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3.9 ELEMENTARY MATRICES AND EQUIVALENCE

A common theme in mathematics is to break complicated objects into more
elementary components, such as factoring large polynomials into products of
smaller polynomials. The purpose of this section is to lay the groundwork for
similar ideas in matrix algebra by considering how a general matrix might be
factored into a product of more “elementary” matrices.

Elementary Matrices
Matrices of the form I−uvT , where u and v are n× 1 columns such
that vT u ̸= 1 are called elementary matrices, and we know from
(3 .8.1) that all such matrices are nonsingular and

(

I− uvT
)−1

= I− uvT

vT u− 1
. (3 .9.1)

Notice that inverses of elementary matrices are elementary matrices.

We are primarily interested in the elementary matrices associated with the
three elementary row (or column) operations hereafter referred to as follows.

• Type I is interchanging rows (columns) i and j.

• Type II is multiplying row (column) i by α ̸= 0 .

• Type III is adding a multiple of row (column) i to row (column) j.

An elementary matrix of Type I, II, or III is created by performing an elementary
operation of Type I, II, or III to an identity matrix. For example, the matrices

E1 =

⎛

⎝

0 1 0
1 0 0
0 0 1

⎞

⎠ , E2 =

⎛

⎝

1 0 0
0 α 0
0 0 1

⎞

⎠ , and E3 =

⎛

⎝

1 0 0
0 1 0
α 0 1

⎞

⎠ (3 .9.2)

are elementary matrices of Types I, II, and III, respectively, because E1 arises
by interchanging rows 1 and 2 in I3, whereas E2 is generated by multiplying
row 2 in I3 by α, and E3 is constructed by multiplying row 1 in I3 by α
and adding the result to row 3 . The matrices in (3 .9.2) also can be generated by
column operations. For example, E3 can be obtained by adding α times the
third column of I3 to the first column. The fact that E1, E2, and E3 are of
the form (3 .9.1) follows by using the unit columns ei to write

E1 = I−uuT , where u = e1−e2, E2 = I−(1−α)e2eT
2 , and E3 = I+αe3eT

1 .
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These observations generalize to matrices of arbitrary size.
One of our objectives is to remove the arrows from Gaussian elimination

because the inability to do “arrow algebra” limits the theoretical analysis. For
example, while it makes sense to add two equations together, there is no mean-
ingful analog for arrows—reducing A→ B and C→ D by row operations does
not guarantee that A + C → B + D is possible. The following properties are
the mechanisms needed to remove the arrows from elimination processes.

Properties of Elementary Matrices
• When used as a left-hand multiplier, an elementary matrix of Type

I, II, or III executes the corresponding row operation.

• When used as a right-hand multiplier, an elementary matrix of Type
I, II, or III executes the corresponding column operation.

Proof. A proof for Type III operations is given—the other two cases are left to
the reader. Using I+αejeT

i as a left-hand multiplier on an arbitrary matrix A
produces

(

I + αejeT
i

)

A = A + αejAi∗ = A + α

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0
...

...
...

ai1 ai2 · · · ain
...

...
...

0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

← jth row .

This is exactly the matrix produced by a Type III row operation in which the
ith row of A is multiplied by α and added to the jth row. When I + αejeT

i

is used as a right-hand multiplier on A, the result is

A
(

I + αejeT
i

)

= A + αA∗jeT
i = A + α

⎛

⎜
⎜
⎜
⎜
⎝

ith col
↓

0 · · · a1j · · · 0
0 · · · a2j · · · 0
...

...
...

0 · · · anj · · · 0

⎞

⎟
⎟
⎟
⎟
⎠

.

This is the result of a Type III column operation in which the jth column of A
is multiplied by α and then added to the ith column.
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Example 3.9.1

The sequence of row operations used to reduce A =

⎛

⎝

1 2 4
2 4 8
3 6 13

⎞

⎠ to EA is

indicated below.

A =

⎛

⎝

1 2 4
2 4 8
3 6 13

⎞

⎠ R2 − 2R1

R3 − 3 R1

−→

⎛

⎝

1 2 4
0 0 0
0 0 1

⎞

⎠

Interchange R2 and R3
−−−−−−−−→

⎛

⎝

1 2 4
0 0 1
0 0 0

⎞

⎠

R1 − 4R2

−→

⎛

⎝

1 2 0
0 0 1
0 0 0

⎞

⎠ = EA.

The reduction can be accomplished by a sequence of left-hand multiplications
with the corresponding elementary matrices as shown below.

⎛

⎝

1 −4 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠

⎛

⎝

1 0 0
0 1 0
−3 0 1

⎞

⎠

⎛

⎝

1 0 0
−2 1 0

0 0 1

⎞

⎠A = EA.

The product of these elementary matrices is P =

⎛

⎝

13 0 −4
−3 0 1
−2 1 0

⎞

⎠ , and you can

verify that it is indeed the case that PA = EA. Thus the arrows are eliminated
by replacing them with a product of elementary matrices.

We are now in a position to understand why nonsingular matrices are pre-
cisely those matrices that can be factored as a product of elementary matrices.

Products of Elementary Matrices
• A is a nonsingular matrix if and only if A is the product

of elementary matrices of Type I, II, or III.
(3 .9.3 )

Proof. If A is nonsingular, then the Gauss–Jordan technique reduces A to
I by row operations. If G1,G2, . . . ,Gk is the sequence of elementary matrices
that corresponds to the elementary row operations used, then

Gk · · ·G2G1A = I or, equivalently, A = G−1
1 G−1

2 · · ·G−1
k .

Since the inverse of an elementary matrix is again an elementary matrix of the
same type, this proves that A is the product of elementary matrices of Type I,
II, or III. Conversely, if A = E1E2 · · ·Ek is a product of elementary matrices,
then A must be nonsingular because the Ei ’s are nonsingular, and a product
of nonsingular matrices is also nonsingular.
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Equivalence
• Whenever B can be derived from A by a combination of elementary

row and column operations, we write A ∼ B, and we say that A
and B are equivalent matrices. Since elementary row and column
operations are left-hand and right-hand multiplication by elementary
matrices, respectively, and in view of (3 .9.3 ), we can say that

A ∼ B⇐⇒ PAQ = B for nonsingular P and Q.

• Whenever B can be obtained from A by performing a sequence
of elementary row operations only, we write A row∼ B, and we say
that A and B are row equivalent. In other words,

A row∼ B⇐⇒ PA = B for a nonsingular P.

• Whenever B can be obtained from A by performing a sequence of
column operations only, we write A col∼ B, and we say that A and
B are column equivalent. In other words,

A col∼ B⇐⇒ AQ = B for a nonsingular Q.

If it’s possible to go from A to B by elementary row and column oper-
ations, then clearly it’s possible to start with B and get back to A because
elementary operations are reversible—i.e., PAQ = B =⇒ P−1BQ−1 = A. It
therefore makes sense to talk about the equivalence of a pair of matrices without
regard to order. In other words, A ∼ B ⇐⇒ B ∼ A. Furthermore, it’s not
difficult to see that each type of equivalence is transitive in the sense that

A ∼ B and B ∼ C =⇒ A ∼ C.

In §2.2 it was stated that each matrix A possesses a unique reduced row
echelon form EA, and we accepted this fact because it is intuitively evident.
However, we are now in a position to understand a rigorous proof.

Example 3.9.2
Problem: Prove that EA is uniquely determined by A.

Solution: Without loss of generality, we may assume that A is square—
otherwise the appropriate number of zero rows or columns can be adjoined to A
without affecting the results. Suppose that A row∼ E1 and A row∼ E2, where E1

and E2 are both in reduced row echelon form. Consequently, E1
row∼ E2, and

hence there is a nonsingular matrix P such that

PE1 = E2. (3 .9.4)
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Furthermore, by permuting the rows of E1 and E2 to force the pivotal 1’s to
occupy the diagonal positions, we see that

E1
row∼ T1 and E2

row∼ T2, (3 .9.5)

where T1 and T2 are upper-triangular matrices in which the basic columns in
each Ti occupy the same positions as the basic columns in Ei. For example, if

E =

⎛

⎝

1 2 0
0 0 1
0 0 0

⎞

⎠ , then T =

⎛

⎝

1 2 0
0 0 0
0 0 1

⎞

⎠ .

Each Ti has the property that T2
i = Ti because there is a permutation

matrix Qi (a product of elementary interchange matrices of Type I) such that

QiTiQT
i =

(

Iri Ji

0 0

)

or, equivalently, Ti = QT
i

(

Iri Ji

0 0

)

Qi,

and QT
i = Q−1

i (see Exercise 3 .9.4) implies T2
i = Ti. It follows from (3 .9.5)

that T1
row∼ T2, so there is a nonsingular matrix R such that RT1 = T2. Thus

T2 = RT1 = RT1T1 = T2T1 and T1 = R−1T2 = R−1T2T2 = T1T2.

Because T1 and T2 are both upper triangular, T1T2 and T2T1 have the same
diagonal entries, and hence T1 and T2 have the same diagonal. Therefore, the
positions of the basic columns (i.e., the pivotal positions) in T1 agree with those
in T2, and hence E1 and E2 have basic columns in exactly the same positions.
This means there is a permutation matrix Q such that

E1Q =
(

Ir J1

0 0

)

and E2Q =
(

Ir J2

0 0

)

.

Using (3 .9.4) yields PE1Q = E2Q, or
(

P11 P12

P21 P22

)(

Ir J1

0 0

)

=
(

Ir J2

0 0

)

,

which in turn implies that P11 = Ir and P11J1 = J2. Consequently, J1 = J2,
and it follows that E1 = E2.

In passing, notice that the uniqueness of EA implies the uniqueness of the
pivot positions in any other row echelon form derived from A. If A row∼ U1

and A row∼ U2, where U1 and U2 are row echelon forms with different pivot
positions, then Gauss–Jordan reduction applied to U1 and U2 would lead to
two different reduced echelon forms, which is impossible.

In §2.2 we observed the fact that the column relationships in a matrix A
are exactly the same as the column relationships in EA. This observation is a
special case of the more general result presented below.
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Column and Row Relationships
• If A row∼ B, then linear relationships existing among columns of A

also hold among corresponding columns of B. That is,

B∗k =
n
∑

j=1

αjB∗j if and only if A∗k =
n
∑

j=1

αjA∗j . (3 .9.6)

• In particular, the column relationships in A and EA must be iden-
tical, so the nonbasic columns in A must be linear combinations of
the basic columns in A as described in (2.2.3 ).

• If A col∼ B, then linear relationships existing among rows of A must
also hold among corresponding rows of B.

• Summary. Row equivalence preserves column relationships, and col-
umn equivalence preserves row relationships.

Proof. If A row∼ B, then PA = B for some nonsingular P. Recall from (3 .5.5)
that the jth column in B is given by

B∗j = (PA)∗j = PA∗j .

Therefore, if A∗k =
∑

j αjA∗j , then multiplication by P on the left produces
B∗k =

∑

j αjB∗j . Conversely, if B∗k =
∑

j αjB∗j , then multiplication on the
left by P−1 produces A∗k =

∑

j αjA∗j . The statement concerning column
equivalence follows by considering transposes.

The reduced row echelon form EA is as far as we can go in reducing A by
using only row operations. However, if we are allowed to use row operations in
conjunction with column operations, then, as described below, the end result of
a complete reduction is much simpler.

Rank Normal Form
If A is an m× n matrix such that rank (A) = r, then

A ∼ Nr =
(

Ir 0
0 0

)

. (3 .9.7)

Nr is called the rank normal form for A, and it is the end product
of a complete reduction of A by using both row and column operations.
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Proof. It is always true that A row∼ EA so that there is a nonsingular matrix
P such that PA = EA. If rank (A) = r, then the basic columns in EA are
the r unit columns. Apply column interchanges to EA so as to move these r
unit columns to the far left-hand side. If Q1 is the product of the elementary
matrices corresponding to these column interchanges, then PAQ1 has the form

PAQ1 = EAQ1 =
(

Ir J
0 0

)

.

Multiplying both sides of this equation on the right by the nonsingular matrix

Q2 =
(

Ir −J
0 I

)

produces PAQ1Q2 =
(

Ir J
0 0

)(

Ir −J
0 I

)

=
(

Ir 0
0 0

)

.

Thus A ∼ Nr. because P and Q = Q1Q2 are nonsingular.

Example 3.9.3
Problem: Explain why rank

(
A 0
0 B

)

= rank (A) + rank (B).

Solution: If rank (A) = r and rank (B) = s, then A ∼ Nr and B ∼ Ns.
Consequently,

(

A 0
0 B

)

∼
(

Nr 0
0 Ns

)

=⇒ rank

(

A 0
0 B

)

= rank

(

Nr 0
0 Ns

)

= r + s.

Given matrices A and B, how do we decide whether or not A ∼ B,

A row∼ B, or A col∼ B? We could use a trial-and-error approach by attempting to
reduce A to B by elementary operations, but this would be silly because there
are easy tests, as described below.

Testing for Equivalence
For m× n matrices A and B the following statements are true.
• A ∼ B if and only if rank (A) = rank (B). (3 .9.8)
• A row∼ B if and only if EA = EB. (3 .9.9)

• A col∼ B if and only if EAT = EBT . (3 .9.10 )

Corollary. Multiplication by nonsingular matrices cannot change rank.



138 Chapter 3 Matrix Algebra

Proof. To establish the validity of (3 .9.8), observe that rank (A) = rank (B)
implies A ∼ Nr and B ∼ Nr. Therefore, A ∼ Nr ∼ B. Conversely, if A ∼ B,
where rank (A) = r and rank (B) = s, then A ∼ Nr and B ∼ Ns, and
hence Nr ∼ A ∼ B ∼ Ns. Clearly, Nr ∼ Ns implies r = s. To prove (3 .9.9),
suppose first that A row∼ B. Because B row∼ EB, it follows that A row∼ EB. Since
a matrix has a uniquely determined reduced echelon form, it must be the case
that EB = EA. Conversely, if EA = EB, then

A row∼ EA = EB
row∼ B =⇒ A row∼ B.

The proof of (3 .9.10 ) follows from (3 .9.9) by considering transposes because

A col∼ B⇐⇒ AQ = B⇐⇒ (AQ)T = BT

⇐⇒ QT AT = BT ⇐⇒ AT row∼ BT .

Example 3.9.4
Problem: Are the relationships that exist among the columns in A the same
as the column relationships in B, and are the row relationships in A the same
as the row relationships in B, where

A =

⎛

⎝

1 1 1
−4 −3 −1

2 1 −1

⎞

⎠ and B =

⎛

⎝

−1 −1 −1
2 2 2
2 1 −1

⎞

⎠?

Solution: Straightforward computation reveals that

EA = EB =

⎛

⎝

1 0 −2
0 1 3
0 0 0

⎞

⎠ ,

and hence A row∼ B. Therefore, the column relationships in A and B must be
identical, and they must be the same as those in EA. Examining EA reveals
that E∗3 = −2E∗1 + 3E∗2, so it must be the case that

A∗3 = −2A∗1 + 3A∗2 and B∗3 = −2B∗1 + 3B∗2.

The row relationships in A and B are different because EAT ̸= EBT .

On the surface, it may not seem plausible that a matrix and its transpose
should have the same rank. After all, if A is 3 × 10 0 , then A can have as
many as 10 0 basic columns, but AT can have at most three. Nevertheless, we
can now demonstrate that rank (A) = rank

(

AT
)

.
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Transposition and Rank
Transposition does not change the rank—i.e., for all m× n matrices,

rank (A) = rank
(

AT
)

and rank (A) = rank (A∗). (3 .9.11)

Proof. Let rank (A) = r, and let P and Q be nonsingular matrices such that

PAQ = Nr =
(

Ir 0r×n−r

0m−r×r 0m−r×n−r

)

.

Applying the reverse order law for transposition produces QT AT PT = NT
r .

Since QT and PT are nonsingular, it follows that AT ∼ NT
r , and therefore

rank
(

AT
)

= rank
(

NT
r

)

= rank

(

Ir 0r×m−r

0n−r×r 0n−r×m−r

)

= r = rank (A).

To prove rank (A) = rank (A∗), write Nr = Nr = PAQ = P̄ĀQ̄, and use the
fact that the conjugate of a nonsingular matrix is again nonsingular (because
K̄−1 = K−1 ) to conclude that Nr ∼ A, and hence rank (A) = rank

(

Ā
)

. It
now follows from rank (A) = rank

(

AT
)

that

rank (A∗) = rank
(

ĀT
)

= rank
(

Ā
)

= rank (A).

Exercises for section 3.9

3.9.1. Suppose that A is an m× n matrix.
(a) If [A|Im] is row reduced to a matrix [B|P], explain why P

must be a nonsingular matrix such that PA = B.

(b) If
[
A
In

]

is column reduced to
[
C
Q

]

, explain why Q must be a
nonsingular matrix such that AQ = C.

(c) Find a nonsingular matrix P such that PA = EA, where

A =

⎛

⎝

1 2 3 4
2 4 6 7
1 2 3 6

⎞

⎠ .

(d) Find nonsingular matrices P and Q such that PAQ is in rank
normal form.
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3.9.2. Consider the two matrices

A =

⎛

⎝

2 2 0 −1
3 −1 4 0
0 −8 8 3

⎞

⎠ and B =

⎛

⎝

2 −6 8 2
5 1 4 −1
3 −9 12 3

⎞

⎠ .

(a) Are A and B equivalent?
(b) Are A and B row equivalent?
(c) Are A and B column equivalent?

3.9.3. If A row∼ B, explain why the basic columns in A occupy exactly the
same positions as the basic columns in B.

3.9.4. A product of elementary interchange matrices—i.e., elementary matrices
of Type I—is called a permutation matrix. If P is a permutation
matrix, explain why P−1 = PT .

3.9.5. If An×n is a nonsingular matrix, which (if any) of the following state-
ments are true?

(a) A ∼ A−1. (b) A row∼ A−1. (c) A col∼ A−1.

(d) A ∼ I. (e) A row∼ I. (f) A col∼ I.

3.9.6. Which (if any) of the following statements are true?

(a) A ∼ B =⇒ AT ∼ BT . (b) A row∼ B =⇒ AT row∼ BT .

(c) A row∼ B =⇒ AT col∼ BT . (d) A row∼ B =⇒ A ∼ B.

(e) A col∼ B =⇒ A ∼ B. (f) A ∼ B =⇒ A row∼ B.

3.9.7. Show that every elementary matrix of Type I can be written as a product
of elementary matrices of Types II and III. Hint: Recall Exercise 1.2.12
on p. 14.

3.9.8. If rank (Am×n) = r, show that there exist matrices Bm×r and Cr×n

such that A = BC, where rank (B) = rank (C) = r. Such a factor-
ization is called a full-rank factorization. Hint: Consider the basic
columns of A and the nonzero rows of EA.

3.9.9. Prove that rank (Am×n) = 1 if and only if there are nonzero columns
um×1 and vn×1 such that

A = uvT .

3.9.10. Prove that if rank (An×n) = 1, then A2 = τA, where τ = trace (A).
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Solutions for exercises in section 3. 9

3.9.1. (a) If G1,G2, . . . ,Gk is the sequence of elementary matrices that corresponds
to the elementary row operations used in the reduction [A|I] −→ [B|P], then

Gk · · ·G2G1[A|I] = [B|P] =⇒ [Gk · · ·G2G1A | Gk · · ·G2G1I] = [B|P]
=⇒ Gk · · ·G2G1A = B and Gk · · ·G2G1 = P.

(b) Use the same argument given above, but apply it on the right-hand side.

(c) [A|I]
Gauss–Jordan
−−−−−−−−→ [EA|P] yields

⎛

⎝
1 2 3 4 1 0 0
2 4 6 7 0 1 0
1 2 3 6 0 0 1

⎞

⎠ −→

⎛

⎝
1 2 3 0 −7 4 0
0 0 0 1 2 −1 0
0 0 0 0 −5 2 1

⎞

⎠ .

Thus P =

⎛

⎝
−7 4 0

2 −1 0
−5 2 1

⎞

⎠ is the product of the elementary matrices corre-

sponding to the operations used in the reduction, and PA = EA.
(d) You already have P such that PA = EA. Now find Q such that EAQ =
Nr by column reducing EA. Proceed using part (b) to accumulate Q.

[
EA

I4

]
−→

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 0
0 0 0 1
0 0 0 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

−→

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 2 3
0 1 0 0
0 0 0 0

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

−→

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0

1 0 −2 −3
0 0 1 0
0 0 0 1
0 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.9.2. (a) Yes—because rank (A) = rank (B). (b) Yes—because EA = EB.
(c) No—because EAT ̸= EBT .

3.9.3. The positions of the basic columns in A correspond to those in EA. Because
A row∼ B ⇐⇒ EA = EB, it follows that the basic columns in A and B must
be in the same positions.

3.9.4. An elementary interchange matrix (a Type I matrix) has the form E = I− uuT ,
where u = ei − ej , and it follows from (3.9.1) that E = ET = E−1. If
P = E1E2 · · ·Ek is a product of elementary interchange matrices, then the re-
verse order laws yield

P−1 = (E1E2 · · ·Ek)−1 = E−1
k · · ·E−1

2 E−1
1

= ET
k · · ·ET

2 ET
1 = (E1E2 · · ·Ek)T = PT .
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3.9.5. They are all true! A ∼ I ∼ A−1 because rank (A) = n = rank
(
A−1

)
, A row∼

A−1 because PA = A−1 with P =
(
A−1

)2 = A−2, and A col∼ A−1 because

AQ = A−1 with Q = A−2. The fact that A row∼ I and A col∼ I follows since
A−1A = AA−1 = I.

3.9.6. (a), (c), (d), and (e) are true.
3.9.7. Rows i and j can be interchanged with the following sequence of Type II and

Type III operations—this is Exercise 1.2.12 on p. 14.

Rj ← Rj + Ri (replace row j by the sum of row j and i)
Ri ← Ri −Rj (replace row i by the difference of row i and j)
Rj ← Rj + Ri (replace row j by the sum of row j and i)
Ri ← −Ri (replace row i by its negative)

Translating these to elementary matrices (remembering to build from the right
to the left) produces

(I− 2eieT
i )(I + ejeT

i )(I− eieT
j )(I + ejeT

i ) = I− uuT , where u = ei − ej .

3.9.8. Let Bm×r = [A∗b1A∗b2 · · ·A∗br ] contain the basic columns of A, and let Cr×n

contain the nonzero rows of EA. If A∗k is basic—say A∗k = A∗bj —then
C∗k = ej , and

(BC)∗k = BC∗k = Bej = B∗j = A∗bj = A∗k.

If A∗k is nonbasic, then C∗k is nonbasic and has the form

C∗k =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

µ1

µ2
...

µj

...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= µ1

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
0
...
0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

+ µ2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0
1
...
0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

+ · · · + µj

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
1
...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= µ1e1 + µ2e2 + · · · + µjej ,

where the ei ’s are the basic columns to the left of C∗k. Because A row∼ EA,
the relationships that exist among the columns of A are exactly the same as
the relationships that exist among the columns of EA. In particular,

A∗k = µ1A∗b1 + µ2A∗b2 + · · · + µjA∗bj ,

where the A∗bi ’s are the basic columns to the left of A∗k. Therefore,

(BC)∗k = BC∗k = B (µ1e1 + µ2e2 + · · · + µjej)
= µ1B∗1 + µ2B∗2 + · · · + µjB∗j

= µ1A∗b1 + µ2A∗b2 + · · · + µjA∗bj

= A∗k.
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3.9.9. If A = uvT , where um×1 and vn×1 are nonzero columns, then

u row∼ e1 and vT col∼ eT
1 =⇒ A = uvT ∼ e1eT

1 = N1 =⇒ rank (A) = 1.

Conversely, if rank (A) = 1, then the existence of u and v follows from Exer-
cise 3.9.8. If you do not wish to rely on Exercise 3.9.8, write PAQ = N1 = e1eT

1 ,
where e1 is m× 1 and eT

1 is 1× n so that

A = P−1e1eT
1 Q−1 =

(
P−1

)
∗1
(
Q−1

)
1∗= uvT .

3.9.10. Use Exercise 3.9.9 and write

A = uvT =⇒ A2 =
(
uvT

) (
uvT

)
= u

(
vT u

)
vT = τuvT = τA,

where τ = vT u. Recall from Example 3.6.5 that trace (AB) = trace (BA),
and write

τ = trace(τ) = trace
(
vT u

)
= trace

(
uvT

)
= trace (A).

Solutions for exercises in section 3. 10

3.10.1. (a) L =

⎛

⎝
1 0 0
4 1 0
3 2 1

⎞

⎠ and U =

⎛

⎝
1 4 5
0 2 6
0 0 3

⎞

⎠ (b) x1 =

⎛

⎝
110
−36

8

⎞

⎠ and

x2 =

⎛

⎝
112
−39

10

⎞

⎠

(c) A−1 = 1
6

⎛

⎝
124 −40 14
−42 15 −6

10 −4 2

⎞

⎠

3.10.2. (a) The second pivot is zero. (b) P is the permutation matrix associated
with the permutation p = ( 2 4 1 3 ) . P is constructed by permuting the
rows of I in this manner.

L =

⎛

⎜⎝

1 0 0 0
0 1 0 0

1/3 0 1 0
2/3 −1/2 1/2 1

⎞

⎟⎠ and U =

⎛

⎜⎝

3 6 −12 3
0 2 −2 6
0 0 8 16
0 0 0 −5

⎞

⎟⎠

(c) x =

⎛

⎜⎝

2
−1

0
1

⎞

⎟⎠


