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3.7 MATRIX INVERSION

If α is a nonzero scalar, then for each number β the equation αx = β has a
unique solution given by x = α−1β. To prove that α−1β is a solution, write

α(α−1β) = (αα−1)β = (1)β = β. (3.7.1)

Uniqueness follows because if x1 and x2 are two solutions, then

αx1 = β = αx2 =⇒ α−1(αx1) = α−1(αx2)

=⇒ (α−1α)x1 = (α−1α)x2

=⇒ (1)x1 = (1)x2 =⇒ x1 = x2.

(3.7.2)

These observations seem pedantic, but they are important in order to see how
to make the transition from scalar equations to matrix equations. In particular,
these arguments show that in addition to associativity, the properties

αα−1 = 1 and α−1α = 1 (3.7.3)

are the key ingredients, so if we want to solve matrix equations in the same
fashion as we solve scalar equations, then a matrix analogue of (3.7.3) is needed.

Matrix Inversion
For a given square matrix An×n, the matrix Bn×n that satisfies the
conditions

AB = In and BA = In

is called the inverse of A and is denoted by B = A−1. Not all square
matrices are invertible—the zero matrix is a trivial example, but there
are also many nonzero matrices that are not invertible. An invertible
matrix is said to be nonsingular, and a square matrix with no inverse
is called a singular matrix.

Notice that matrix inversion is defined for square matrices only—the con-
dition AA−1 = A−1A rules out inverses of nonsquare matrices.

Example 3.7.1
If

A =
(

a b
c d

)

, where δ = ad− bc ̸= 0,

then
A−1 =

1
δ

(

d −b
−c a

)

because it can be verified that AA−1 = A−1A = I2.
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Although not all matrices are invertible, when an inverse exists, it is unique.
To see this, suppose that X1 and X2 are both inverses for a nonsingular matrix
A. Then

X1 = X1I = X1(AX2) = (X1A)X2 = IX2 = X2,

which implies that only one inverse is possible.
Since matrix inversion was defined analogously to scalar inversion, and since

matrix multiplication is associative, exactly the same reasoning used in (3.7.1)
and (3.7.2) can be applied to a matrix equation AX = B, so we have the
following statements.

Matrix Equations
• If A is a nonsingular matrix, then there is a unique solution for X

in the matrix equation An×nXn×p = Bn×p, and the solution is

X = A−1B. (3.7.4)

• A system of n linear equations in n unknowns can be written as a
single matrix equation An×nxn×1 = bn×1 (see p. 99), so it follows
from (3.7.4) that when A is nonsingular, the system has a unique
solution given by x = A−1b.

However, it must be stressed that the representation of the solution as
x = A−1b is mostly a notational or theoretical convenience. In practice, a
nonsingular system Ax = b is almost never solved by first computing A−1 and
then the product x = A−1b. The reason will be apparent when we learn how
much work is involved in computing A−1.

Since not all square matrices are invertible, methods are needed to distin-
guish between nonsingular and singular matrices. There is a variety of ways to
describe the class of nonsingular matrices, but those listed below are among the
most important.

Existence of an Inverse
For an n× n matrix A, the following statements are equivalent.

• A−1 exists (A is nonsingular). (3.7.5)

• rank (A) = n. (3.7.6)

• A
Gauss–Jordan
−−−−−−−−→ I. (3.7.7)

• Ax = 0 implies that x = 0. (3.7.8)
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Proof. The fact that (3.7.6)⇐⇒ (3.7.7) is a direct consequence of the defi-
nition of rank, and (3.7.6)⇐⇒ (3.7.8) was established in §2.4. Consequently,
statements (3.7.6), (3.7.7), and (3.7.8) are equivalent, so if we establish that
(3.7.5)⇐⇒ (3.7.6), then the proof will be complete.

Proof of (3.7.5) =⇒ (3.7.6). Begin by observing that (3.5.5) guarantees
that a matrix X = [X∗1 |X∗2 | · · · |X∗n] satisfies the equation AX = I if and
only if X∗j is a solution of the linear system Ax = I∗j . If A is nonsingular,
then we know from (3.7.4) that there exists a unique solution to AX = I, and
hence each linear system Ax = I∗j has a unique solution. But in §2.5 we learned
that a linear system has a unique solution if and only if the rank of the coefficient
matrix equals the number of unknowns, so rank (A) = n.

Proof of (3.7.6) =⇒ (3.7.5). If rank (A) = n, then (2.3.4) insures that
each system Ax = I∗j is consistent because rank[A | I∗j ] = n = rank (A).
Furthermore, the results of §2.5 guarantee that each system Ax = I∗j has a
unique solution, and hence there is a unique solution to the matrix equation
AX = I. We would like to say that X = A−1, but we cannot jump to this
conclusion without first arguing that XA = I. Suppose this is not true—i.e.,
suppose that XA− I ̸= 0. Since

A(XA− I) = (AX)A−A = IA−A = 0,

it follows from (3.5.5) that any nonzero column of XA−I is a nontrivial solution
of the homogeneous system Ax = 0. But this is a contradiction of the fact that
(3.7.6)⇐⇒ (3.7.8). Therefore, the supposition that XA− I ̸= 0 must be false,
and thus AX = I = XA, which means A is nonsingular.

The definition of matrix inversion says that in order to compute A−1, it is
necessary to solve both of the matrix equations AX = I and XA = I. These
two equations are necessary to rule out the possibility of nonsquare inverses. But
when only square matrices are involved, then any one of the two equations will
suffice—the following example elaborates.

Example 3.7.2
Problem: If A and X are square matrices, explain why

AX = I =⇒ XA = I. (3.7.9)

In other words, if A and X are square and AX = I, then X = A−1.

Solution: Notice first that AX = I implies X is nonsingular because if X is
singular, then, by (3.7.8), there is a column vector x ̸= 0 such that Xx = 0,
which is contrary to the fact that x = Ix = AXx = 0. Now that we know X−1

exists, we can establish (3.7.9) by writing

AX = I =⇒ AXX−1 = X−1 =⇒ A = X−1 =⇒ XA = I.

Caution! The argument above is not valid for nonsquare matrices. When
m ̸= n, it’s possible that Am×nXn×m = Im, but XA ̸= In.
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Although we usually try to avoid computing the inverse of a matrix, there are
times when an inverse must be found. To construct an algorithm that will yield
A−1 when An×n is nonsingular, recall from Example 3.7.2 that determining
A−1 is equivalent to solving the single matrix equation AX = I, and due to
(3.5.5), this in turn is equivalent to solving the n linear systems defined by

Ax = I∗j for j = 1, 2, . . . , n. (3.7.10)
In other words, if X∗1,X∗2, . . . ,X∗n are the respective solutions to (3.7.10), then
X = [X∗1 |X∗2 | · · · |X∗n] solves the equation AX = I, and hence X = A−1.
If A is nonsingular, then we know from (3.7.7) that the Gauss–Jordan method
reduces the augmented matrix [A | I∗j ] to [I |X∗j ], and the results of §1.3 insure
that X∗j is the unique solution to Ax = I∗j . That is,

[A | I∗j ]
Gauss–Jordan
−−−−−−−−→

[

I
∣
∣
∣ [A−1]∗j

]

.

But rather than solving each system Ax = I∗j separately, we can solve them
simultaneously by taking advantage of the fact that they all have the same
coefficient matrix. In other words, applying the Gauss–Jordan method to the
larger augmented array [A | I∗1 | I∗2 | · · · | I∗n] produces

[A | I∗1 | I∗2 | · · · | I∗n]
Gauss–Jordan
−−−−−−−−→

[

I
∣
∣
∣ [A−1]∗1

∣
∣
∣ [A−1]∗2

∣
∣
∣ · · ·

∣
∣
∣ [A−1]∗n

]

,

or more compactly,
[A | I]

Gauss–Jordan
−−−−−−−−→ [I |A−1]. (3.7.11)

What happens if we try to invert a singular matrix using this procedure?
The fact that (3.7.5)⇐⇒ (3.7.6)⇐⇒ (3.7.7) guarantees that a singular matrix
A cannot be reduced to I by Gauss–Jordan elimination because a zero row will
have to emerge in the left-hand side of the augmented array at some point during
the process. This means that we do not need to know at the outset whether A
is nonsingular or singular—it becomes self-evident depending on whether or not
the reduction (3.7.11) can be completed. A summary is given below.

Computing an Inverse
Gauss–Jordan elimination can be used to invert A by the reduction

[A | I]
Gauss–Jordan
−−−−−−−−→ [I |A−1]. (3.7.12)

The only way for this reduction to fail is for a row of zeros to emerge
in the left-hand side of the augmented array, and this occurs if and only
if A is a singular matrix. A different (and somewhat more practical)
algorithm is given Example 3.10.3 on p. 148.
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Although they are not included in the simple examples of this section, you
are reminded that the pivoting and scaling strategies presented in §1.5 need to
be incorporated, and the effects of ill-conditioning discussed in §1.6 must be con-
sidered whenever matrix inverses are computed using floating-point arithmetic.
However, practical applications rarely require an inverse to be computed.

Example 3.7.3

Problem: If possible, find the inverse of A =

⎛

⎝

1 1 1
1 2 2
1 2 3

⎞

⎠ .

Solution:

[A | I] =

⎛

⎝

1 1 1 1 0 0
1 2 2 0 1 0
1 2 3 0 0 1

⎞

⎠ −→

⎛

⎝

1 1 1 1 0 0
0 1 1 −1 1 0
0 1 2 −1 0 1

⎞

⎠

−→

⎛

⎝

1 0 0 2 −1 0
0 1 1 −1 1 0
0 0 1 0 −1 1

⎞

⎠ −→

⎛

⎝

1 0 0 2 −1 0
0 1 0 −1 2 −1
0 0 1 0 −1 1

⎞

⎠

Therefore, the matrix is nonsingular, and A−1 =

⎛

⎝

2 −1 0
−1 2 −1

0 −1 1

⎞

⎠ . If we wish

to check this answer, we need only check that AA−1 = I. If this holds, then the
result of Example 3.7.2 insures that A−1A = I will automatically be true.

Earlier in this section it was stated that one almost never solves a nonsin-
gular linear system Ax = b by first computing A−1 and then the product
x = A−1b. To appreciate why this is true, pay attention to how much effort is
required to perform one matrix inversion.

Operation Counts for Inversion
Computing A−1

n×n by reducing [A|I] with Gauss–Jordan requires
• n3 multiplications/divisions,
• n3 − 2n2 + n additions/subtractions.

Interestingly, if Gaussian elimination with a back substitution process is
applied to [A|I] instead of the Gauss–Jordan technique, then exactly the same
operation count can be obtained. Although Gaussian elimination with back sub-
stitution is more efficient than the Gauss–Jordan method for solving a single
linear system, the two procedures are essentially equivalent for inversion.
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Solving a nonsingular system Ax = b by first computing A−1 and then
forming the product x = A−1b requires n3 + n2 multiplications/divisions and
n3−n2 additions/subtractions. Recall from §1.5 that Gaussian elimination with
back substitution requires only about n3/3 multiplications/divisions and about
n3/3 additions/subtractions. In other words, using A−1 to solve a nonsingular
system Ax = b requires about three times the effort as does Gaussian elimina-
tion with back substitution.

To put things in perspective, consider standard matrix multiplication be-
tween two n× n matrices. It is not difficult to verify that n3 multiplications
and n3−n2 additions are required. Remarkably, it takes almost exactly as much
effort to perform one matrix multiplication as to perform one matrix inversion.
This fact always seems to be counter to a novice’s intuition—it “feels” like ma-
trix inversion should be a more difficult task than matrix multiplication, but this
is not the case.

The remainder of this section is devoted to a discussion of some of the
important properties of matrix inversion. We begin with the four basic facts
listed below.

Properties of Matrix Inversion
For nonsingular matrices A and B, the following properties hold.

•
(

A−1
)−1 = A. (3.7.13)

• The product AB is also nonsingular. (3.7.14)

• (AB)−1 = B−1A−1 (the reverse order law for inversion). (3.7.15)

•
(

A−1
)T =

(

AT
)−1 and

(

A−1
)∗ = (A∗)−1. (3.7.16)

Proof. Property (3.7.13) follows directly from the definition of inversion. To
prove (3.7.14) and (3.7.15), let X = B−1A−1 and verify that (AB)X = I by
writing

(AB)X = (AB)B−1A−1 = A(BB−1)A−1 = A(I)A−1 = AA−1 = I.

According to the discussion in Example 3.7.2, we are now guaranteed that
X(AB) = I, and we need not bother to verify it. To prove property (3.7.16), let
X =

(

A−1
)T and verify that AT X = I. Make use of the reverse order law for

transposition to write

AT X = AT
(

A−1
)T =

(

A−1A
)T = IT = I.

Therefore,
(

AT
)−1 = X =

(

A−1
)T

. The proof of the conjugate transpose case
is similar.
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In general the product of two rank-r matrices does not necessarily have to
produce another matrix of rank r. For example,

A =
(

1 2
2 4

)

and B =
(

2 4
−1 −2

)

each has rank 1, but the product AB = 0 has rank 0. However, we saw in
(3.7.14) that the product of two invertible matrices is again invertible. That is, if
rank (An×n) = n and rank (Bn×n) = n, then rank (AB) = n. This generalizes
to any number of matrices.

Products of Nonsingular Matrices Are Nonsingular
If A1,A2, . . . ,Ak are each n× n nonsingular matrices, then the prod-
uct A1A2 · · ·Ak is also nonsingular, and its inverse is given by the
reverse order law. That is,

(A1A2 · · ·Ak)−1 = A−1
k · · ·A−1

2 A−1
1 .

Proof. Apply (3.7.14) and (3.7.15) inductively. For example, when k = 3 you
can write

(A1{A2A3})−1 = {A2A3}−1A−1
1 = A−1

3 A−1
2 A−1

1 .

Exercises for section 3.7

3.7.1. When possible, find the inverse of each of the following matrices. Check
your answer by using matrix multiplication.

(a)
(

1 2
1 3

)

(b)
(

1 2
2 4

)

(c)

⎛

⎝

4 −8 5
4 −7 4
3 −4 2

⎞

⎠

(d)

⎛

⎝

1 2 3
4 5 6
7 8 9

⎞

⎠ (e)

⎛

⎜
⎝

1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

⎞

⎟
⎠

3.7.2. Find the matrix X such that X = AX + B, where

A =

⎛

⎝

0 −1 0
0 0 −1
0 0 0

⎞

⎠ and B =

⎛

⎝

1 2
2 1
3 3

⎞

⎠ .
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3.7.3. For a square matrix A, explain why each of the following statements
must be true.

(a) If A contains a zero row or a zero column, then A is singular.
(b) If A contains two identical rows or two identical columns, then

A is singular.
(c) If one row (or column) is a multiple of another row (or column),

then A must be singular.

3.7.4. Answer each of the following questions.
(a) Under what conditions is a diagonal matrix nonsingular? De-

scribe the structure of the inverse of a diagonal matrix.
(b) Under what conditions is a triangular matrix nonsingular? De-

scribe the structure of the inverse of a triangular matrix.

3.7.5. If A is nonsingular and symmetric, prove that A−1 is symmetric.

3.7.6. If A is a square matrix such that I−A is nonsingular, prove that

A(I−A)−1 = (I−A)−1A.

3.7.7. Prove that if A is m× n and B is n×m such that AB = Im and
BA = In, then m = n.

3.7.8. If A, B, and A + B are each nonsingular, prove that

A(A + B)−1B = B(A + B)−1A =
(

A−1 + B−1
)−1

.

3.7.9. Let S be a skew-symmetric matrix with real entries.
(a) Prove that I−S is nonsingular. Hint: xT x = 0 =⇒ x = 0.
(b) If A = (I + S)(I− S)−1, show that A−1 = AT .

3.7.10. For matrices Ar×r, Bs×s, and Cr×s such that A and B are nonsin-
gular, verify that each of the following is true.

(a)
(

A 0
0 B

)−1

=
(

A−1 0
0 B−1

)

(b)
(

A C
0 B

)−1

=
(

A−1 −A−1CB−1

0 B−1

)
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3.7.11. Consider the block matrix
(

Ar×r Cr×s

Rs×r Bs×s

)

. When the indicated in-

verses exist, the matrices defined by

S = B−RA−1C and T = A−CB−1R

are called the Schur complements
20 of A and B, respectively.

(a) If A and S are both nonsingular, verify that

(

A C
R B

)−1

=
(

A−1 + A−1CS−1RA−1 −A−1CS−1

−S−1RA−1 S−1

)

.

(b) If B and T are nonsingular, verify that

(

A C
R B

)−1

=
(

T−1 −T−1CB−1

−B−1RT−1 B−1 + B−1RT−1CB−1

)

.

3.7.12. Suppose that A, B, C, and D are n× n matrices such that ABT

and CDT are each symmetric and ADT −BCT = I. Prove that

AT D−CT B = I.

20
This is named in honor of the German mathematician Issai Schur (1875–1941), who first studied
matrices of this type. Schur was a student and collaborator of Ferdinand Georg Frobenius
(p. 662). Schur and Frobenius were among the first to study matrix theory as a discipline
unto itself, and each made great contributions to the subject. It was Emilie V. Haynsworth
(1916–1987)—a mathematical granddaughter of Schur—who introduced the phrase “Schur
complement” and developed several important aspects of the concept.
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Solutions for exercises in section 3. 7

3.7.1. (a)
(

3 −2
−1 1

)
(b) Singular (c)

⎛

⎝
2 −4 3
4 −7 4
5 −8 4

⎞

⎠ (d) Singular

(e)

⎛

⎜⎝

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

⎞

⎟⎠

3.7.2. Write the equation as (I−A)X = B and compute

X = (I−A)−1B =

⎛

⎝
1 −1 1
0 1 −1
0 0 1

⎞

⎠

⎛

⎝
1 2
2 1
3 3

⎞

⎠ =

⎛

⎝
2 4
−1 −2

3 3

⎞

⎠ .

3.7.3. In each case, the given information implies that rank (A) < n —see the solution
for Exercise 2.1.3.

3.7.4. (a) If D is diagonal, then D−1 exists if and only if each dii ̸= 0, in which case

⎛

⎜⎜⎝

d11 0 · · · 0
0 d22 · · · 0
...

...
. . .

...
0 0 · · · dnn

⎞

⎟⎟⎠

−1

=

⎛

⎜⎜⎝

1/d11 0 · · · 0
0 1/d22 · · · 0
...

...
. . .

...
0 0 · · · 1/dnn

⎞

⎟⎟⎠ .

(b) If T is triangular, then T−1 exists if and only if each tii ̸= 0. If T
is upper (lower) triangular, then T−1 is also upper (lower) triangular with
[T−1]ii = 1/tii.

3.7.5.
(
A−1

)T =
(
AT
)−1= A−1.

3.7.6. Start with A(I −A) = (I −A)A and apply (I−A)−1 to both sides, first on
one side and then on the other.

3.7.7. Use the result of Example 3.6.5 that says that trace (AB) = trace (BA) to
write

m = trace (Im) = trace (AB) = trace (BA) = trace (In) = n.

3.7.8. Use the reverse order law for inversion to write
[
A(A + B)−1B

]−1 = B−1(A + B)A−1= B−1+ A−1

and [
B(A + B)−1A

]−1 = A−1(A + B)B−1= B−1+ A−1.

3.7.9. (a) (I− S)x = 0 =⇒ xT (I− S)x = 0 =⇒ xT x = xT Sx. Taking trans-
poses on both sides yields xT x = −xT Sx, so that xT x = 0, and thus x = 0
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(recall Exercise 3.6.12). The conclusion follows from property (3.7.8).
(b) First notice that Exercise 3.7.6 implies that A = (I + S)(I− S)−1 =
(I− S)−1(I + S). By using the reverse order laws, transposing both sides yields
exactly the same thing as inverting both sides.

3.7.10. Use block multiplication to verify that the product of the matrix with its inverse
is the identity matrix.

3.7.11. Use block multiplication to verify that the product of the matrix with its inverse
is the identity matrix.

3.7.12. Let M =
(

A B
C D

)
and X =

(
DT −BT

−CT AT

)
. The hypothesis implies that

MX = I, and hence (from the discussion in Example 3.7.2) it must also be
true that XM = I, from which the conclusion follows. Note: This problem
appeared on a past Putnam Exam—a national mathematics competition for
undergraduate students that is considered to be quite challenging. This means
that you can be proud of yourself if you solved it before looking at this solution.

Solutions for exercises in section 3. 8

3.8.1. (a) B−1=

⎛

⎝
1 2 −1
0 −1 1
1 4 −2

⎞

⎠

(b) Let c =

⎛

⎝
0
0
1

⎞

⎠ and dT = ( 0 2 1 ) to obtain C−1=

⎛

⎝
0 −2 1
1 3 −1
−1 −4 2

⎞

⎠

3.8.2. A∗j needs to be removed, and b needs to be inserted in its place. This is
accomplished by writing B = A+(b−A∗j)eT

j . Applying the Sherman–Morrison
formula with c = b−A∗j and dT = eT

j yields

B−1= A−1−
A−1(b−A∗j)eT

j A−1

1 + eT
j A−1(b−A∗j)

= A−1−
A−1beT

j A−1− ejeT
j A−1

1 + eT
j A−1b− eT

j ej

= A−1− A−1b[A−1]j∗ − ej [A−1]j∗
[A−1]j∗b

= A−1−
(
A−1b− ej

)
[A−1]j∗

[A−1]j∗b
.

3.8.3. Use the Sherman–Morrison formula to write

z = (A + cdT )−1b =
(
A−1− A−1cdT A−1

1 + dT A−1c

)
b = A−1b− A−1cdT A−1b

1 + dT A−1c

= x− ydT x
1 + dT y

.

3.8.4. (a) For a nonsingular matrix A, the Sherman–Morrison formula guarantees
that A+ αeieT

j is also nonsingular when 1 + α
[
A−1

]
ji
̸= 0, and this certainly

will be true if α is sufficiently small.


