 345, and 559.

Exercises for section 3.10

3.10.1. Let A =

⎛

⎝

1 4 5
4 18 26
3 16 30

⎞

⎠ .

(a) Determine the LU factors of A.
(b) Use the LU factors to solve Ax1 = b1 as well as Ax2 = b2,

where

b1 =

⎛

⎝

6
0
−6

⎞

⎠ and b2 =

⎛

⎝

6
6

12

⎞

⎠ .

(c) Use the LU factors to determine A−1.

3.10.2. Let A and b be the matrices

A =

⎛

⎜
⎝

1 2 4 17
3 6 −12 3
2 3 −3 2
0 2 −2 6

⎞

⎟
⎠ and b =

⎛

⎜
⎝

17
3
3
4

⎞

⎟
⎠ .

(a) Explain why A does not have an LU factorization.
(b) Use partial pivoting and find the permutation matrix P as well

as the LU factors such that PA = LU.
(c) Use the information in P, L, and U to solve Ax = b.

3.10.3. Determine all values of ξ for which A =

⎛

⎝

ξ 2 0
1 ξ 1
0 1 ξ

⎞

⎠ fails to have an

LU factorization.
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3.10.4. If A is a nonsingular matrix that possesses an LU factorization, prove
that the pivot that emerges after (k + 1) stages of standard Gaussian
elimination using only Type III operations is given by

pk+1 = ak+1,k+1 − cT A−1
k b,

where Ak and

Ak+1 =

(

Ak b

cT ak+1,k+1

)

are the leading principal submatrices of orders k and k + 1, respec-
tively. Use this to deduce that all pivots must be nonzero when an LU
factorization for A exists.

3.10.5. If A is a matrix that contains only integer entries and all of its pivots
are 1, explain why A−1 must also be an integer matrix. Note: This fact
can be used to construct random integer matrices that possess integer
inverses by randomly generating integer matrices L and U with unit
diagonals and then constructing the product A = LU.

3.10.6. Consider the tridiagonal matrix T =

⎛

⎜
⎝

β1 γ1 0 0
α1 β2 γ2 0
0 α2 β3 γ3

0 0 α3 β4

⎞

⎟
⎠ .

(a) Assuming that T possesses an LU factorization, verify that it
is given by

L =

⎛

⎜
⎝

1 0 0 0
α1/π1 1 0 0

0 α2/π2 1 0
0 0 α3/π3 1

⎞

⎟
⎠, U =

⎛

⎜
⎝

π1 γ1 0 0
0 π2 γ2 0
0 0 π3 γ3

0 0 0 π4

⎞

⎟
⎠,

where the πi ’s are generated by the recursion formula

π1 = β1 and πi+1 = βi+1 −
αiγi

πi
.

Note: This holds for tridiagonal matrices of arbitrary size
thereby making the LU factors of these matrices very easy to
compute.

(b) Apply the recursion formula given above to obtain the LU fac-
torization of

T =

⎛

⎜
⎝

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

⎞

⎟
⎠ .
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3.10.7. An×n is called a band matrix if aij = 0 whenever |i − j| > w for
some positive integer w, called the bandwidth. In other words, the
nonzero entries of A are constrained to be in a band of w diagonal lines
above and below the main diagonal. For example, tridiagonal matrices
have bandwidth one, and diagonal matrices have bandwidth zero. If
A is a nonsingular matrix with bandwidth w, and if A has an LU
factorization A = LU, then L inherits the lower band structure of A,
and U inherits the upper band structure in the sense that L has “lower
bandwidth” w, and U has “upper bandwidth” w. Illustrate why this
is true by using a generic 5× 5 matrix with a bandwidth of w = 2.

3.10.8. (a) Construct an example of a nonsingular symmetric matrix that
fails to possess an LU (or LDU) factorization.

(b) Construct an example of a nonsingular symmetric matrix that
has an LU factorization but is not positive definite.

3.10.9. (a) Determine the LDU factors for A =

⎛

⎝

1 4 5
4 18 26
3 16 30

⎞

⎠ (this is the

same matrix used in Exercise 3.10.1).
(b) Prove that if a matrix has an LDU factorization, then the LDU

factors are uniquely determined.
(c) If A is symmetric and possesses an LDU factorization, explain

why it must be given by A = LDLT .

3.10.10. Explain why A =

⎛

⎝

1 2 3
2 8 12
3 12 27

⎞

⎠ is positive definite, and then find the

Cholesky factor R.
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3.9.9. If A = uvT , where um×1 and vn×1 are nonzero columns, then

u row∼ e1 and vT col∼ eT
1 =⇒ A = uvT ∼ e1eT

1 = N1 =⇒ rank (A) = 1.

Conversely, if rank (A) = 1, then the existence of u and v follows from Exer-
cise 3.9.8. If you do not wish to rely on Exercise 3.9.8, write PAQ = N1 = e1eT

1 ,
where e1 is m×1 and eT

1 is 1×n so that

A = P−1e1eT
1 Q−1 =

(
P−1

)
∗1
(
Q−1

)
1∗= uvT .

3.9.10. Use Exercise 3.9.9 and write

A = uvT =⇒ A2 =
(
uvT

) (
uvT

)
= u

(
vT u

)
vT = τuvT = τA,

where τ = vT u. Recall from Example 3.6.5 that trace (AB) = trace (BA),
and write

τ = trace(τ) = trace
(
vT u

)
= trace

(
uvT

)
= trace (A).

Solutions for exercises in section 3. 10

3.10.1. (a) L =

⎛

⎝
1 0 0
4 1 0
3 2 1

⎞

⎠ and U =

⎛

⎝
1 4 5
0 2 6
0 0 3

⎞

⎠ (b) x1 =

⎛

⎝
110
−36

8

⎞

⎠ and

x2 =

⎛

⎝
112
−39

10

⎞

⎠

(c) A−1 = 1
6

⎛

⎝
124 −40 14
−42 15 −6

10 −4 2

⎞

⎠

3.10.2. (a) The second pivot is zero. (b) P is the permutation matrix associated
with the permutation p = ( 2 4 1 3 ) . P is constructed by permuting the
rows of I in this manner.

L =

⎛

⎜⎝

1 0 0 0
0 1 0 0

1/3 0 1 0
2/3 −1/2 1/2 1

⎞

⎟⎠ and U =

⎛

⎜⎝

3 6 −12 3
0 2 −2 6
0 0 8 16
0 0 0 −5

⎞

⎟⎠

(c) x =

⎛

⎜⎝

2
−1

0
1

⎞

⎟⎠
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3.10.3. ξ = 0, ±
√

2, ±
√

3
3.10.4. A possesses an LU factorization if and only if all leading principal submatrices

are nonsingular. The argument associated with equation (3.10.13) proves that
(

Lk 0

cT U−1
k 1

)(
Uk L−1

k b

0 ak+1,k+1−cT A−1
k b

)

= Lk+1Uk+1

is the LU factorization for Ak+1. The desired conclusion follows from the fact
that the k + 1th pivot is the (k + 1, k + 1) -entry in Uk+1. This pivot must be
nonzero because Uk+1 is nonsingular.

3.10.5. If L and U are both triangular with 1’s on the diagonal, then L−1 and U−1

contain only integer entries, and consequently A−1 = U−1L−1 is an integer
matrix.

3.10.6. (b) L =

⎛

⎜⎝

1 0 0 0
−1/2 1 0 0

0 −2/3 1 0
0 0 −3/4 1

⎞

⎟⎠ and U =

⎛

⎜⎝

2 −1 0 0
0 3/2 −1 0
0 0 4/3 −1
0 0 0 1/4

⎞

⎟⎠

3.10.7. Observe how the LU factors evolve from Gaussian elimination. Following the
procedure described in Example 3.10.1 where multipliers ℓij are stored in the
positions they annihilate (i.e., in the (i, j) -position), and where ⋆ ’s are put
in positions that can be nonzero, the reduction of a 5×5 band matrix with
bandwidth w = 2 proceeds as shown below.

⎛

⎜⎜⎜⎝

⋆ ⋆ ⋆ 0 0
⋆ ⋆ ⋆ ⋆ 0
⋆ ⋆ ⋆ ⋆ ⋆
0 ⋆ ⋆ ⋆ ⋆
0 0 ⋆ ⋆ ⋆

⎞

⎟⎟⎟⎠
−→

⎛

⎜⎜⎜⎝

⋆ ⋆ ⋆ 0 0
l21 ⋆ ⋆ ⋆ 0
l31 ⋆ ⋆ ⋆ ⋆
0 ⋆ ⋆ ⋆ ⋆
0 0 ⋆ ⋆ ⋆

⎞

⎟⎟⎟⎠
−→

⎛

⎜⎜⎜⎝

⋆ ⋆ ⋆ 0 0
l21 ⋆ ⋆ ⋆ 0
l31 l32 ⋆ ⋆ ⋆
0 l42 ⋆ ⋆ ⋆
0 0 ⋆ ⋆ ⋆

⎞

⎟⎟⎟⎠

−→

⎛

⎜⎜⎜⎝

⋆ ⋆ ⋆ 0 0
l21 ⋆ ⋆ ⋆ 0
l31 l32 ⋆ ⋆ ⋆
0 l42 l43 ⋆ ⋆
0 0 l53 ⋆ ⋆

⎞

⎟⎟⎟⎠
−→

⎛

⎜⎜⎜⎝

⋆ ⋆ ⋆ 0 0
l21 ⋆ ⋆ ⋆ 0
l31 l32 ⋆ ⋆ ⋆
0 l42 l43 ⋆ ⋆
0 0 l53 l54 ⋆

⎞

⎟⎟⎟⎠

Thus L =

⎛

⎜⎜⎜⎝

1 0 0 0 0
l21 1 0 0 0
l31 l32 1 0 0
0 l42 l43 1 0
0 0 l53 l54 1

⎞

⎟⎟⎟⎠
and U =

⎛

⎜⎜⎜⎝

⋆ ⋆ ⋆ 0 0
0 ⋆ ⋆ ⋆ 0
0 0 ⋆ ⋆ ⋆
0 0 0 ⋆ ⋆
0 0 0 0 ⋆

⎞

⎟⎟⎟⎠
.

3.10.8. (a) A =
(

0 1
1 0

)
(b) A =

(
1 0
0 −1

)

3.10.9. (a) L =

⎛

⎝
1 0 0
4 1 0
3 2 1

⎞

⎠ , D =

⎛

⎝
1 0 0
0 2 0
0 0 3

⎞

⎠ , and U =

⎛

⎝
1 4 5
0 1 3
0 0 1

⎞

⎠
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(b) Use the same argument given for the uniqueness of the LU factorization
with minor modifications.
(c) A = AT =⇒ LDU = UT DT LT = UT DLT . These are each LDU
factorizations for A, and consequently the uniqueness of the LDU factorization
means that U = LT .

3.10.10. A is symmetric with pivots 1, 4, 9. The Cholesky factor is R =

⎛

⎝
1 0 0
2 2 0
3 3 3

⎞

⎠ .


