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3.5 MATRIX MULTIPLICATION

The purpose of this section is to further develop the concept of matrix multipli-
cation as introduced in the previous section. In order to do this, it is helpful to
begin by composing a single row with a single column. If

R = ( r1 r2 · · · rn ) and C =

⎛

⎜

⎜

⎝

c1

c2
...

cn

⎞

⎟

⎟

⎠

,

the standard inner product of R with C is defined to be the scalar

RC = r1c1 + r2c2 + · · · + rncn =
n

∑

i=1

rici.

For example,

( 2 4 −2 )

⎛

⎝

1
2
3

⎞

⎠ = (2)(1) + (4)(2) + (−2)(3) = 4.

Recall from (3.4.1) that the product of two 2 × 2 matrices

F =
(

a b
c d

)

and G =
(

A B
C D

)

was defined naturally by writing

FG =
(

a b
c d

) (

A B
C D

)

=
(

aA + bC aB + bD
cA + dC cB + dD

)

= H.

Notice that the (i, j) -entry in the product H can be described as the inner
product of the ith row of F with the jth column in G. That is,

h11 = F1∗G∗1 = ( a b )
(

A
C

)

, h12 = F1∗G∗2 = ( a b )
(

B
D

)

,

h21 = F2∗G∗1 = ( c d )
(

A
C

)

, h22 = F2∗G∗2 = ( c d )
(

B
D

)

.

This is exactly the way that the general definition of matrix multiplication is
formulated.
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Matrix Multiplication

• Matrices A and B are said to be conformable for multiplication
in the order AB whenever A has exactly as many columns as B
has rows—i.e., A is m× p and B is p× n.

• For conformable matrices Am×p = [aij ] and Bp×n = [bij ], the
matrix product AB is defined to be the m× n matrix whose
(i, j) -entry is the inner product of the ith row of A with the jth

column in B. That is,

[AB]ij = Ai∗B∗j = ai1b1j + ai2b2j + · · · + aipbpj =
p
∑

k=1

aikbkj .

• In case A and B fail to be conformable—i.e., A is m× p and B
is q × n with p ̸= q —then no product AB is defined.

For example, if

A =
(

a11 a12 a13

a21 a22 a23

)

2×3

and B =

⎛

⎝

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

⎞

⎠

3×4

↑ inside ones match ↑
(
⏐
⏐
⏐

shape of the product

(
⏐
⏐
⏐

then the product AB exists and has shape 2× 4. Consider a typical entry of
this product, say, the (2,3)-entry. The definition says [AB]23 is obtained by
forming the inner product of the second row of A with the third column of B

(
a11 a12 a13

a21 a22 a23

)
⎛

⎝

b11

b21

b31

b12

b22

b32

b13

b23

b33

b14

b24

b34

⎞

⎠ ,

so

[AB]23 = A2∗B∗3 = a21b13 + a22b23 + a23b33 =
3
∑

k=1

a2kbk3.
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For example,

A =
(

2 1 −4
−3 0 5

)

, B =

⎛

⎝

1 3 −3 2
2 5 −1 8
−1 2 0 2

⎞

⎠ =⇒ AB =
(

8 3 −7 4
−8 1 9 4

)

.

Notice that in spite of the fact that the product AB exists, the product BA
is not defined—matrix B is 3× 4 and A is 2× 3, and the inside dimensions
don’t match in this order. Even when the products AB and BA each exist
and have the same shape, they need not be equal. For example,

A=
(

1 −1
1 −1

)

, B=
(

1 1
1 1

)

=⇒ AB=
(

0 0
0 0

)

, BA=
(

2 −2
2 −2

)

. (3.5.1)

This disturbing feature is a primary difference between scalar and matrix algebra.

Matrix Multiplication Is Not Commutative
Matrix multiplication is a noncommutative operation—i.e., it is possible
for AB ̸= BA, even when both products exist and have the same shape.

There are other major differences between multiplication of matrices and
multiplication of scalars. For scalars,

αβ = 0 implies α = 0 or β = 0. (3.5.2)

However, the analogous statement for matrices does not hold—the matrices given
in (3.5.1) show that it is possible for AB = 0 with A ̸= 0 and B ̸= 0. Related
to this issue is a rule sometimes known as the cancellation law. For scalars,
this law says that

αβ = αγ and α ̸= 0 implies β = γ. (3.5.3)

This is true because we invoke (3.5.2) to deduce that α(β − γ) = 0 implies
β − γ = 0. Since (3.5.2) does not hold for matrices, we cannot expect (3.5.3) to
hold for matrices.

Example 3.5.1
The cancellation law (3.5.3) fails for matrix multiplication. If

A =
(

1 1
1 1

)

, B =
(

2 2
2 2

)

, and C =
(

3 1
1 3

)

,

then
AB =

(

4 4
4 4

)

= AC but B ̸= C

in spite of the fact that A ̸= 0.
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There are various ways to express the individual rows and columns of a
matrix product. For example, the ith row of AB is

[AB]i∗=
[

Ai∗B∗1 |Ai∗B∗2 | · · · |Ai∗B∗n

]

= Ai∗B

= ( ai1 ai2 · · · aip )

⎛

⎜
⎜
⎝

B1∗
B2∗

...
Bp∗

⎞

⎟
⎟
⎠

= ai1B1∗+ ai2B2∗+ · · · + aipBp∗.

As shown below, there are similar representations for the individual columns.

Rows and Columns of a Product
Suppose that A = [aij ] is m× p and B = [bij ] is p× n.

• [AB]i∗= Ai∗B
[

( ith row of AB )=( ith row of A )×B
]

. (3.5.4)

• [AB]∗j = AB∗j

[

( jth col of AB )= A× ( jth col of B )
]

. (3.5.5)

• [AB]i∗= ai1B1∗+ ai2B2∗+ · · · + aipBp∗=
∑p

k=1 aikBk∗. (3.5.6)

• [AB]∗j = A∗1b1j + A∗2b2j + · · · + A∗pbpj =
∑p

k=1 A∗kbkj . (3.5.7)
These last two equations show that rows of AB are combinations of
rows of B, while columns of AB are combinations of columns of A.

For example, if A =
(

1 −2 0
3 −4 5

)

and B =

⎛

⎝

3 −5 1
2 −7 2
1 −2 0

⎞

⎠ , then the

second row of AB is

[AB]2∗= A2∗B = ( 3 −4 5 )

⎛

⎝

3 −5 1
2 −7 2
1 −2 0

⎞

⎠ = ( 6 3 −5 ) ,

and the second column of AB is

[AB]∗2 = AB∗2 =
(

1 −2 0
3 −4 5

)
⎛

⎝

−5
−7
−2

⎞

⎠ =
(

9
3

)

.

This example makes the point that it is wasted effort to compute the entire
product if only one row or column is called for. Although it’s not necessary to
compute the complete product, you may wish to verify that

AB =
(

1 −2 0
3 −4 5

)
⎛

⎝

3 −5 1
2 −7 2
1 −2 0

⎞

⎠ =
(

−1 9 −3
6 3 −5

)

.
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Matrix multiplication provides a convenient representation for a linear sys-
tem of equations. For example, the 3× 4 system

2x1 + 3x2 + 4x3 + 8x4 = 7,

3x1 + 5x2 + 6x3 + 2x4 = 6,

4x1 + 2x2 + 4x3 + 9x4 = 4,

can be written as Ax = b, where

A3×4 =

⎛

⎝

2 3 4 8
3 5 6 2
4 2 4 9

⎞

⎠ , x4×1 =

⎛

⎜
⎝

x1

x2

x3

x4

⎞

⎟
⎠ , and b3×1 =

⎛

⎝

7
6
4

⎞

⎠ .

And this example generalizes to become the following statement.

Linear Systems
Every linear system of m equations in n unknowns

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,
...

am1x1 + am2x2 + · · · + amnxn = bm,

can be written as a single matrix equation Ax = b in which

A =

⎛

⎜
⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎞

⎟
⎟
⎠

, x =

⎛

⎜
⎜
⎝

x1

x2
...

xn

⎞

⎟
⎟
⎠

, and b =

⎛

⎜
⎜
⎝

b1

b2
...

bm

⎞

⎟
⎟
⎠

.

Conversely, every matrix equation of the form Am×nxn×1 = bm×1 rep-
resents a system of m linear equations in n unknowns.

The numerical solution of a linear system was presented earlier in the text
without the aid of matrix multiplication because the operation of matrix mul-
tiplication is not an integral part of the arithmetical process used to extract a
solution by means of Gaussian elimination. Viewing a linear system as a single
matrix equation Ax = b is more of a notational convenience that can be used to
uncover theoretical properties and to prove general theorems concerning linear
systems.



100 Chapter 3 Matrix Algebra

For example, a very concise proof of the fact (2.3.5) stating that a system
of equations Am×nxn×1 = bm×1 is consistent if and only if b is a linear
combination of the columns in A is obtained by noting that the system is
consistent if and only if there exists a column s that satisfies

b = As = (A∗1 A∗2 · · · A∗n )

⎛

⎜
⎜
⎝

s1

s2
...

sn

⎞

⎟
⎟
⎠

= A∗1s1 + A∗2s2 + · · · + A∗nsn.

The following example illustrates a common situation in which matrix mul-
tiplication arises naturally.

Example 3.5.2
An airline serves five cities, say, A, B, C, D, and H, in which H is the “hub
city.” The various routes between the cities are indicated in Figure 3.5.1.

A B

C D

H

Figure 3.5.1

Suppose you wish to travel from city A to city B so that at least two connecting
flights are required to make the trip. Flights (A→ H) and (H → B) provide the
minimal number of connections. However, if space on either of these two flights
is not available, you will have to make at least three flights. Several questions
arise. How many routes from city A to city B require exactly three connecting
flights? How many routes require no more than four flights—and so forth? Since
this particular network is small, these questions can be answered by “eyeballing”
the diagram, but the “eyeball method” won’t get you very far with the large
networks that occur in more practical situations. Let’s see how matrix algebra
can be applied. Begin by creating a connectivity matrix C = [cij ] (also known
as an adjacency matrix) in which

cij =
{ 1 if there is a flight from city i to city j,

0 otherwise.
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For the network depicted in Figure 3.5.1,

C =

⎛

⎜
⎜
⎜
⎜
⎝

A B C D H

A 0 0 1 0 1
B 1 0 0 0 1
C 0 0 0 1 1
D 0 1 0 0 1
H 1 1 1 1 0

⎞

⎟
⎟
⎟
⎟
⎠

.

The matrix C together with its powers C2,C3,C4, . . . will provide all of the
information needed to analyze the network. To see how, notice that since cik

is the number of direct routes from city i to city k, and since ckj is the
number of direct routes from city k to city j, it follows that cikckj must be
the number of 2-flight routes from city i to city j that have a connection at
city k. Consequently, the (i, j) -entry in the product C2 = CC is

[C2]ij =
5
∑

k=1

cikckj = the total number of 2-flight routes from city i to city j.

Similarly, the (i, j) -entry in the product C3 = CCC is

[C3]ij =
5
∑

k1,k2=1

cik1ck1k2ck2j = number of 3-flight routes from city i to city j,

and, in general,

[Cn]ij =
5
∑

k1,k2,···,kn−1=1

cik1ck1k2 · · · ckn−2kn−1ckn−1j

is the total number of n -flight routes from city i to city j. Therefore, the total
number of routes from city i to city j that require no more than n flights
must be given by

[C]ij + [C2]ij + [C3]ij + · · · + [Cn]ij = [C + C2 + C3 + · · · + Cn]ij .

For our particular network,

C2=

⎛

⎜
⎜
⎜
⎝

1 1 1 2 1
1 1 2 1 1
1 2 1 1 1
2 1 1 1 1
1 1 1 1 4

⎞

⎟
⎟
⎟
⎠

, C3=

⎛

⎜
⎜
⎜
⎝

2 3 2 2 5
2 2 2 3 5
3 2 2 2 5
2 2 3 2 5
5 5 5 5 4

⎞

⎟
⎟
⎟
⎠

, C4=

⎛

⎜
⎜
⎜
⎝

8 7 7 7 9
7 8 7 7 9
7 7 8 7 9
7 7 7 8 9
9 9 9 9 20

⎞

⎟
⎟
⎟
⎠

,
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and

C + C2 + C3 + C4 =

⎛

⎜
⎜
⎜
⎝

11 11 11 11 16
11 11 11 11 16
11 11 11 11 16
11 11 11 11 16
16 16 16 16 28

⎞

⎟
⎟
⎟
⎠

.

The fact that [C3]12 = 3 means there are exactly 3 three-flight routes from city
A to city B, and [C4]12 = 7 means there are exactly 7 four-flight routes—try
to identify them. Furthermore, [C + C2 + C3 + C4]12 = 11 means there are 11
routes from city A to city B that require no more than 4 flights.

Exercises for section 3.5

3.5.1. For A =

⎛

⎝

1 −2 3
0 −5 4
4 −3 8

⎞

⎠ , B =

⎛

⎝

1 2
0 4
3 7

⎞

⎠ , and C =

⎛

⎝

1
2
3

⎞

⎠ , compute

the following products when possible.
(a) AB, (b) BA, (c) CB, (d) CT B, (e) A2, (f) B2,
(g) CT C, (h) CCT , (i) BBT , (j) BT B, (k) CT AC.

3.5.2. Consider the following system of equations:

2x1 + x2 + x3 = 3,

4x1 + 2x3 = 10,

2x1 + 2x2 = − 2.

(a) Write the system as a matrix equation of the form Ax = b.
(b) Write the solution of the system as a column s and verify by

matrix multiplication that s satisfies the equation Ax = b.
(c) Write b as a linear combination of the columns in A.

3.5.3. Let E =

⎛

⎝

1 0 0
0 1 0
3 0 1

⎞

⎠ and let A be an arbitrary 3× 3 matrix.

(a) Describe the rows of EA in terms of the rows of A.
(b) Describe the columns of AE in terms of the columns of A.

3.5.4. Let ej denote the jth unit column that contains a 1 in the jth

position and zeros everywhere else. For a general matrix An×n, describe
the following products. (a) Aej (b) eT

i A (c) eT
i Aej
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3.5.5. Suppose that A and B are m× n matrices. If Ax = Bx holds for
all n× 1 columns x, prove that A = B. Hint: What happens when
x is a unit column?

3.5.6. For A =
(

1/2 α
0 1/2

)

, determine limn→∞ An. Hint: Compute a few

powers of A and try to deduce the general form of An.

3.5.7. If Cm×1 and R1×n are matrices consisting of a single column and
a single row, respectively, then the matrix product Pm×n = CR is
sometimes called the outer product of C with R. For conformable
matrices A and B, explain how to write the product AB as a sum of
outer products involving the columns of A and the rows of B.

3.5.8. A square matrix U = [uij ] is said to be upper triangular whenever
uij = 0 for i > j —i.e., all entries below the main diagonal are 0.

(a) If A and B are two n× n upper-triangular matrices, explain
why the product AB must also be upper triangular.

(b) If An×n and Bn×n are upper triangular, what are the diagonal
entries of AB?

(c) L is lower triangular when ℓij = 0 for i < j. Is it true that
the product of two n× n lower-triangular matrices is again
lower triangular?

3.5.9. If A = [aij(t)] is a matrix whose entries are functions of a variable t,
the derivative of A with respect to t is defined to be the matrix of
derivatives. That is,

dA
dt

=
[
daij

dt

]

.

Derive the product rule for differentiation

d(AB)
dt

=
dA
dt

B + A
dB
dt

.

3.5.10. Let Cn×n be the connectivity matrix associated with a network of n
nodes such as that described in Example 3.5.2, and let e be the n× 1
column of all 1’s. In terms of the network, describe the entries in each
of the following products.

(a) Interpret the product Ce.
(b) Interpret the product eT C.
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3.5.11. Consider three tanks each containing V gallons of brine. The tanks are
connected as shown in Figure 3.5.2, and all spigots are opened at once.
As fresh water at the rate of r gal/sec is pumped into the top of the
first tank, r gal/sec leaves from the bottom and flows into the next
tank, and so on down the line—there are r gal/sec entering at the top
and leaving through the bottom of each tank.

r  gal / sec

r  gal / sec

r  gal / sec

r  gal / sec

Figure 3.5.2

Let xi(t) denote the number of pounds of salt in tank i at time t, and
let

x =

⎛

⎜
⎝

x1(t)
x2(t)
x3(t)

⎞

⎟
⎠ and

dx
dt

=

⎛

⎜
⎝

dx1/dt

dx2/dt

dx3/dt

⎞

⎟
⎠ .

Assuming that complete mixing occurs in each tank on a continuous
basis, show that

dx
dt

= Ax, where A =
r

V

⎛

⎝

−1 0 0
1 −1 0
0 1 −1

⎞

⎠ .

Hint: Use the fact that

dxi

dt
= rate of change =

lbs
sec

coming in− lbs
sec

going out.
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Solutions for exercises in section 3. 4

3.4.1. Refer to the solution for Exercise 3.3.4. If Q, R, and P denote the matrices
associated with the rotation, reflection, and projection, respectively, then

Q =
(

cos θ − sin θ
sin θ cos θ

)
, R =

(
1 0
0 −1

)
, and P =

( 1
2

1
2

1
2

1
2

)
.

3.4.2. Refer to the solution for Exercise 3.4.1 and write

RQ =
(

1 0
0 −1

)(
cos θ − sin θ
sin θ cos θ

)
=
(

cos θ − sin θ
− sin θ − cos θ

)
.

If Q(x) is the rotation function and R(x) is the reflection function, then the
composition is

R
(
Q(x)

)
=
(

(cos θ)x1− (sin θ)x2

−(sin θ)x1− (cos θ)x2

)
.

3.4.3. Refer to the solution for Exercise 3.4.1 and write

PQR =
(

a11x1+ a12x2

a21x1+ a22x2

)(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 −1

)

=
1
2

(
cos θ + sin θ sin θ − cos θ
cos θ + sin θ sin θ − cos θ

)
.

Therefore, the composition of the three functions in the order asked for is

P

(

Q
(
R(x)

))

=
1
2

(
(cos θ + sin θ)x1+ (sin θ − cos θ)x2

(cos θ + sin θ)x1+ (sin θ − cos θ)x2

)
.

Solutions for exercises in section 3. 5

3.5.1. (a) AB =

⎛

⎝
10 15
12 8
28 52

⎞

⎠ (b) BA does not exist (c) CB does not exist

(d) CT B = ( 10 31 ) (e) A2=

⎛

⎝
13 −1 19
16 13 12
36 −17 64

⎞

⎠ (f) B2 does not exist

(g) CT C = 14 (h) CCT =

⎛

⎝
1 2 3
2 4 6
3 6 9

⎞

⎠ (i) BBT =

⎛

⎝
5 8 17
8 16 28

17 28 58

⎞

⎠

(j) BT B =
(

10 23
23 69

)
(k) CT AC = 76
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3.5.2. (a) A =

⎛

⎝
2 1 1
4 0 2
2 2 0

⎞

⎠ ,x =

⎛

⎝
x1

x2

x3

⎞

⎠ ,b =

⎛

⎝
3

10
−2

⎞

⎠ (b) s =

⎛

⎝
1
−2

3

⎞

⎠

(c) b = A∗1− 2A∗2+ 3A∗3

3.5.3. (a) EA =

⎛

⎝
A1∗
A2∗

3A1∗ + A3∗

⎞

⎠ (b) AE = (A∗1+ 3A∗3 A∗2 A∗3 )

3.5.4. (a) A∗j (b) Ai∗ (c) aij

3.5.5. Ax = Bx ∀ x =⇒ Aej = Bej ∀ ej =⇒ A∗j = B∗j ∀ j =⇒ A = B.
(The symbol ∀ is mathematical shorthand for the phrase “for all.”)

3.5.6. The limit is the zero matrix.
3.5.7. If A is m× p and B is p× n, write the product as

AB = (A∗1 A∗2 · · · A∗p )

⎛

⎜⎜⎝

B1∗
B2∗

...
Bp∗

⎞

⎟⎟⎠ = A∗1B1∗ + A∗2B2∗ + · · · + A∗pBp∗

=
p∑

k=1

A∗kBk∗.

3.5.8. (a) [AB]ij = Ai∗B∗j = ( 0 · · · 0 aii · · · ain )

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

b1j

...
bjj

0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

is 0 when i > j.

(b) When i = j, the only nonzero term in the product Ai∗B∗i is aiibii.
(c) Yes.

3.5.9. Use [AB]ij =
∑

k aikbkj along with the rules of differentiation to write

d[AB]ij
dt

=
d (
∑

k aikbkj)
dt

=
∑

k

d(aikbkj)
dt

=
∑

k

(
daik

dt
bkj + aik

dbkj

dt

)
=
∑

k

daik

dt
bkj +

∑

k

aik
dbkj

dt

=
[
dA
dt

B
]

ij

+
[
A

dB
dt

]

ij

=
[
dA
dt

B + A
dB
dt

]

ij

.

3.5.10. (a) [Ce]i = the total number of paths leaving node i.
(b) [eT C]i = the total number of paths entering node i.
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3.5.11. At time t, the concentration of salt in tank i is xi(t)
V lbs/gal. For tank 1,

dx1

dt
=

lbs
sec

coming in− lbs
sec

going out = 0
lbs
sec
−
(

r
gal
sec
× x1(t)

V

lbs
gal

)

= − r

V
x1(t)

lbs
sec

.

For tank 2,

dx2

dt
=

lbs
sec

coming in− lbs
sec

going out =
r

V
x1(t)

lbs
sec
−
(

r
gal
sec
× x2(t)

V

lbs
gal

)

=
r

V
x1(t)

lbs
sec
− r

V
x2(t)

lbs
sec

=
r

V

(
x1(t)− x2(t)

)
,

and for tank 3,

dx3

dt
=

lbs
sec

coming in− lbs
sec

going out =
r

V
x2(t)

lbs
sec
−
(

r
gal
sec
× x3 (t)

V

lbs
gal

)

=
r

V
x2(t)

lbs
sec
− r

V
x3 (t)

lbs
sec

=
r

V

(
x2(t)− x3 (t)

)
.

This is a system of three linear first-order differential equations

dx1

dt
= r

V

(
−x1(t)

)

dx2

dt
= r

V

(
x1(t) − x2(t)

)

dx3

dt
= r

V

(
x2(t) − x3 (t)

)

that can be written as a single matrix differential equation

⎛

⎜⎝

dx1/dt

dx2/dt

dx3/dt

⎞

⎟⎠ =
r

V

⎛

⎜⎝

−1 0 0
1 −1 0
0 1 −1

⎞

⎟⎠

⎛

⎜⎝

x1(t)
x2(t)
x3 (t)

⎞

⎟⎠ .


