
CHAPTER 4

Vector
Spaces

4.1 SPACES AND SUBSPACES

After matrix theory became established toward the end of the nineteenth century,
it was realized that many mathematical entities that were considered to be quite
different from matrices were in fact quite similar. For example, objects such as
points in the plane ℜ2, points in 3-space ℜ3, polynomials, continuous functions,
and differentiable functions (to name only a few) were recognized to satisfy the
same additive properties and scalar multiplication properties given in §3.2 for
matrices. Rather than studying each topic separately, it was reasoned that it
is more efficient and productive to study many topics at one time by studying
the common properties that they satisfy. This eventually led to the axiomatic
definition of a vector space.

A vector space involves four things—two sets V and F , and two algebraic
operations called vector addition and scalar multiplication.
• V is a nonempty set of objects called vectors. Although V can be quite

general, we will usually consider V to be a set of n-tuples or a set of matrices.
• F is a scalar field—for us F is either the field ℜ of real numbers or the

field C of complex numbers.
• Vector addition (denoted by x+y ) is an operation between elements of V.

• Scalar multiplication (denoted by αx ) is an operation between elements of
F and V.

The formal definition of a vector space stipulates how these four things relate
to each other. In essence, the requirements are that vector addition and scalar
multiplication must obey exactly the same properties given in §3.2 for matrices.
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Vector Space Definition
The set V is called a vector space over F when the vector addition
and scalar multiplication operations satisfy the following properties.

(A1) x+y ∈ V for all x,y ∈ V. This is called the closure property
for vector addition.

(A2) (x + y) + z = x + (y + z) for every x,y, z ∈ V.

(A3) x + y = y + x for every x,y ∈ V.

(A4) There is an element 0 ∈ V such that x + 0 = x for every
x ∈ V.

(A5) For each x ∈ V, there is an element (−x) ∈ V such that
x + (−x) = 0.

(M1) αx ∈ V for all α ∈ F and x ∈ V. This is the closure
property for scalar multiplication.

(M2) (αβ)x = α(βx) for all α, β ∈ F and every x ∈ V.

(M3) α(x + y) = αx + αy for every α ∈ F and all x,y ∈ V.

(M4) (α + β)x = αx + βx for all α, β ∈ F and every x ∈ V.

(M5) 1x = x for every x ∈ V.

A theoretical algebraic treatment of the subject would concentrate on the
logical consequences of these defining properties, but the objectives in this text
are different, so we will not dwell on the axiomatic development.23 Neverthe-

23
The idea of defining a vector space by using a set of abstract axioms was contained in a general
theory published in 1844 by Hermann Grassmann (1808–1887), a theologian and philosopher
from Stettin, Poland, who was a self-taught mathematician. But Grassmann’s work was origi-
nally ignored because he tried to construct a highly abstract self-contained theory, independent
of the rest of mathematics, containing nonstandard terminology and notation, and he had a
tendency to mix mathematics with obscure philosophy. Grassmann published a complete re-
vision of his work in 1862 but with no more success. Only later was it realized that he had
formulated the concepts we now refer to as linear dependence, bases, and dimension. The
Italian mathematician Giuseppe Peano (1858–1932) was one of the few people who noticed
Grassmann’s work, and in 1888 Peano published a condensed interpretation of it. In a small
chapter at the end, Peano gave an axiomatic definition of a vector space similar to the one
above, but this drew little attention outside of a small group in Italy. The current definition is
derived from the 1918 work of the German mathematician Hermann Weyl (1885–1955). Even
though Weyl’s definition is closer to Peano’s than to Grassmann’s, Weyl did not mention his
Italian predecessor, but he did acknowledge Grassmann’s “epoch making work.” Weyl’s success
with the idea was due in part to the fact that he thought of vector spaces in terms of geometry,
whereas Grassmann and Peano treated them as abstract algebraic structures. As we will see,
it’s the geometry that’s important.
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less, it is important to recognize some of the more significant examples and to
understand why they are indeed vector spaces.

Example 4.1.1
Because (A1)–(A5) are generalized versions of the five additive properties of
matrix addition, and (M1)–(M5) are generalizations of the five scalar multipli-
cation properties given in §3.2, we can say that the following hold.

• The set ℜm×n of m × n real matrices is a vector space over ℜ.

• The set Cm×n of m × n complex matrices is a vector space over C.

Example 4.1.2
The real coordinate spaces

ℜ1×n = {( x1 x2 · · · xn ) , xi ∈ ℜ} and ℜn×1 =
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are special cases of the preceding example, and these will be the object of most
of our attention. In the context of vector spaces, it usually makes no difference
whether a coordinate vector is depicted as a row or as a column. When the row or
column distinction is irrelevant, or when it is clear from the context, we will use
the common symbol ℜn to designate a coordinate space. In those cases where
it is important to distinguish between rows and columns, we will explicitly write
ℜ1×n or ℜn×1. Similar remarks hold for complex coordinate spaces.

Although the coordinate spaces will be our primary concern, be aware that
there are many other types of mathematical structures that are vector spaces—
this was the reason for making an abstract definition at the outset. Listed below
are a few examples.

Example 4.1.3
With function addition and scalar multiplication defined by

(f + g)(x) = f(x) + g(x) and (αf)(x) = αf(x),

the following sets are vector spaces over ℜ :
• The set of functions mapping the interval [0, 1] into ℜ.

• The set of all real-valued continuous functions defined on [0, 1].
• The set of real-valued functions that are differentiable on [0, 1].
• The set of all polynomials with real coefficients.
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Example 4.1.4
Consider the vector space ℜ2, and let

L = {(x, y) | y = αx}

be a line through the origin. L is a subset of ℜ2, but L is a special kind
of subset because L also satisfies the properties (A1)–(A5) and (M1)–(M5)
that define a vector space. This shows that it is possible for one vector space to
properly contain other vector spaces.

Subspaces
Let S be a nonempty subset of a vector space V over F (symbolically,
S ⊆ V). If S is also a vector space over F using the same addition
and scalar multiplication operations, then S is said to be a subspace of
V. It’s not necessary to check all 10 of the defining conditions in order
to determine if a subset is also a subspace—only the closure conditions
(A1) and (M1) need to be considered. That is, a nonempty subset S
of a vector space V is a subspace of V if and only if
(A1) x,y ∈ S =⇒ x + y ∈ S
and
(M1) x ∈ S =⇒ αx ∈ S for all α ∈ F .

Proof. If S is a subset of V, then S automatically inherits all of the vector
space properties of V except (A1), (A4), (A5), and (M1). However, (A1)
together with (M1) implies (A4) and (A5). To prove this, observe that (M1)
implies (−x) = (−1)x ∈ S for all x ∈ S so that (A5) holds. Since x and (−x)
are now both in S, (A1) insures that x + (−x) ∈ S, and thus 0 ∈ S.

Example 4.1.5
Given a vector space V, the set Z = {0} containing only the zero vector is
a subspace of V because (A1) and (M1) are trivially satisfied. Naturally, this
subspace is called the trivial subspace.

Vector addition in ℜ2 and ℜ3 is easily visualized by using the parallelo-
gram law, which states that for two vectors u and v, the sum u + v is the
vector defined by the diagonal of the parallelogram as shown in Figure 4.1.1.
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u = (u1,u2)

v = (v1,v2)

= (uu+v 1+v1, u2+v2)

Figure 4.1.1

We have already observed that straight lines through the origin in ℜ2 are
subspaces, but what about straight lines not through the origin? No—they can-
not be subspaces because subspaces must contain the zero vector (i.e., they must
pass through the origin). What about curved lines through the origin—can some
of them be subspaces of ℜ2? Again the answer is “No!” As depicted in Figure
4.1.2, the parallelogram law indicates why the closure property (A1) cannot be
satisfied for lines with a curvature because there are points u and v on the
curve for which u + v (the diagonal of the corresponding parallelogram) is not
on the curve. Consequently, the only proper subspaces of ℜ2 are the trivial
subspace and lines through the origin.

u
v

u+v

Figure 4.1.2

u

v

u+v
αu

P

Figure 4.1.3

In ℜ3, the trivial subspace and lines through the origin are again subspaces,
but there is also another one—planes through the origin. If P is a plane through
the origin in ℜ3, then, as shown in Figure 4.1.3, the parallelogram law guarantees
that the closure property for addition (A1) holds—the parallelogram defined by
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any two vectors in P is also in P so that if u,v ∈ P, then u + v ∈ P. The
closure property for scalar multiplication (M1) holds because multiplying any
vector by a scalar merely stretches it, but its angular orientation does not change
so that if u ∈ P, then αu ∈ P for all scalars α. Lines and surfaces in ℜ3 that
have curvature cannot be subspaces for essentially the same reason depicted in
Figure 4.1.2. So the only proper subspaces of ℜ3 are the trivial subspace, lines
through the origin, and planes through the origin.

The concept of a subspace now has an obvious interpretation in the visual
spaces ℜ2 and ℜ3 —subspaces are the flat surfaces passing through the origin.

Flatness
Although we can’t use our eyes to see “flatness” in higher dimensions,
our minds can conceive it through the notion of a subspace. From now on,
think of flat surfaces passing through the origin whenever you encounter
the term “subspace.”

For a set of vectors S = {v1,v2, . . . ,vr} from a vector space V, the set of
all possible linear combinations of the vi ’s is denoted by

span (S) = {α1v1 + α2v2 + · · · + αrvr | αi ∈ F} .

Notice that span (S) is a subspace of V because the two closure properties
(A1) and (M1) are satisfied. That is, if x =

∑

i ξivi and y =
∑

i ηivi are two
linear combinations from span (S) , then the sum x+y =

∑

i(ξi + ηi)vi is also
a linear combination in span (S) , and for any scalar β, βx =

∑

i(βξi)vi is
also a linear combination in span (S) .

u

v αu

βv

αu + βv

Figure 4.1.4
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For example, if u ̸= 0 is a vector in ℜ3, then span {u} is the straight
line passing through the origin and u. If S = {u,v}, where u and v are two
nonzero vectors in ℜ3 not lying on the same line, then, as shown in Figure 4.1.4,
span (S) is the plane passing through the origin and the points u and v. As we
will soon see, all subspaces of ℜn are of the type span (S), so it is worthwhile
to introduce the following terminology.

Spanning Sets
• For a set of vectors S = {v1,v2, . . . ,vr} , the subspace

span (S) = {α1v1 + α2v2 + · · · + αrvr}

generated by forming all linear combinations of vectors from S is
called the space spanned by S.

• If V is a vector space such that V = span (S) , we say S is a
spanning set for V. In other words, S spans V whenever each
vector in V is a linear combination of vectors from S.

Example 4.1.6

(i) In Figure 4.1.4, S = {u,v} is a spanning set for the indicated plane.

(ii) S =
{(

1
1

)

,

(

2
2

)}

spans the line y = x in ℜ2.

(iii) The unit vectors

⎧

⎨

⎩

e1 =

⎛

⎝

1
0
0

⎞

⎠ , e2 =

⎛

⎝

0
1
0

⎞

⎠ , e3 =

⎛

⎝

0
0
1

⎞

⎠

⎫

⎬

⎭

span ℜ3.

(iv) The unit vectors {e1, e2, . . . , en} in ℜn form a spanning set for ℜn.

(v) The finite set
{

1, x, x2, . . . , xn
}

spans the space of all polynomials such
that deg p(x) ≤ n, and the infinite set

{

1, x, x2, . . .
}

spans the space of all
polynomials.

Example 4.1.7
Problem: For a set of vectors S = {a1,a2, . . . ,an} from a subspace V ⊆ ℜm×1,
let A be the matrix containing the ai ’s as its columns. Explain why S spans V
if and only if for each b ∈ V there corresponds a column x such that Ax = b
(i.e., if and only if Ax = b is a consistent system for every b ∈ V).
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Solution: By definition, S spans V if and only if for each b ∈ V there exist
scalars αi such that

b = α1a1 + α2a2 + · · · + αnan =
(

a1 | a2 | · · · | an

)

⎛

⎜

⎜

⎝

α1

α2
...

αn

⎞

⎟

⎟

⎠

= Ax.

Note: This simple observation often is quite helpful. For example, to test whether
or not S = {( 1 1 1 ) , ( 1 −1 −1 ) , ( 3 1 1 )} spans ℜ3, place these
rows as columns in a matrix A, and ask, “Is the system

⎛

⎝

1 1 3
1 −1 1
1 −1 1

⎞

⎠

⎛

⎝

x1

x2

x3

⎞

⎠ =

⎛

⎝

b1

b2

b3

⎞

⎠

consistent for every b ∈ ℜ3?” Recall from (2.3.4) that Ax = b is consis-
tent if and only if rank[A|b] = rank (A). In this case, rank (A) = 2, but
rank[A|b] = 3 for some b ’s (e.g., b1 = 0, b2 = 1, b3 = 0), so S doesn’t span
ℜ3. On the other hand, S ′ = {( 1 1 1 ) , ( 1 −1 −1 ) , ( 3 1 2 )} is a
spanning set for ℜ3 because

A =

⎛

⎝

1 1 3
1 −1 1
1 −1 2

⎞

⎠

is nonsingular, so Ax = b is consistent for all b (the solution is x = A−1b ).

As shown below, it’s possible to “add” two subspaces to generate another.

Sum of Subspaces
If X and Y are subspaces of a vector space V, then the sum of X
and Y is defined to be the set of all possible sums of vectors from X
with vectors from Y. That is,

X + Y = {x + y | x ∈ X and y ∈ Y}.

• The sum X + Y is again a subspace of V. (4.1.1)
• If SX , SY span X , Y, then SX ∪ SY spans X + Y. (4.1.2)
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Proof. To prove (4.1.1), demonstrate that the two closure properties (A1) and
(M1) hold for S = X +Y. To show (A1) is valid, observe that if u,v ∈ S, then
u = x1 + y1 and v = x2 + y2, where x1,x2 ∈ X and y1,y2 ∈ Y. Because
X and Y are closed with respect to addition, it follows that x1 + x2 ∈ X
and y1 + y2 ∈ Y, and therefore u + v = (x1 + x2) + (y1 + y2) ∈ S. To
verify (M1), observe that X and Y are both closed with respect to scalar
multiplication so that αx1 ∈ X and αy1 ∈ Y for all α, and consequently
αu = αx1 + αy1 ∈ S for all α. To prove (4.1.2), suppose SX = {x1,x2, . . . ,xr}
and SY = {y1,y2, . . . ,yt} , and write

z ∈ span (SX ∪ SY ) ⇐⇒z =
r
∑

i=1

αixi +
t
∑

i=1

βiyi = x + y with x ∈ X , y ∈ Y

⇐⇒z ∈ X + Y.

Example 4.1.8
If X ⊆ ℜ2 and Y ⊆ ℜ2 are subspaces defined by two different lines through
the origin, then X + Y = ℜ2. This follows from the parallelogram law—sketch
a picture for yourself.

Exercises for section 4.1

4.1.1. Determine which of the following subsets of ℜn are in fact subspaces of
ℜn (n > 2).

(a) {x | xi ≥ 0}, (b) {x | x1 = 0}, (c) {x | x1x2 = 0},

(d)

{

x
∣

∣

∣

n
∑

j=1
xj = 0

}

, (e)

{

x
∣

∣

∣

n
∑

j=1
xj = 1

}

,

(f) {x | Ax = b, where Am×n ̸= 0 and bm×1 ̸= 0} .

4.1.2. Determine which of the following subsets of ℜn×n are in fact subspaces
of ℜn×n.

(a) The symmetric matrices. (b) The diagonal matrices.
(c) The nonsingular matrices. (d) The singular matrices.
(e) The triangular matrices. (f) The upper-triangular matrices.
(g) All matrices that commute with a given matrix A.
(h) All matrices such that A2 = A.
(i) All matrices such that trace (A) = 0.

4.1.3. If X is a plane passing through the origin in ℜ3 and Y is the line
through the origin that is perpendicular to X , what is X + Y ?
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4.1.4. Why must a real or complex nonzero vector space contain an infinite
number of vectors?

4.1.5. Sketch a picture in ℜ3 of the subspace spanned by each of the following.

(a)

⎧

⎨

⎩

⎛

⎝

1
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⎞

⎠ ,

⎛

⎝

2
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⎠

⎫

⎬

⎭

, (b)

⎧

⎨

⎩

⎛

⎝

−4
0
0

⎞

⎠ ,

⎛

⎝

0
5
0

⎞
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⎛

⎝

1
1
0

⎞

⎠

⎫

⎬

⎭

,

(c)

⎧

⎨

⎩

⎛

⎝

1
0
0

⎞

⎠ ,

⎛

⎝

1
1
0

⎞

⎠ ,

⎛

⎝

1
1
1

⎞

⎠

⎫

⎬

⎭

.

4.1.6. Which of the following are spanning sets for ℜ3 ?

(a) {( 1 1 1 )} (b) {( 1 0 0 ) , ( 0 0 1 )},
(c) {( 1 0 0 ) , ( 0 1 0 ) , ( 0 0 1 ) , ( 1 1 1 )},
(d) {( 1 2 1 ) , ( 2 0 −1 ) , ( 4 4 1 )},
(e) {( 1 2 1 ) , ( 2 0 −1 ) , ( 4 4 0 )}.

4.1.7. For a vector space V, and for M, N ⊆ V, explain why
span (M ∪N ) = span (M) + span (N ) .

4.1.8. Let X and Y be two subspaces of a vector space V.
(a) Prove that the intersection X ∩ Y is also a subspace of V.
(b) Show that the union X ∪ Y need not be a subspace of V.

4.1.9. For A ∈ ℜm×n and S ⊆ ℜn×1, the set A(S) = {Ax |x ∈ S} contains
all possible products of A with vectors from S. We refer to A(S) as
the set of images of S under A.

(a) If S is a subspace of ℜn, prove A(S) is a subspace of ℜm.
(b) If s1, s2, . . . , sk spans S, show As1,As2, . . . ,Ask spans A(S).

4.1.10. With the usual addition and multiplication, determine whether or not
the following sets are vector spaces over the real numbers.

(a) ℜ, (b) C, (c) The rational numbers.

4.1.11. Let M = {m1,m2, . . . ,mr} and N = {m1,m2, . . . ,mr,v} be two sets
of vectors from the same vector space. Prove that span (M) = span (N )
if and only if v ∈ span (M) .

4.1.12. For a set of vectors S = {v1,v2, . . . ,vn} , prove that span (S) is the
intersection of all subspaces that contain S. Hint: For M =

⋂

S⊆V
V,

prove that span (S) ⊆ M and M ⊆ span (S) .
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Solutions for exercises in section 4. 1

4.1.1. Only (b) and (d) are subspaces.
4.1.2. (a), (b), (f), (g), and (i) are subspaces.
4.1.3. All of ℜ3.
4.1.4. If v ∈ V is a nonzero vector in a space V, then all scalar multiples αv must

also be in V.
4.1.5. (a) A line. (b) The (x,y)-plane. (c) ℜ3

4.1.6. Only (c) and (e) span ℜ3. To see that (d) does not span ℜ3, ask whether
or not every vector (x, y, z) ∈ ℜ3 can be written as a linear combination of
the vectors in (d). It’s convenient to think in terms columns, so rephrase the

question by asking if every b =

⎛

⎝
x
y
z

⎞

⎠ can be written as a linear combination

of

⎧
⎨

⎩v1 =

⎛

⎝
1
2
1

⎞

⎠ , v2 =

⎛

⎝
2
0
−1

⎞

⎠ , v3 =

⎛

⎝
4
4
1

⎞

⎠

⎫
⎬

⎭ . That is, for each b ∈ ℜ3, are

there scalars α1, α2, α3 such that α1v1 + α2v2 + α3v3 = b or, equivalently, is
⎛

⎝
1 2 4
2 0 4
1 −1 1

⎞

⎠

⎛

⎝
α1

α2

α3

⎞

⎠ =

⎛

⎝
x
y
z

⎞

⎠ consistent for all

⎛

⎝
x
y
z

⎞

⎠?

This is a system of the form Ax = b, and it is consistent for all b if and only
if rank ([A|b]) = rank (A) for all b. Since

⎛

⎝
1 2 4 x
2 0 4 y
1 −1 1 z

⎞

⎠→

⎛

⎝
1 2 4 x
0 −4 −4 y − 2x
0 −3 −3 z − x

⎞

⎠

→

⎛

⎝
1 2 4 x
0 −4 −4 y − 2x
0 0 0 (x/2) − (3y/4) + z

⎞

⎠ ,

it’s clear that there exist b ’s (e.g., b = (1, 0, 0)T ) for which Ax = b is not
consistent, and hence not all b ’s are a combination of the vi ’s. Therefore, the
vi ’s don’t span ℜ3.

4.1.7. This follows from (4.1.2).
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4.1.8. (a) u,v ∈ X ∩ Y =⇒ u,v ∈ X and u,v ∈ Y. Because X and Y are
closed with respect to addition, it follows that u + v ∈ X and u + v ∈ Y,
and therefore u + v ∈ X ∩ Y. Because X and Y are both closed with respect
to scalar multiplication, we have that αu ∈ X and αu ∈ Y for all α, and
consequently αu ∈ X ∩ Y for all α.
(b) The union of two different lines through the origin in ℜ2 is not a subspace.

4.1.9. (a) (A1) holds because x1, x2 ∈ A(S) =⇒ x1 = As1 and x2 = As2 for
some s1, s2 ∈ S =⇒ x1 + x2 = A(s1 + s2). Since S is a subspace, it is
closed under vector addition, so s1 + s2 ∈ S. Therefore, x1 +x2 is the image of
something in S —namely, s1+s2 —and this means that x1+x2 ∈ A(S). To see
that (M1) holds, consider αx, where α is an arbitrary scalar and x ∈ A(S).
Now, x ∈ A(S) =⇒ x = As for some s ∈ S =⇒ αx = αAs = A(αs).
Since S is a subspace, we are guaranteed that αs ∈ S, and therefore αx is the
image of something in S. This is what it means to say αx ∈ A(S).
(b) Prove equality by demonstrating that span {As1,As2, . . . ,Ask} ⊆ A(S)
and A(S) ⊆ span {As1,As2, . . . ,Ask} . To show span {As1,As2, . . . ,Ask} ⊆
A(S), write

x ∈ span {As1,As2, . . . ,Ask} =⇒ x =
k∑

i=1

αi(Asi) = A

(
k∑

i=1

αisi

)

∈ A(S).

Inclusion in the reverse direction is established by saying

x ∈ A(S) =⇒ x = As for some s ∈ S =⇒ s =
k∑

i=1

βisi

=⇒ x = A

(
k∑

i=1

βisi

)

=
k∑

i=1

βi(Asi) ∈ span {As1,As2, . . . ,Ask} .

4.1.10. (a) Yes, all of the defining properties are satisfied.
(b) Yes, this is essentially ℜ2.

(c) No, it is not closed with respect to scalar multiplication.
4.1.11. If span (M) = span (N ) , then every vector in N must be a linear combination

of vectors from M. In particular, v must be a linear combination of the mi ’s,
and hence v ∈ span (M) . To prove the converse, first notice that span (M) ⊆
span (N ) . The desired conclusion will follow if it can be demonstrated that
span (M) ⊇ span (N ) . The hypothesis that v ∈ span (M) guarantees that
v =

∑r
i=1 βimi. If z ∈ span (N ) , then

z =
r∑

i=1

αimi + αr+1v =
r∑

i=1

αimi + αr+1

r∑

i=1

βimi

=
r∑

i=1

(
αi + αr+1βi

)
mi,
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which shows z ∈ span (M) , and therefore span (M) ⊇ span (N ) .
4.1.12. To show span (S) ⊆ M, observe that x ∈ span (S) =⇒ x =

∑
i αivi.

If V is any subspace containing S, then
∑

i αivi ∈ V because V is closed
under addition and scalar multiplication, and therefore x ∈M. The fact that
M ⊆ span (S) follows because if x ∈M, then x ∈ span (S) because span (S)
is one particular subspace that contains S.

Solutions for exercises in section 4. 2

4.2.1. R (A) = span

⎧
⎨

⎩

⎛

⎝
1
−2
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⎛
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1
0
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⎬
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(
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)

= span

⎧
⎨

⎩

⎛

⎝
4
1
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⎠

⎫
⎬

⎭ ,

N (A) = span

⎧
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1
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2
0
−3

1
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,

⎛

⎜⎜⎜⎝
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0
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0
1

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

R
(
AT
)

= span

⎧
⎪⎪⎪⎨
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⎛

⎜⎜⎜⎝

1
2
0
−2

1

⎞

⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎝

0
0
1
3
4

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

4.2.2. (a) This is simply a restatement of equation (4.2.3).
(b) Ax = b has a unique solution if and only if rank (A) = n (i.e., there are
no free variables—see §2.5), and (4.2.10) says rank (A) = n⇐⇒ N (A) = {0}.

4.2.3. (a) It is consistent because b ∈ R (A).
(b) It is nonunique because N (A) ̸= {0}—see Exercise 4.2.2.

4.2.4. Yes, because rank[A|b] = rank (A) = 3 =⇒ ∃ x such that Ax = b —i.e.,
Ax = b is consistent.

4.2.5. (a) If R (A) = ℜn, then

R (A) = R (In) =⇒ A col∼ In =⇒ rank (A) = rank (In) = n.

(b) R (A) = R
(
AT
)

= ℜn and N (A) = N
(
AT
)

= {0}.
4.2.6. EA ̸= EB means that R

(
AT
)
̸= R

(
BT
)

and N (A) ̸= N (B). However,
EAT = EBT implies that R (A) = R (B) and N

(
AT
)

= N
(
BT
)
.

4.2.7. Demonstrate that rank (An×n) = n by using (4.2.10). If x ∈ N (A), then

Ax = 0 =⇒ A1x = 0 and A2x = 0

=⇒ x ∈ N (A1) = R
(
AT

2

)
=⇒ ∃ yT such that xT = yT A2

=⇒ xT x = yT A2x = 0 =⇒
∑

i

x2
i = 0 =⇒ x = 0.


