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3.6 PROPERTIES OF MATRIX MULTIPLICATION

We saw in the previous section that there are some differences between scalar
and matrix algebra—most notable is the fact that matrix multiplication is not
commutative, and there is no cancellation law. But there are also some important
similarities, and the purpose of this section is to look deeper into these issues.

Although we can adjust to not having the commutative property, the situa-
tion would be unbearable if the distributive and associative properties were not
available. Fortunately, both of these properties hold for matrix multiplication.

Distributive and Associative Laws
For conformable matrices each of the following is true.

• A(B + C) = AB + AC (left-hand distributive law).

• (D + E)F = DF + EF (right-hand distributive law).

• A(BC) = (AB)C (associative law).

Proof. To prove the left-hand distributive property, demonstrate the corre-
sponding entries in the matrices A(B + C) and AB + AC are equal. To this
end, use the definition of matrix multiplication to write

[A(B + C)]ij = Ai∗(B + C)∗j =
∑

k

[A]ik[B + C]kj =
∑

k

[A]ik ([B]kj + [C]kj)

=
∑

k

([A]ik[B]kj + [A]ik[C]kj) =
∑

k

[A]ik[B]kj +
∑

k

[A]ik[C]kj

= Ai∗B∗j + Ai∗C∗j = [AB]ij + [AC]ij

= [AB + AC]ij .

Since this is true for each i and j, it follows that A(B + C) = AB + AC. The
proof of the right-hand distributive property is similar and is omitted. To prove
the associative law, suppose that B is p× q and C is q × n, and recall from
(3.5 .7) that the jth column of BC is a linear combination of the columns in
B. That is,

[BC]∗j = B∗1c1j + B∗2c2j + · · · + B∗qcqj =
q
∑

k=1

B∗kckj .
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Use this along with the left-hand distributive property to write

[A(BC)]ij = Ai∗[BC]∗j = Ai∗

q
∑

k=1

B∗kckj =
q
∑

k=1

Ai∗B∗kckj

=
q
∑

k=1

[AB]ikckj = [AB]i∗C∗j = [(AB)C]ij .

Example 3.6.1
Linearity of Matrix Multiplication. Let A be an m× n matrix, and f be
the function defined by matrix multiplication

f(Xn×p) = AX.

The left-hand distributive property guarantees that f is a linear function be-
cause for all scalars α and for all n× p matrices X and Y,

f(αX + Y) = A(αX + Y) = A(αX) + AY = αAX + AY
= αf(X) + f(Y).

Of course, the linearity of matrix multiplication is no surprise because it was
the consideration of linear functions that motivated the definition of the matrix
product at the outset.

For scalars, the number 1 is the identity element for multiplication because
it has the property that it reproduces whatever it is multiplied by. For matrices,
there is an identity element with similar properties.

Identity Matrix
The n× n matrix with 1 ’s on the main diagonal and 0’s elsewhere

In =

⎛

⎜
⎜
⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞

⎟
⎟
⎠

is called the identity matrix of order n. For every m× n matrix A,

AIn = A and ImA = A.

The subscript on In is neglected whenever the size is obvious from the
context.
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Proof. Notice that I∗j has a 1 in the jth position and 0’s elsewhere. Recall
from Exercise 3.5 .4 that such columns were called unit columns, and they
have the property that for any conformable matrix A,

AI∗j = A∗j .

Using this together with the fact that [AI]∗j = AI∗j produces

AI = (AI∗1 AI∗2 · · · AI∗n ) = (A∗1 A∗2 · · · A∗n ) = A.

A similar argument holds when I appears on the left-hand side of A.

Analogous to scalar algebra, we define the 0th power of a square matrix to
be the identity matrix of corresponding size. That is, if A is n× n, then

A0 = In.

Positive powers of A are also defined in the natural way. That is,

An = AA· · ·A
︸ ︷︷ ︸

n times
.

The associative law guarantees that it makes no difference how matrices are
grouped for powering. For example, AA2 is the same as A2A, so that

A3 = AAA = AA2 = A2A.

Also, the usual laws of exponents hold. For nonnegative integers r and s,

ArAs = Ar+s and (Ar)s = Ars.

We are not yet in a position to define negative or fractional powers, and due to
the lack of conformability, powers of nonsquare matrices are never defined.

Example 3.6.2
A Pitfall. For two n× n matrices, what is (A + B)2? Be careful! Because
matrix multiplication is not commutative, the familiar formula from scalar alge-
bra is not valid for matrices. The distributive properties must be used to write

(A + B)2 = (A + B)
︸ ︷︷ ︸

(A + B) = (A + B)
︸ ︷︷ ︸

A + (A + B)
︸ ︷︷ ︸

B

= A2 + BA + AB + B2,

and this is as far as you can go. The familiar form A2+2AB+B2 is obtained only
in those rare cases where AB = BA. To evaluate (A + B)k, the distributive
rules must be applied repeatedly, and the results are a bit more complicated—try
it for k = 3.
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Example 3.6.3
Suppose that the population migration between two geographical regions—say,
the North and the South—is as follows. Each year, 5 0% of the population in
the North migrates to the South, while only 2 5 % of the population in the South
moves to the North. This situation is depicted by drawing a transition diagram
such as that shown in Figure 3.6.1 .

N S

.25

.5

.5 .75

Figure 3.6.1

Problem: If this migration pattern continues, will the population in the North
continually shrink until the entire population is eventually in the South, or will
the population distribution somehow stabilize before the North is completely
deserted?

Solution: Let nk and sk denote the respective proportions of the total popula-
tion living in the North and South at the end of year k and assume nk +sk = 1 .
The migration pattern dictates that the fractions of the population in each region
at the end of year k + 1 are

nk+1 = nk(.5 ) + sk(.2 5 ),
sk+1 = nk(.5 ) + sk(.75 ).

(3.6.1 )

If pT
k = (nk, sk) and pT

k+1 = (nk+1, sk+1) denote the respective population
distributions at the end of years k and k + 1 , and if

T =
(

N S
N .5 .5
S .2 5 .75

)

is the associated transition matrix, then (3.6.1 ) assumes the matrix form
pT

k+1 = pT
k T. Inducting on pT

1 = pT
0 T, pT

2 = pT
1 T = pT

0 T2, pT
3 = pT

2 T =
pT

0 T3, etc., leads to
pT

k = pT
0 Tk. (3.6.2 )

Determining the long-run behavior involves evaluating limk→∞ pT
k , and it’s clear

from (3.6.2 ) that this boils down to analyzing limk→∞ Tk. Later, in Example
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7.3.5 , a more sophisticated approach is discussed, but for now we will use the
“brute force” method of successively powering P until a pattern emerges. The
first several powers of P are shown below with three significant digits displayed.

P2 =
(

.375 .62 5

.31 2 .687

)

P3 =
(

.34 4 .65 6

.32 8 .672

)

P4 =
(

.32 8 .672

.332 .668

)

P5 =
(

.334 .666

.333 .667

)

P6 =
(

.333 .667

.333 .667

)

P7 =
(

.333 .667

.333 .667

)

This sequence appears to be converging to a limiting matrix of the form

P∞ = lim
k→∞

Pk =
(

1 /3 2 /3
1 /3 2 /3

)

,

so the limiting population distribution is

pT
∞ = lim

k→∞
pT

k = lim
k→∞

pT
0 Tk = pT

0 lim
k→∞

Tk = (n0 s0 )
(

1 /3 2 /3
1 /3 2 /3

)

=
(

n0 + s0

3
2 (n0 + s0)

3

)

= ( 1 /3 2 /3 ) .

Therefore, if the migration pattern continues to hold, then the population dis-
tribution will eventually stabilize with 1 /3 of the population being in the North
and 2 /3 of the population in the South. And this is independent of the initial
distribution! The powers of P indicate that the population distribution will be
practically stable in no more than 6 years—individuals may continue to move,
but the proportions in each region are essentially constant by the sixth year.

The operation of transposition has an interesting effect upon a matrix
product—a reversal of order occurs.

Reverse Order Law for Transposition
For conformable matrices A and B,

(AB)T = BT AT .

The case of conjugate transposition is similar. That is,

(AB)∗ = B∗A∗.
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Proof. By definition,
(AB)T

ij = [AB]ji = Aj∗B∗i.

Consider the (i, j)-entry of the matrix BT AT and write
[

BT AT
]

ij
=
(

BT
)

i∗
(

AT
)

∗j
=
∑

k

[

BT
]

ik

[

AT
]

kj

=
∑

k

[B]ki[A]jk =
∑

k

[A]jk[B]ki

= Aj∗B∗i.

Therefore, (AB)T
ij =

[

BT AT
]

ij
for all i and j, and thus (AB)T = BT AT .

The proof for the conjugate transpose case is similar.
Example 3.6.4

For every matrix Am×n, the products AT A and AAT are symmetric matrices
because

(

AT A
)T

= AT AT T
= AT A and

(

AAT
)T

= AT T
AT = AAT .

Example 3.6.5
Trace of a Product. Recall from Example 3.3.1 that the trace of a square
matrix is the sum of its main diagonal entries. Although matrix multiplication
is not commutative, the trace function is one of the few cases where the order of
the matrices can be changed without affecting the results.

Problem: For matrices Am×n and Bn×m, prove that
trace (AB) = trace (BA).

Solution:
trace (AB) =

∑

i

[AB]ii =
∑

i

Ai∗B∗i =
∑

i

∑

k

aikbki =
∑

i

∑

k

bkiaik

=
∑

k

∑

i

bkiaik =
∑

k

Bk∗A∗k =
∑

k

[BA]kk = trace (BA).

Note: This is true in spite of the fact that AB is m×m while BA is n× n.
Furthermore, this result can be extended to say that any product of conformable
matrices can be permuted cyclically without altering the trace of the product.
For example,

trace (ABC) = trace (BCA) = trace (CAB).
However, a noncyclical permutation may not preserve the trace. For example,

trace (ABC) ̸= trace (BAC).
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Executing multiplication between two matrices by partitioning one or both
factors into submatrices—a matrix contained within another matrix—can be
a useful technique.

Block Matrix Multiplication
Suppose that A and B are partitioned into submatrices—often referred
to as blocks—as indicated below.

A =

⎛

⎜
⎜
⎝

A11 A12 · · · A1r

A21 A22 · · · A2r
...

...
. . .

...
As1 As2 · · · Asr

⎞

⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎝

B11 B12 · · · B1t

B21 B22 · · · B2t
...

...
. . .

...
Br1 Br2 · · · Brt

⎞

⎟
⎟
⎠

.

If the pairs (Aik,Bkj) are conformable, then A and B are said to
be conformably partitioned. For such matrices, the product AB is
formed by combining the blocks exactly the same way as the scalars are
combined in ordinary matrix multiplication. That is, the (i, j) -block in
AB is

Ai1B1j + Ai2B2j + · · · + AirBrj .

Although a completely general proof is possible, looking at some examples
better serves the purpose of understanding this technique.

Example 3.6.6
Block multiplication is particularly useful when there are patterns in the matrices
to be multiplied. Consider the partitioned matrices

A =

⎛

⎜
⎜
⎝

1 2 1 0
3 4 0 1

1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠

=
(

C I
I 0

)

, B =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0

1 2 1 2
3 4 3 4

⎞

⎟
⎟
⎠

=
(

I 0
C C

)

,

where
I =

(

1 0
0 1

)

and C =
(

1 2
3 4

)

.

Using block multiplication, the product AB is easily computed to be

AB =
(

C I
I 0

)(

I 0
C C

)

=
(

2C C
I 0

)

=

⎛

⎜
⎜
⎝

2 4 1 2
6 8 3 4

1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠

.
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Example 3.6.7
Reducibility. Suppose that Tn×nx = b represents a system of linear equa-
tions in which the coefficient matrix is block triangular. That is, T can be
partitioned as

T =
(

A B
0 C

)

, where A is r × r and C is n− r × n− r. (3.6.3)

If x and b are similarly partitioned as x =
(

x1
x2

)

and b =
(

b1
b2

)

, then block
multiplication shows that Tx = b reduces to two smaller systems

Ax1 + Bx2 = b1,

Cx2 = b2,

so if all systems are consistent, a block version of back substitution is possible—
i.e., solve Cx2 = b2 for x2, and substituted this back into Ax1 = b1 −Bx2,
which is then solved for x1. For obvious reasons, block-triangular systems of
this type are sometimes referred to as reducible systems, and T is said to
be a reducible matrix. Recall that applying Gaussian elimination with back
substitution to an n× n system requires about n3/3 multiplications/divisions
and about n3/3 additions/subtractions. This means that it’s more efficient to
solve two smaller subsystems than to solve one large main system. For exam-
ple, suppose the matrix T in (3.6.3) is 1 00× 1 00 while A and C are each
5 0× 5 0. If Tx = b is solved without taking advantage of its reducibility, then
about 1 06/3 multiplications/divisions are needed. But by taking advantage of
the reducibility, only about (2 5 0× 1 03)/3 multiplications/divisions are needed
to solve both 5 0× 5 0 subsystems. Another advantage of reducibility is realized
when a computer’s main memory capacity is not large enough to store the entire
coefficient matrix but is large enough to hold the submatrices.

Exercises for section 3.6

3.6.1. For the partitioned matrices

A =

⎛

⎝

1 0 0 3 3 3
1 0 0 3 3 3

1 2 2 0 0 0

⎞

⎠ and B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 −1

0 0
0 0

−1 −2
−1 −2
−1 −2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

use block multiplication with the indicated partitions to form the prod-
uct AB.
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3.6.2. For all matrices An×k and Bk×n, show that the block matrix

L =
(

I−BA B
2A−ABA AB− I

)

has the property L2 = I. Matrices with this property are said to be
involutory, and they occur in the science of cryptography.

3.6.3. For the matrix

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 1 /3 1 /3 1 /3
0 1 0 1 /3 1 /3 1 /3
0 0 1 1 /3 1 /3 1 /3
0 0 0 1 /3 1 /3 1 /3
0 0 0 1 /3 1 /3 1 /3
0 0 0 1 /3 1 /3 1 /3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

determine A300. Hint: A square matrix C is said to be idempotent
when it has the property that C2 = C. Make use of idempotent sub-
matrices in A.

3.6.4. For every matrix Am×n, demonstrate that the products A∗A and
AA∗ are hermitian matrices.

3.6.5. If A and B are symmetric matrices that commute, prove that the
product AB is also symmetric. If AB ̸= BA, is AB necessarily sym-
metric?

3.6.6. Prove that the right-hand distributive property is true.

3.6.7. For each matrix An×n, explain why it is impossible to find a solution
for Xn×n in the matrix equation

AX−XA = I.

Hint: Consider the trace function.

3.6.8. Let yT
1×m be a row of unknowns, and let Am×n and bT

1×n be known
matrices.

(a) Explain why the matrix equation yT A = bT represents a sys-
tem of n linear equations in m unknowns.

(b) How are the solutions for yT in yT A = bT related to the
solutions for x in AT x = b?
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3.6.9. A particular electronic device consists of a collection of switching circuits
that can be either in an ON state or an OFF state. These electronic
switches are allowed to change state at regular time intervals called clock
cycles. Suppose that at the end of each clock cycle, 30% of the switches
currently in the OFF state change to ON, while 90% of those in the ON
state revert to the OFF state.

(a) Show that the device approaches an equilibrium in the sense
that the proportion of switches in each state eventually becomes
constant, and determine these equilibrium proportions.

(b) Independent of the initial proportions, about how many clock
cycles does it take for the device to become essentially stable?

3.6.10. Write the following system in the form Tn×nx = b, where T is block
triangular, and then obtain the solution by solving two small systems as
described in Example 3.6.7.

x1 + x2 + 3x3 + 4 x4 = − 1 ,

2 x3 + 3x4 = 3,

x1 + 2 x2 + 5 x3 + 6x4 = − 2 ,

x3 + 2 x4 = 4 .

3.6.11. Prove that each of the following statements is true for conformable ma-
trices.

(a) trace (ABC) = trace (BCA) = trace (CAB).
(b) trace (ABC) can be different from trace (BAC).
(c) trace

(

AT B
)

= trace
(

ABT
)

.

3.6.12. Suppose that Am×n and xn×1 have real entries.
(a) Prove that xT x = 0 if and only if x = 0.
(b) Prove that trace

(

AT A
)

= 0 if and only if A = 0.
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Solutions for exercises in section 3. 6

3.6.1.

AB =
(

A11 A12 A13

A21 A22 A23

)⎛

⎝
B1

B2

B3

⎞

⎠ =
(

A11B1+ A12B2+ A13B3

A21B1+ A22B2+ A23B3

)

=

⎛

⎝
−10 −19
−10 −19

−1 −1

⎞

⎠

3.6.2. Use block multiplication to verify L2 = I —be careful not to commute any of
the terms when forming the various products.

3.6.3. Partition the matrix as A =
(

I C
0 C

)
, where C = 1

3

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ and observe

that C2= C. Use this together with block multiplication to conclude that

Ak =
(

I C + C2+ C3 + · · · + Ck

0 Ck

)
=
(

I kC
0 C

)
.

Therefore, A300 =

⎛

⎜⎜⎜⎜⎜⎝

1 0 0 100 100 100
0 1 0 100 100 100
0 0 1 100 100 100
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3

⎞

⎟⎟⎟⎟⎟⎠
.

3.6.4. (A∗A)∗ = A∗A∗∗ = A∗A and (AA∗)∗ = A∗∗A∗ = AA∗.

3.6.5. (AB)T = BT AT = BA = AB. It is easy to construct a 2× 2 example to show
that this need not be true when AB ̸= BA.

3.6.6.

[(D + E)F]ij = (D + E)i∗F∗j =
∑

k

[D + E]ik[F]kj =
∑

k

([D]ik + [E]ik) [F]kj

=
∑

k

([D]ik[F]kj + [E]ik[F]kj) =
∑

k

[D]ik[F]kj +
∑

k

[E]ik[F]kj

= Di∗F∗j + Ei∗F∗j = [DF]ij + [EF]ij

= [DF + EF]ij .

3.6.7. If a matrix X did indeed exist, then

I = AX−XA =⇒ trace (I) = trace (AX−XA)
=⇒ n = trace (AX)− trace (XA) = 0,
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which is impossible.
3.6.8. (a) yT A = bT =⇒ (yT A)T = bT T =⇒ AT y = b. This is an n×m

system of equations whose coefficient matrix is AT . (b) They are the same.
3.6.9. Draw a transition diagram similar to that in Example 3.6.3 with North and South

replaced by ON and OFF, respectively. Let xk be the proportion of switches in
the ON state, and let yk be the proportion of switches in the OFF state after
k clock cycles have elapsed. According to the given information,

xk = xk−1(.1) + yk−1(.3)
yk = xk−1(.9) + yk−1(.7)

so that pk = pk−1P, where

pk = (xk yk ) and P =
(

.1 .9

.3 .7

)
.

Just as in Example 3.6.3, pk = p0Pk. Compute a few powers of P to find

P2=
(

.280 .720

.240 .760

)
, P3 =

(
.244 .756
.252 .748

)

P4 =
(

.251 .749

.250 .750

)
, P5 =

(
.250 .750
.250 .750

)

and deduce that P∞ = limk→∞ Pk =
(

1/4 3/4
1/4 3/4

)
. Thus

pk → p0P∞ = ( 1
4 (x0 + y0) 3

4 (x0 + y0) ) = ( 1
4

3
4 ) .

For practical purposes, the device can be considered to be in equilibrium after
about 5 clock cycles—regardless of the initial proportions.

3.6.10. (−4 1 −6 5 )
3.6.11. (a) trace (ABC) = trace (A{BC}) = trace ({BC}A) = trace (BCA). The

other equality is similar. (b) Use almost any set of 2× 2 matrices to con-
struct an example that shows equality need not hold. (c) Use the fact that
trace

(
CT
)

= trace (C) for all square matrices to conclude that

trace
(
AT B

)
=trace

(
(AT B)

T
)

= trace
(
BT AT T

)

=trace
(
BT A

)
= trace

(
ABT

)
.

3.6.12. (a) xT x = 0⇐⇒
∑n

k=1x2
i = 0⇐⇒ xi = 0 for each i⇐⇒ x = 0.

(b) trace
(
AT A

)
= 0⇐⇒

∑

i

[AT A]ii = 0⇐⇒
∑

i

(AT )i∗A∗i = 0

⇐⇒
∑

i

∑

k

[AT ]ik[A]ki = 0⇐⇒
∑

i

∑

k

[A]ki[A]ki = 0

⇐⇒
∑

i

∑

k

[A]2ki = 0

⇐⇒ [A]ki = 0 for each k and i⇐⇒ A = 0


