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3.3 LINEARITY

The concept of linearity is the underlying theme of our subject. In elementary
mathematics the term “linear function” refers to straight lines, but in higher
mathematics linearity means something much more general. Recall that a func-
tion f is simply a rule for associating points in one set D —called the domain
of f —to points in another set R—the range of f. A linear function is a
particular type of function that is characterized by the following two properties.

Linear Functions
Suppose that D and R are sets that possess an addition operation as
well as a scalar multiplication operation—i.e., a multiplication between
scalars and set members. A function f that maps points in D to points
in R is said to be a linear function whenever f satisfies the conditions
that

f(x + y) = f(x) + f(y) (3.3.1)

and
f(αx) = αf(x) (3.3.2)

for every x and y in D and for all scalars α. These two conditions
may be combined by saying that f is a linear function whenever

f(αx + y) = αf(x) + f(y) (3.3.3)

for all scalars α and for all x, y ∈ D.

One of the simplest linear functions is f(x) = αx, whose graph in ℜ2 is a
straight line through the origin. You should convince yourself that f is indeed
a linear function according to the above definition. However, f(x) = αx + β
does not qualify for the title “linear function”—it is a linear function that has
been translated by a constant β. Translations of linear functions are referred to
as affine functions. Virtually all information concerning affine functions can
be derived from an understanding of linear functions, and consequently we will
focus only on issues of linearity.

In ℜ3, the surface described by a function of the form

f(x1, x2) = α1x1 + α2x2

is a plane through the origin, and it is easy to verify that f is a linear function.
For β ̸= 0 , the graph of f(x1, x2) = α1x1 + α2x2 + β is a plane not passing
through the origin, and f is no longer a linear function—it is an affine function.
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In ℜ2 and ℜ3, the graphs of linear functions are lines and planes through
the origin, and there seems to be a pattern forming. Although we cannot visualize
higher dimensions with our eyes, it seems reasonable to suggest that a general
linear function of the form

f(x1, x2, . . . , xn) = α1x1 + α2x2 + · · · + αnxn

somehow represents a “linear” or “flat” surface passing through the origin 0 =
(0 , 0 , . . . , 0 ) in ℜn+1. One of the goals of the next chapter is to learn how to
better interpret and understand this statement.

Linearity is encountered at every turn. For example, the familiar operations
of differentiation and integration may be viewed as linear functions. Since

d(f + g)
dx

=
df

dx
+

dg

dx
and

d(αf)
dx

= α
df

dx
,

the differentiation operator Dx(f) = df/dx is linear. Similarly,
∫

(f + g)dx =
∫

fdx +
∫

gdx and
∫

αfdx = α

∫

fdx

means that the integration operator I(f) =
∫

fdx is linear.
There are several important matrix functions that are linear. For example,

the transposition function f(Xm×n) = XT is linear because

(A + B)T = AT + BT and (αA)T = αAT

(recall (3.2.1) and (3.2.2)). Another matrix function that is linear is the trace
function presented below.

Example 3.3.1
The trace of an n× n matrix A = [aij ] is defined to be the sum of the entries
lying on the main diagonal of A. That is,

trace (A) = a11 + a22 + · · · + ann =
n
∑

i=1

aii.

Problem: Show that f(Xn×n) = trace (X) is a linear function.

Solution: Let’s be efficient by showing that (3.3.3) holds. Let A = [aij ] and
B = [bij ], and write

f(αA + B) = trace (αA + B) =
n
∑

i=1

[αA + B]ii =
n
∑

i=1

(αaii + bii)

=
n
∑

i=1

αaii +
n
∑

i=1

bii = α
n
∑

i=1

aii +
n
∑

i=1

bii = α trace (A) + trace (B)

= αf(A) + f(B).
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Example 3.3.2
Consider a linear system

a11x1 + a12x2 + · · · + a1nxn = u1,

a21x1 + a22x2 + · · · + a2nxn = u2,
...

am1x1 + am2x2 + · · · + amnxn = um,

to be a function u = f(x) that maps x =

⎛

⎜
⎜
⎝

x1

x2
...

xn

⎞

⎟
⎟
⎠
∈ ℜn to u =

⎛

⎜
⎜
⎝

u1

u2
...

um

⎞

⎟
⎟
⎠
∈ ℜm.

Problem: Show that u = f(x) is linear.

Solution: Let A = [aij ] be the matrix of coefficients, and write

f(αx + y) = f

⎛

⎜
⎜
⎝

αx1 + y1

αx2 + y2
...

αxn + yn

⎞

⎟
⎟
⎠

=
n
∑

j=1

(αxj + yj)A∗j =
n
∑

j=1

(αxjA∗j + yjA∗j)

=
n
∑

j=1

αxjA∗j +
n
∑

j=1

yjA∗j = α
n
∑

j=1

xjA∗j +
n
∑

j=1

yjA∗j

= αf(x) + f(y).

According to (3.3.3), the function f is linear.

The following terminology will be used from now on.

Linear Combinations
For scalars αj and matrices Xj , the expression

α1X1 + α2X2 + · · · + αnXn =
n
∑

j=1

αjXj

is called a linear combination of the Xj ’s.
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Exercises for section 3.3

3.3.1. Each of the following is a function from ℜ2 into ℜ2. Determine which
are linear functions.

(a) f

(

x
y

)

=
(

x
1 + y

)

. (b) f

(

x
y

)

=
(

y
x

)

.

(c) f

(

x
y

)

=
(

0
xy

)

. (d) f

(

x
y

)

=
(

x2

y2

)

.

(e) f

(

x
y

)

=
(

x
sin y

)

. (f) f

(

x
y

)

=
(

x + y
x− y

)

.

3.3.2. For x =

⎛

⎜
⎜
⎝

x1

x2
...

xn

⎞

⎟
⎟
⎠

, and for constants ξi, verify that

f(x) = ξ1x1 + ξ2x2 + · · · + ξnxn

is a linear function.

3.3.3. Give examples of at least two different physical principles or laws that
can be characterized as being linear phenomena.

3.3.4. Determine which of the following three transformations in ℜ2 are linear.

θ

f(p)

p

f(p)

p

y =
 x

f(p)

p

Rotate counterclockwise

through an angle θ.
Reflect about

the x -axis.

Project onto

the line y = x.



Solutions for Chapter 3

Solutions for exercises in section 3. 2

3.2.1. (a) X =
(

0 1
2 3

)
(b) x = −1

2, y = −6, and z = 0

3.2.2. (a) Neither (b) Skew symmetric (c) Symmetric (d) Neither
3.2.3. The 3× 3 zero matrix trivially satisfies all conditions, and it is the only pos-

sible answer for part (a). The only possible answers for (b) are real symmetric
matrices. There are many nontrivial possibilities for (c).

3.2.4. A = AT and B = BT =⇒ (A + B)T = AT + BT = A + B. Yes—the
skew-symmetric matrices are also closed under matrix addition.

3.2.5. (a) A = −AT =⇒ aij = −aji. If i = j, then ajj = −ajj =⇒ ajj = 0.

(b) A = −A∗ =⇒ aij = −aji. If i = j, then ajj = −ajj . Write ajj = x+iy
to see that ajj = −ajj =⇒ x + iy = −x + iy =⇒ x = 0 =⇒ ajj is pure
imaginary.

(c) B∗ = (iA)∗ = −iA∗ = −iAT = −iAT = −iA = −B.

3.2.6. (a) Let S = A+AT and K = A−AT . Then ST = AT +AT T = AT +A = S.

Likewise, KT = AT −AT T = AT −A = −K.
(b) A = S

2+ K
2 is one such decomposition. To see it is unique, suppose A = X+

Y, where X = XT and Y = −YT . Thus, AT = XT +YT = X−Y =⇒ A+
AT = 2X, so that X = A+AT

2 = S
2. A similar argument shows that Y =

A−AT

2 = K
2.

3.2.7. (a) [(A + B)∗]ij = [A + B]ji = [A + B]ji = [A]ji + [B]ji = [A∗]ij + [B∗]ij =
[A∗ + B∗]ij
(b) [(αA)∗]ij = [αA]ji = [ᾱA]ji = ᾱ[A]ji = ᾱ[A∗]ij

3.2.8. k

⎛

⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0 0
−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 1

⎞

⎟⎟⎟⎟⎟⎟⎠

Solutions for exercises in section 3. 3

3.3.1. Functions (b) and (f) are linear. For example, to check if (b) is linear, let

A =
(

a1

a2

)
and B =

(
b1

b2

)
, and check if f(A + B) = f(A) + f(B) and
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f(αA) = αf(A). Do so by writing

f(A + B) = f

(
a1+ b1

a2+ b2

)
=
(

a2+ b2

a1+ b1

)
=
(

a2

a1

)
+
(

b2

b1

)
= f(A) + f(B),

f(αA) = f

(
αa1

αa2

)
=
(

αa2

αa1

)
= α

(
a2

a1

)
= αf(A).

3.3.2. Write f(x) =
∑n

i=1ξixi. For all points x =

⎛

⎜⎜⎝

x1

x2
...

xn

⎞

⎟⎟⎠ and y =

⎛

⎜⎜⎝

y1

y2
...

yn

⎞

⎟⎟⎠ , and for

all scalars α, it is true that

f(αx + y) =
n∑

i=1

ξi(αxi + yi) =
n∑

i=1

ξiαxi +
n∑

i=1

ξiyi

= α
n∑

i=1

ξixi +
n∑

i=1

ξiyi = αf(x) + f(y).

3.3.3. There are many possibilities. Two of the simplest and most common are Hooke’s
law for springs that says that F = kx (see Example 3.2.1) and Newton’s second
law that says that F = ma (i.e., force = mass× acceleration).

3.3.4. They are all linear. To see that rotation is linear, use trigonometry to deduce

that if p =
(

x1

x2

)
, then f(p) = u =

(
u1

u2

)
, where

u1= (cos θ)x1− (sin θ)x2

u2= (sin θ)x1+ (cos θ)x2.

f is linear because this is a special case of Example 3.3.2. To see that reflection

is linear, write p =
(

x1

x2

)
and f(p) =

(
x1

−x2

)
. Verification of linearity is

straightforward. For the projection function, use the Pythagorean theorem to

conclude that if p =
(

x1

x2

)
, then f(p) = x1+x2

2

(
1
1

)
. Linearity is now easily

verified.


