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3.2 ADDITION AND TRANSPOSITION

In the previous chapters, matrix language and notation were used simply to for-
mulate some of the elementary concepts surrounding linear systems. The purpose
now is to turn this language into a mathematical theory. 16

Unless otherwise stated, a scalar is a complex number. Real numbers are
a subset of the complex numbers, and hence real numbers are also scalar quan-
tities. In the early stages, there is little harm in thinking only in terms of real
scalars. Later on, however, the necessity for dealing with complex numbers will
be unavoidable. Throughout the text, ℜ will denote the set of real numbers,
and C will denote the complex numbers. The set of all n -tuples of real numbers
will be denoted by ℜn, and the set of all complex n -tuples will be denoted
by Cn. For example, ℜ2 is the set of all ordered pairs of real numbers (i.e.,
the standard cartesian plane), and ℜ3 is ordinary 3-space. Analogously, ℜm×n

and Cm×n denote the m× n matrices containing real numbers and complex
numbers, respectively.

Matrices A = [aij ] and B = [bij ] are defined to be equal matrices
when A and B have the same shape and corresponding entries are equal. That
is, aij = bij for each i = 1, 2, . . . , m and j = 1, 2, . . . , n. In particular, this

definition applies to arrays such as u =

⎛

⎝

1
2
3

⎞

⎠ and v = ( 1 2 3 ) . Even

though u and v describe exactly the same point in 3-space, we cannot consider
them to be equal matrices because they have different shapes. An array (or
matrix) consisting of a single column, such as u, is called a column vector,
while an array consisting of a single row, such as v, is called a row vector.

Addition of Matrices
If A and B are m× n matrices, the sum of A and B is defined to
be the m× n matrix A+B obtained by adding corresponding entries.
That is,

[A + B]ij = [A]ij + [B]ij for each i and j.

For example,
(

−2 x 3
z + 3 4 −y

)

+
(

2 1− x −2
−3 4 + x 4 + y

)

=
(

0 1 1
z 8 + x 4

)

.

16
The great French mathematician Pierre-Simon Laplace (1749–1827) said that, “Such is the ad-
vantage of a well-constructed language that its simplified notation often becomes the source of
profound theories.” The theory of matrices is a testament to the validity of Laplace’s statement.
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The symbol “+” is used two different ways—it denotes addition between
scalars in some places and addition between matrices at other places. Although
these are two distinct algebraic operations, no ambiguities will arise if the context
in which “+” appears is observed. Also note that the requirement that A and
B have the same shape prevents adding a row to a column, even though the two
may contain the same number of entries.

The matrix (−A), called the additive inverse of A, is defined to be
the matrix obtained by negating each entry of A. That is, if A = [aij ], then
−A = [−aij ]. This allows matrix subtraction to be defined in the natural way.
For two matrices of the same shape, the difference A−B is defined to be the
matrix A−B = A + (−B) so that

[A−B]ij = [A]ij − [B]ij for each i and j.

Since matrix addition is defined in terms of scalar addition, the familiar algebraic
properties of scalar addition are inherited by matrix addition as detailed below.

Properties of Matrix Addition
For m× n matrices A, B, and C, the following properties hold.

Closure property: A + B is again an m× n matrix.
Associative property: (A + B) + C = A + (B + C).

Commutative property: A + B = B + A.

Additive identity: The m× n matrix 0 consisting of all ze-
ros has the property that A + 0 = A.

Additive inverse: The m× n matrix (−A) has the property
that A + (−A) = 0.

Another simple operation that is derived from scalar arithmetic is as follows.

Scalar Multiplication
The product of a scalar α times a matrix A, denoted by αA, is defined
to be the matrix obtained by multiplying each entry of A by α. That
is, [αA]ij = α[A]ij for each i and j.

For example,

2

⎛

⎝

1 2 3
0 1 2
1 4 2

⎞

⎠ =

⎛

⎝

2 4 6
0 2 4
2 8 4

⎞

⎠ and

⎛

⎝

1 2
3 4
0 1

⎞

⎠ =
1
2

⎛

⎝

2 4
6 8
0 2

⎞

⎠ .

The rules for combining addition and scalar multiplication are what you
might suspect they should be. Some of the important ones are listed below.
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Properties of Scalar Multiplication
For m× n matrices A and B and for scalars α and β, the following
properties hold.

Closure property: αA is again an m× n matrix.

Associative property: (αβ)A = α(βA).

Distributive property: α(A + B) = αA + αB. Scalar multiplica-
tion is distributed over matrix addition.

Distributive property: (α + β)A = αA + βA. Scalar multiplica-
tion is distributed over scalar addition.

Identity property: 1A = A. The number 1 is an identity el-
ement under scalar multiplication.

Other properties such as αA = Aα could have been listed, but the prop-
erties singled out pave the way for the definition of a vector space on p. 160.

A matrix operation that’s not derived from scalar arithmetic is transposition
as defined below.

Transpose
The transpose of Am×n is defined to be the n×m matrix AT ob-
tained by interchanging rows and columns in A. More precisely, if
A = [aij ], then [AT ]ij = aji. For example,

⎛

⎝

1 2
3 4
5 6

⎞

⎠

T

=
(

1 3 5
2 4 6

)

.

It should be evident that for all matrices,
(

AT
)T = A.

Whenever a matrix contains complex entries, the operation of complex con-
jugation almost always accompanies the transpose operation. (Recall that the
complex conjugate of z = a + ib is defined to be z = a− ib.)
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Conjugate Transpose
For A = [aij ], the conjugate matrix is defined to be A = [aij ] , and
the conjugate transpose of A is defined to be ĀT = AT . From now
on, ĀT will be denoted by A∗, so [A∗]ij = aji. For example,

(

1− 4i i 2
3 2 + i 0

)∗
=

⎛

⎝

1 + 4i 3
−i 2− i
2 0

⎞

⎠ .

(A∗)∗ = A for all matrices, and A∗ = AT whenever A contains only
real entries. Sometimes the matrix A∗ is called the adjoint of A.

The transpose (and conjugate transpose) operation is easily combined with
matrix addition and scalar multiplication. The basic rules are given below.

Properties of the Transpose
If A and B are two matrices of the same shape, and if α is a scalar,
then each of the following statements is true.

(A + B)T = AT + BT and (A + B)∗ = A∗ + B∗. (3.2.1)

(αA)T = αAT and (αA)∗ = αA∗. (3.2.2)

Proof.17 We will prove that (3.2.1) and (3.2.2) hold for the transpose operation.
The proofs of the statements involving conjugate transposes are similar and are
left as exercises. For each i and j, it is true that

[(A + B)T ]ij = [A + B]ji = [A]ji + [B]ji = [AT ]ij + [BT ]ij = [AT + BT ]ij .

17
Computers can outperform people in many respects in that they do arithmetic much faster
and more accurately than we can, and they are now rather adept at symbolic computation and
mechanical manipulation of formulas. But computers can’t do mathematics—people still hold
the monopoly. Mathematics emanates from the uniquely human capacity to reason abstractly
in a creative and logical manner, and learning mathematics goes hand-in-hand with learning
how to reason abstractly and create logical arguments. This is true regardless of whether your
orientation is applied or theoretical. For this reason, formal proofs will appear more frequently
as the text evolves, and it is expected that your level of comprehension as well as your ability
to create proofs will grow as you proceed.
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This proves that corresponding entries in (A + B)T and AT + BT are equal,
so it must be the case that (A + B)T = AT +BT . Similarly, for each i and j,

[(αA)T ]ij = [αA]ji = α[A]ji = α[AT ]ij =⇒ (αA)T = αAT .

Sometimes transposition doesn’t change anything. For example, if

A =

⎛

⎝

1 2 3
2 4 5
3 5 6

⎞

⎠ , then AT = A.

This is because the entries in A are symmetrically located about the main di-
agonal—the line from the upper-left-hand corner to the lower-right-hand corner.

Matrices of the form D =

⎛

⎝

λ1 0 · · · 0
0 λ2 · · · 0
.
.
.

.

.

.
. . .

.

.

.
0 0 · · · λn

⎞

⎠ are called diagonal matrices,

and they are clearly symmetric in the sense that D = DT . This is one of several
kinds of symmetries described below.

Symmetries
Let A = [aij ] be a square matrix.

• A is said to be a symmetric matrix whenever A = AT , i.e.,
whenever aij = aji.

• A is said to be a skew-symmetric matrix whenever A = −AT ,
i.e., whenever aij = −aji.

• A is said to be a hermitian matrix whenever A = A∗, i.e.,
whenever aij = aji. This is the complex analog of symmetry.

• A is said to be a skew-hermitian matrix when A = −A∗, i.e.,
whenever aij = −aji. This is the complex analog of skew symmetry.

For example, consider

A =

⎛

⎝

1 2 + 4i 1− 3i
2− 4i 3 8 + 6i
1 + 3i 8− 6i 5

⎞

⎠ and B =

⎛

⎝

1 2 + 4i 1− 3i
2 + 4i 3 8 + 6i
1− 3i 8 + 6i 5

⎞

⎠ .

Can you see that A is hermitian but not symmetric, while B is symmetric but
not hermitian?

Nature abounds with symmetry, and very often physical symmetry manifests
itself as a symmetric matrix in a mathematical model. The following example is
an illustration of this principle.
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Example 3.2.1
Consider two springs that are connected as shown in Figure 3.2.1.

x1 x2 x3

k1 k2Node 1 Node 2 Node 3

F1 -F1 F3-F3

Figure 3.2.1

The springs at the top represent the “no tension” position in which no force is
being exerted on any of the nodes. Suppose that the springs are stretched or
compressed so that the nodes are displaced as indicated in the lower portion
of Figure 3.2.1. Stretching or compressing the springs creates a force on each
node according to Hooke’s law 18 that says that the force exerted by a spring
is F = kx, where x is the distance the spring is stretched or compressed and
where k is a stiffness constant inherent to the spring. Suppose our springs have
stiffness constants k1 and k2 , and let Fi be the force on node i when the
springs are stretched or compressed. Let’s agree that a displacement to the left
is positive, while a displacement to the right is negative, and consider a force
directed to the right to be positive while one directed to the left is negative.
If node 1 is displaced x1 units, and if node 2 is displaced x2 units, then the
left-hand spring is stretched (or compressed) by a total amount of x1 −x2 units,
so the force on node 1 is

F1 = k1 (x1 − x2 ).

Similarly, if node 2 is displaced x2 units, and if node 3 is displaced x3 units,
then the right-hand spring is stretched by a total amount of x2 − x3 units, so
the force on node 3 is

F3 = −k2 (x2 − x3 ).

The minus sign indicates the force is directed to the left. The force on the left-
hand side of node 2 is the opposite of the force on node 1, while the force on the
right-hand side of node 2 must be the opposite of the force on node 3. That is,

F2 = −F1 − F3 .

18
Hooke’s law is named for Robert Hooke (1635–1703), an English physicist, but it was generally
known to several people (including Newton) before Hooke’s 1678 claim to it was made. Hooke
was a creative person who is credited with several inventions, including the wheel barometer,
but he was reputed to be a man of “terrible character.” This characteristic virtually destroyed
his scientific career as well as his personal life. It is said that he lacked mathematical sophis-
tication and that he left much of his work in incomplete form, but he bitterly resented people
who built on his ideas by expressing them in terms of elegant mathematical formulations.
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Organize the above three equations as a linear system:

k1 x1 − k1 x2 = F1 ,

−k1 x1 + (k1 + k2 )x2 − k2 x3 = F2 ,

−k2 x2 + k2 x3 = F3 ,

and observe that the coefficient matrix, called the stiffness matrix,

K =

⎛

⎝

k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2

⎞

⎠ ,

is a symmetric matrix. The point of this example is that symmetry in the physical
problem translates to symmetry in the mathematics by way of the symmetric
matrix K. When the two springs are identical (i.e., when k1 = k2 = k ), even
more symmetry is present, and in this case

K = k

⎛

⎝

1 −1 0
−1 2 −1

0 −1 1

⎞

⎠ .

Exercises for section 3.2

3.2.1. Determine the unknown quantities in the following expressions.

(a) 3X =
(

0 3
6 9

)

. (b) 2
(

x + 2 y + 3
3 0

)

=
(

3 6
y z

)T

.

3.2.2. Identify each of the following as symmetric, skew symmetric, or neither.

(a)

⎛

⎝

1 −3 3
−3 4 −3

3 3 0

⎞

⎠ . (b)

⎛

⎝

0 −3 −3
3 0 1
3 −1 0

⎞

⎠ .

(c)

⎛

⎝

0 −3 −3
−3 0 3
−3 3 1

⎞

⎠ . (d)
(

1 2 0
2 1 0

)

.

3.2.3. Construct an example of a 3× 3 matrix A that satisfies the following
conditions.

(a) A is both symmetric and skew symmetric.
(b) A is both hermitian and symmetric.
(c) A is skew hermitian.
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3.2.4. Explain why the set of all n× n symmetric matrices is closed under
matrix addition. That is, explain why the sum of two n× n symmetric
matrices is again an n× n symmetric matrix. Is the set of all n× n
skew-symmetric matrices closed under matrix addition?

3.2.5. Prove that each of the following statements is true.
(a) If A = [aij ] is skew symmetric, then ajj = 0 for each j.
(b) If A = [aij ] is skew hermitian, then each ajj is a pure imagi-

nary number—i.e., a multiple of the imaginary unit i.
(c) If A is real and symmetric, then B = iA is skew hermitian.

3.2.6. Let A be any square matrix.
(a) Show that A+AT is symmetric and A−AT is skew symmetric.
(b) Prove that there is one and only one way to write A as the

sum of a symmetric matrix and a skew-symmetric matrix.

3.2.7. If A and B are two matrices of the same shape, prove that each of the
following statements is true.

(a) (A + B)∗ = A∗ + B∗.
(b) (αA)∗ = αA∗.

3.2.8. Using the conventions given in Example 3.2.1, determine the stiffness
matrix for a system of n identical springs, with stiffness constant k,
connected in a line similar to that shown in Figure 3.2.1.



Solutions for Chapter 3

Solutions for exercises in section 3. 2

3.2.1. (a) X =
(

0 1
2 3

)
(b) x = −1

2, y = −6, and z = 0

3.2.2. (a) Neither (b) Skew symmetric (c) Symmetric (d) Neither
3.2.3. The 3× 3 zero matrix trivially satisfies all conditions, and it is the only pos-

sible answer for part (a). The only possible answers for (b) are real symmetric
matrices. There are many nontrivial possibilities for (c).

3.2.4. A = AT and B = BT =⇒ (A + B)T = AT + BT = A + B. Yes—the
skew-symmetric matrices are also closed under matrix addition.

3.2.5. (a) A = −AT =⇒ aij = −aji. If i = j, then ajj = −ajj =⇒ ajj = 0.

(b) A = −A∗ =⇒ aij = −aji. If i = j, then ajj = −ajj . Write ajj = x+iy
to see that ajj = −ajj =⇒ x + iy = −x + iy =⇒ x = 0 =⇒ ajj is pure
imaginary.

(c) B∗ = (iA)∗ = −iA∗ = −iAT = −iAT = −iA = −B.

3.2.6. (a) Let S = A+AT and K = A−AT . Then ST = AT +AT T = AT +A = S.

Likewise, KT = AT −AT T = AT −A = −K.
(b) A = S

2+ K
2 is one such decomposition. To see it is unique, suppose A = X+

Y, where X = XT and Y = −YT . Thus, AT = XT +YT = X−Y =⇒ A+
AT = 2X, so that X = A+AT

2 = S
2. A similar argument shows that Y =

A−AT

2 = K
2.

3.2.7. (a) [(A + B)∗]ij = [A + B]ji = [A + B]ji = [A]ji + [B]ji = [A∗]ij + [B∗]ij =
[A∗ + B∗]ij
(b) [(αA)∗]ij = [αA]ji = [ᾱA]ji = ᾱ[A]ji = ᾱ[A∗]ij

3.2.8. k

⎛

⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0 0
−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 1

⎞

⎟⎟⎟⎟⎟⎟⎠

Solutions for exercises in section 3. 3

3.3.1. Functions (b) and (f) are linear. For example, to check if (b) is linear, let

A =
(

a1

a2

)
and B =

(
b1

b2

)
, and check if f(A + B) = f(A) + f(B) and


