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4.2 FOUR FUNDAMENTAL SUBSPACES

The closure properties (A1) and (M1) on p.162 that characterize the notion
of a subspace have much the same “feel” as the definition of a linear function as
stated on p.89, but there’s more to it than just a “similar feel.” Subspaces are
intimately related to linear functions as explained below.

Subspaces and Linear Functions
For a linear function f mapping ℜn into ℜm, let R(f) denote the
range of f. That is, R(f) = {f(x) |x ∈ ℜn} ⊆ ℜm is the set of all
“images” as x varies freely over ℜn.

• The range of every linear function f : ℜn → ℜm is a subspace of
ℜm, and every subspace of ℜm is the range of some linear function.

For this reason, subspaces of ℜm are sometimes called linear spaces.

Proof. If f : ℜn → ℜm is a linear function, then the range of f is a subspace
of ℜm because the closure properties (A1) and (M1) are satisfied.Establish
(A1) by showing that y1,y2 ∈ R(f) ⇒ y1 +y2 ∈ R(f). If y1,y2 ∈ R(f), then
there must be vectors x1,x2 ∈ ℜn such that y1 = f(x1) and y2 = f(x2), so
it follows from the linearity of f that

y1 + y2 = f(x1) + f(x2) = f(x1 + x2) ∈ R(f).

Similarly, establish (M1) by showing that if y ∈ R(f), then αy ∈ R(f) for all
scalars α by using the definition of range along with the linearity of f to write

y ∈ R(f) =⇒ y = f(x) for some x ∈ ℜn =⇒ αy = αf(x) = f(αx) ∈ R(f).

Now prove that every subspace V of ℜm is the range of some linear function
f : ℜn → ℜm. Suppose that {v1,v2, . . . ,vn} is a spanning set for V so that

V = {α1v1 + · · · + αnvn |αi ∈ R}. (4.2.1)

Stack the vi ’s as columns in a matrix Am×n =
(

v1 |v2 | · · · |vn

)

, and put the
αi ’s in an n ×1 column x = (α1, α2, . . . , αn)T to write

α1v1 + · · · + αnvn =
(

v1 |v2 | · · · |vn

)

⎛

⎝

α1
...

αn

⎞

⎠ = Ax. (4.2.2)

The function f(x) = Ax is linear (recall Example 3.6.1, p.106), and we have
that R(f) = {Ax |x ∈ ℜn×1} = {α1v1 + · · · + αnvn |αi ∈ R} = V.
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In particular, this result means that every matrix A ∈ ℜm×n generates
a subspace of ℜm by means of the range of the linear function f(x) = Ax.
Likewise, the transpose 24 of A ∈ ℜm×n defines a subspace of ℜn by means
of the range of f(y) = AT y. These two “range spaces” are two of the four
fundamental subspaces defined by a matrix.

Range Spaces
The range of a matrix A ∈ ℜm×n is defined to be the subspace
R (A) of ℜm that is generated by the range of f(x) = Ax. That is,

R (A) = {Ax |x ∈ ℜn} ⊆ ℜm.

Similarly, the range of AT is the subspace of ℜn defined by

R
(

AT
)

= {AT y |y ∈ ℜm} ⊆ ℜn.

Because R (A) is the set of all “images” of vectors x ∈ ℜm under
transformation by A, some people call R (A) the image space of A.

The observation (4.2.2) that every matrix–vector product Ax (i.e., every
image) is a linear combination of the columns of A provides a useful character-
ization of the range spaces.Allowing the components of x = (ξ1, ξ2, . . . , ξn)T to
vary freely and writing

Ax =
(

A∗1 | A∗2 | · · · | A∗n

)

⎛

⎜

⎜

⎝

ξ1

ξ2
...

ξn

⎞

⎟

⎟

⎠

=
n
∑

j=1

ξjA∗j

shows that the set of all images Ax is the same as the set of all linear combi-
nations of the columns of A. Therefore, R (A) is nothing more than the space
spanned by the columns of A. That’s why R (A) is often called the column
space of A.

Likewise, R
(

AT
)

is the space spanned by the columns of AT . But the
columns of AT are just the rows of A (stacked upright), so R

(

AT
)

is simply
the space spanned by the rows 25 of A. Consequently, R

(

AT
)

is also known as
the row space of A. Below is a summary.

24
For ease of exposition, the discussion in this section is in terms of real matrices and real spaces,
but all results have complex analogs obtained by replacing AT by A∗ .

25
Strictly speaking, the range of AT is a set of columns, while the row space of A is a set of
rows. However, no logical difficulties are encountered by considering them to be the same.
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Column and Row Spaces
For A ∈ ℜm×n, the following statements are true.

• R (A) = the space spanned by the columns of A (column space).

• R
(

AT
)

= the space spanned by the rows of A (row space).

• b ∈ R (A) ⇐⇒ b = Ax for some x. (4.2.3)

• a ∈ R
(

AT
)

⇐⇒ aT = yT A for some yT . (4.2.4)

Example 4.2.1
Problem: Describe R (A) and R

(

AT
)

for A =
(

1 2 3
2 4 6

)

.

Solution: R (A) = span {A∗1,A∗2,A∗3} = {α1A∗1+α2A∗2+α3A∗3 |αi ∈ ℜ},
but since A∗2 = 2A∗1 and A∗3 = 3A∗1, it’s clear that every linear combination
of A∗1, A∗2, and A∗3 reduces to a multiple of A∗1, so R (A) = span {A∗1} .
Geometrically, R (A) is the line in ℜ2 through the origin and the point (1, 2).
Similarly, R

(

AT
)

= span {A1∗,A2∗} = {α1A1∗ + α2A2∗ | α1, α2 ∈ ℜ} . But
A2∗ = 2A1∗ implies that every combination of A1∗ and A2∗ reduces to a
multiple of A1∗, so R

(

AT
)

= span {A1∗} , and this is a line in ℜ3 through
the origin and the point (1, 2, 3).

There are times when it is desirable to know whether or not two matrices
have the same row space or the same range.The following theorem provides the
solution to this problem.

Equal Ranges
For two matrices A and B of the same shape:

• R
(

AT
)

= R
(

BT
)

if and only if A row∼ B. (4.2.5)

• R (A) = R (B) if and only if A col∼B. (4.2.6)

Proof. To prove (4.2.5), first assume A row∼ B so that there exists a nonsingular
matrix P such that PA = B. To see that R

(

AT
)

= R
(

BT
)

, use (4.2.4) to
write

a ∈ R
(

AT
)

⇐⇒ aT = yT A = yT P−1PA for some yT

⇐⇒ aT = zT B for zT = yT P−1

⇐⇒ a ∈ R
(

BT
)

.
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Conversely, if R
(

AT
)

= R
(

BT
)

, then

span {A1∗,A2∗, . . . ,Am∗} = span {B1∗,B2∗, . . . ,Bm∗} ,

so each row of B is a combination of the rows of A, and vice versa.On the
basis of this fact, it can be argued that it is possible to reduce A to B by using
only row operations (the tedious details are omitted), and thus A row∼ B. The
proof of (4.2.6) follows by replacing A and B with AT and BT .

Example 4.2.2
Testing Spanning Sets. Two sets {a1,a2, . . . ,ar} and {b1,b2, . . . ,bs} in
ℜn span the same subspace if and only if the nonzero rows of EA agree with
the nonzero rows of EB, where A and B are the matrices containing the ai ’s
and bi ’s as rows. This is a corollary of (4.2.5) because zero rows are irrelevant
in considering the row space of a matrix, and we already know from (3.9.9) that
A row∼ B if and only if EA = EB.

Problem: Determine whether or not the following sets span the same subspace:

A =

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎝

1
2
2
3

⎞

⎟

⎠
,

⎛

⎜

⎝

2
4
1
3

⎞

⎟

⎠
,

⎛

⎜

⎝

3
6
1
4

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

, B =

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎝

0
0
1
1

⎞

⎟

⎠
,

⎛

⎜

⎝

1
2
3
4

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

.

Solution: Place the vectors as rows in matrices A and B, and compute

A =

⎛

⎝

1 2 2 3
2 4 1 3
3 6 1 4

⎞

⎠→

⎛

⎝

1 2 0 1
0 0 1 1
0 0 0 0

⎞

⎠ = EA

and

B =
(

0 0 1 1
1 2 3 4

)

→
(

1 2 0 1
0 0 1 1

)

= EB.

Hence span {A} = span {B} because the nonzero rows in EA and EB agree.

We already know that the rows of A span R
(

AT
)

, and the columns of A
span R (A), but it’s often possible to span these spaces with fewer vectors than
the full set of rows and columns.

Spanning the Row Space and Range
Let A be an m ×n matrix, and let U be any row echelon form derived
from A. Spanning sets for the row and column spaces are as follows:
• The nonzero rows of U span R

(

AT
)

. (4.2.7)
• The basic columns in A span R (A). (4.2.8)
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Proof. Statement (4.2.7) is an immediate consequence of (4.2.5). To prove
(4.2.8), suppose that the basic columns in A are in positions b1, b2, . . . , br,
and the nonbasic columns occupy positions n1, n2, . . . , nt, and let Q1 be the
permutation matrix that permutes all of the basic columns in A to the left-hand
side so that AQ1 = (Bm×r Nm×t ) , where B contains the basic columns and
N contains the nonbasic columns. Since the nonbasic columns are linear com-
binations of the basic columns—recall (2.2.3)—we can annihilate the nonbasic
columns in N using elementary column operations. In other words, there is a
nonsingular matrix Q2 such that (B N )Q2 = (B 0 ) . Thus Q = Q1Q2 is
a nonsingular matrix such that AQ = AQ1Q2 = (B N )Q2 = (B 0 ) , and
hence A col∼ (B 0 ). The conclusion (4.2.8) now follows from (4.2.6).

Example 4.2.3
Problem: Determine spanning sets for R (A) and R

(

AT
)

, where

A =

⎛

⎝

1 2 2 3
2 4 1 3
3 6 1 4

⎞

⎠ .

Solution: Reducing A to any row echelon form U provides the solution—the
basic columns in A correspond to the pivotal positions in U, and the nonzero

rows of U span the row space of A. Using EA =
(

1 2 0 1
0 0 1 1
0 0 0 0

)

produces

R (A) = span

⎧

⎨

⎩

⎛

⎝

1
2
3

⎞

⎠ ,

⎛

⎝

2
1
1

⎞

⎠

⎫

⎬

⎭

and R
(

AT
)

= span

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎝

1
2
0
1

⎞

⎟

⎠
,

⎛

⎜

⎝

0
0
1
1

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

.

So far, only two of the four fundamental subspaces associated with each
matrix A ∈ ℜm×n have been discussed, namely, R (A) and R

(

AT
)

. To see
where the other two fundamental subspaces come from, consider again a general
linear function f mapping ℜn into ℜm, and focus on N (f) = {x | f(x) = 0}
(the set of vectors that are mapped to 0 ). N (f) is called the nullspace of f
(some texts call it the kernel of f ), and it’s easy to see that N (f) is a subspace
of ℜn because the closure properties (A1) and (M1) are satisfied. Indeed, if
x1,x2 ∈ N (f), then f(x1) = 0 and f(x2) = 0, so the linearity of f produces

f(x1 + x2) = f(x1) + f(x2) = 0 + 0 = 0 =⇒ x1 + x2 ∈ N (f). (A1)

Similarly, if α ∈ ℜ, and if x ∈ N (f), then f(x) = 0 and linearity implies

f(αx) = αf(x) = α0 = 0 =⇒ αx ∈ N (f). (M1)

By considering the linear functions f(x) = Ax and g(y) = AT y, the
other two fundamental subspaces defined by A ∈ ℜm×n are obtained. They are
N (f) = {xn×1 | Ax = 0} ⊆ ℜn and N (g) =

{

ym×1 | ATy = 0
}

⊆ ℜm.
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Nullspace
• For an m ×n matrix A, the set N (A) = {xn×1 | Ax = 0} ⊆ ℜn

is called the nullspace of A. In other words, N (A) is simply the
set of all solutions to the homogeneous system Ax = 0.

• The set N
(

AT
)

=
{

ym×1 | AT y = 0
}

⊆ ℜm is called the left-
hand nullspace of A because N

(

AT
)

is the set of all solutions
to the left-hand homogeneous system yT A = 0T .

Example 4.2.4
Problem: Determine a spanning set for N (A), where A =

(

1 2 3
2 4 6

)

.

Solution: N (A) is merely the general solution of Ax = 0, and this is deter-
mined by reducing A to a row echelon form U. As discussed in §2.4, any such
U will suffice, so we will use EA =

(

1 2 3
0 0 0

)

. Consequently, x1 = −2x2−3x3,

where x2 and x3 are free, so the general solution of Ax = 0 is

⎛

⎝

x1

x2

x3

⎞

⎠ =

⎛

⎝

−2x2 − 3x3

x2

x3

⎞

⎠ = x2

⎛

⎝

−2
1
0

⎞

⎠+ x3

⎛

⎝

−3
0
1

⎞

⎠ .

In other words, N (A) is the set of all possible linear combinations of the vectors

h1 =

⎛

⎝

−2
1
0

⎞

⎠ and h2 =

⎛

⎝

−3
0
1

⎞

⎠ ,

and therefore span {h1,h2} = N (A). For this example, N (A) is the plane in
ℜ3 that passes through the origin and the two points h1 and h2.

Example 4.2.4 indicates the general technique for determining a spanning
set for N (A). Below is a formal statement of this procedure.
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Spanning the Nullspace
To determine a spanning set for N (A), where rank (Am×n) = r, row
reduce A to a row echelon form U, and solve Ux = 0 for the basic
variables in terms of the free variables to produce the general solution
of Ax = 0 in the form

x = xf1h1 + xf2h2 + · · · + xfn−rhn−r. (4.2.9)

By definition, the set H = {h1,h2, . . . ,hn−r} spans N (A). Moreover,
it can be proven that H is unique in the sense that H is independent
of the row echelon form U.

It was established in §2.4 that a homogeneous system Ax = 0 possesses a
unique solution (i.e., only the trivial solution x = 0 ) if and only if the rank of
the coefficient matrix equals the number of unknowns.This may now be restated
using vector space terminology.

Zero Nullspace
If A is an m ×n matrix, then

• N (A) = {0} if and only if rank (A) = n; (4.2.10)

• N
(

AT
)

= {0} if and only if rank (A) = m. (4.2.11)

Proof. We already know that the trivial solution x = 0 is the only solution to
Ax = 0 if and only if the rank of A is the number of unknowns, and this is
what (4.2.10) says.Similarly, AT y = 0 has only the trivial solution y = 0 if
and only if rank

(

AT
)

= m. Recall from (3.9.11) that rank
(

AT
)

= rank (A)
in order to conclude that (4.2.11) holds.

Finally, let’s think about how to determine a spanning set for N
(

AT
)

. Of
course, we can proceed in the same manner as described in Example 4.2.4 by
reducing AT to a row echelon form to extract the general solution for AT x = 0.
However, the other three fundamental subspaces are derivable directly from EA

(or any other row echelon form U row∼ A ), so it’s rather awkward to have to
start from scratch and compute a new echelon form just to get a spanning set
for N

(

AT
)

. It would be better if a single reduction to echelon form could
produce all four of the fundamental subspaces.Note that EAT ̸= ET

A, so ET
A

won’t easily lead to N
(

AT
)

. The following theorem helps resolve this issue.
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Left-Hand Nullspace
If rank (Am×n) = r, and if PA = U, where P is nonsingular and
U is in row echelon form, then the last m − r rows in P span the
left-hand nullspace of A. In other words, if P =

(

P1
P2

)

, where P2 is
(m − r) ×m, then

N
(

AT
)

= R
(

PT
2

)

. (4.2.12)

Proof. If U =
(

C
0

)

, where Cr×n, then PA = U implies P2A = 0, and

this says R
(

PT
2

)

⊆ N
(

AT
)

. To show equality, demonstrate containment in
the opposite direction by arguing that every vector in N

(

AT
)

must also be in
R
(

PT
2

)

. Suppose yT ∈ N
(

AT
)

, and let P−1 = (Q1 Q2 ) to conclude that

0 = yT A = yT P−1U = yT Q1C =⇒ 0 = yT Q1

because N
(

CT
)

= {0} by (4.2.11).Now observe that PP−1 = I = P−1P
insures P1Q1 = Ir and Q1P1 = Im − Q2P2, so

0 = yT Q1 =⇒ 0 = yT Q1P1 = yT (I − Q2P2)

=⇒ yT = yT Q2P2 =
(

yT Q2

)

P2

=⇒ y ∈ R
(

PT
2

)

=⇒ yT ∈ R
(

PT
2

)

.

Example 4.2.5

Problem: Determine a spanning set for N
(

AT
)

, where A =
(

1 2 2 3
2 4 1 3
3 6 1 4

)

.

Solution: To find a nonsingular matrix P such that PA = U is in row echelon
form, proceed as described in Exercise 3.9.1 and row reduce the augmented
matrix

(

A | I
)

to
(

U | P
)

. It must be the case that PA = U because P
is the product of the elementary matrices corresponding to the elementary row
operations used.Since any row echelon form will suffice, we may use Gauss–
Jordan reduction to reduce A to EA as shown below:
⎛

⎝

1 2 2 3 1 0 0
2 4 1 3 0 1 0
3 6 1 4 0 0 1

⎞

⎠ −→

⎛

⎝

1 2 0 1 −1/3 2/3 0
0 0 1 1 2/3 −1/3 0
0 0 0 0 1/3 −5/3 1

⎞

⎠

P =

⎛

⎝

−1/3 2/3 0
2/3 −1/3 0
1/3 −5/3 1

⎞

⎠ , so (4.2.12) implies N
(

AT
)

= span

⎧

⎨

⎩

⎛

⎝

1/3
−5/3

1

⎞

⎠

⎫

⎬

⎭

.
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Example 4.2.6
Problem: Suppose rank (Am×n) = r, and let P =

(

P1
P2

)

be a nonsingular

matrix such that PA = U =
(

Cr×n
0

)

, where U is in row echelon form.Prove

R (A) = N (P2). (4.2.13)

Solution: The strategy is to first prove R (A) ⊆ N (P2) and then show the
reverse inclusion N (P2) ⊆ R (A). The equation PA = U implies P2A = 0, so
all columns of A are in N (P2), and thus R (A) ⊆ N (P2) .To show inclusion
in the opposite direction, suppose b ∈ N (P2), so that

Pb =
(

P1

P2

)

b =
(

P1b
P2b

)

=
(

dr×1

0

)

.

Consequently, P
(

A |b
)

=
(

PA | Pb
)

=
(

C d
0 0

)

, and this implies

rank[A|b] = r = rank (A).

Recall from (2.3.4) that this means the system Ax = b is consistent, and thus
b ∈ R (A) by (4.2.3).Therefore, N (P2) ⊆ R (A), and we may conclude that
N (P2) = R (A).

It’s often important to know when two matrices have the same nullspace (or
left-hand nullspace).Below is one test for determining this.

Equal Nullspaces
For two matrices A and B of the same shape:
• N (A) = N (B) if and only if A row∼ B. (4.2.14)

• N
(

AT
)

= N
(

BT
)

if and only if A col∼B. (4.2.15)

Proof. We will prove (4.2.15).If N
(

AT
)

= N
(

BT
)

, then (4.2.12) guarantees
R
(

PT
2

)

= N
(

BT
)

, and hence P2B = 0. But this means the columns of B
are in N (P2). That is, R (B) ⊆ N (P2) = R (A) by using (4.2.13).If A is
replaced by B in the preceding argument—and in (4.2.13)— the result is that
R (A) ⊆ R (B), and consequently we may conclude that R (A) = R (B) .The
desired conclusion (4.2.15) follows from (4.2.6).Statement (4.2.14) now follows
by replacing A and B by AT and BT in (4.2.15).
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Summary
The four fundamental subspaces associated with Am×n are as follows.

• The range or column space: R (A) = {Ax} ⊆ ℜm.

• The row space or left-hand range: R
(

AT
)

=
{

AT y
}

⊆ ℜn.

• The nullspace: N (A) = {x | Ax = 0} ⊆ ℜn.

• The left-hand nullspace: N
(

AT
)

=
{

y | AT y = 0
}

⊆ ℜm.

Let P be a nonsingular matrix such that PA = U, where U is in row
echelon form, and suppose rank (A) = r.

• Spanning set for R (A) = the basic columns in A.

• Spanning set for R
(

AT
)

= the nonzero rows in U.

• Spanning set for N (A) =the hi ’s in the general solution of Ax = 0.

• Spanning set for N
(

AT
)

= the last m − r rows of P.

If A and B have the same shape, then

• A row∼ B ⇐⇒ N (A) = N (B) ⇐⇒ R
(

AT
)

= R
(

BT
)

.

• A col∼B ⇐⇒ R (A) = R (B) ⇐⇒ N
(

AT
)

= N
(

BT
)

.

Exercises for section 4.2

4.2.1. Determine spanning sets for each of the four fundamental subspaces
associated with

A =

⎛

⎝

1 2 1 1 5
−2 −4 0 4 −2

1 2 2 4 9

⎞

⎠ .

4.2.2. Consider a linear system of equations Am×nx = b.
(a) Explain why Ax = b is consistent if and only if b ∈ R (A).
(b) Explain why a consistent system Ax = b has a unique solution

if and only if N (A) = {0}.
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4.2.3. Suppose that A is a 3 ×3 matrix such that

R =

⎧

⎨

⎩

⎛

⎝

1
2
3

⎞

⎠ ,

⎛

⎝

1
−1

2

⎞

⎠

⎫

⎬

⎭

and N =

⎧

⎨

⎩

⎛

⎝

−2
1
0

⎞

⎠

⎫

⎬

⎭

span R (A) and N (A), respectively, and consider a linear system

Ax = b, where b =
(

1
−7

0

)

.

(a) Explain why Ax = b must be consistent.
(b) Explain why Ax = b cannot have a unique solution.

4.2.4. If A =

⎛

⎜

⎜

⎜

⎝

−1 1 1 −2 1
−1 0 3 −4 2
−1 0 3 −5 3
−1 0 3 −6 4
−1 0 3 −6 4

⎞

⎟

⎟

⎟

⎠

and b =

⎛

⎜

⎜

⎜

⎝

−2
−5
−6
−7
−7

⎞

⎟

⎟

⎟

⎠

, is b ∈ R (A) ?

4.2.5. Suppose that A is an n ×n matrix.
(a) If R (A) = ℜn, explain why A must be nonsingular.
(b) If A is nonsingular, describe its four fundamental subspaces.

4.2.6. Consider the matrices A =

⎛

⎝

1 1 5
2 0 6
1 2 7

⎞

⎠ and B =

⎛

⎝

1 −4 4
4 −8 6
0 −4 5

⎞

⎠ .

(a) Do A and B have the same row space?
(b) Do A and B have the same column space?
(c) Do A and B have the same nullspace?
(d) Do A and B have the same left-hand nullspace?

4.2.7. If A =
(

A1
A2

)

is a square matrix such that N (A1) = R
(

AT
2

)

, prove
that A must be nonsingular.

4.2.8. Consider a linear system of equations Ax = b for which yT b = 0
for every y ∈ N

(

AT
)

. Explain why this means the system must be
consistent.

4.2.9. For matrices Am×n and Bm×p, prove that

R (A | B) = R (A) + R (B).
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4.2.10. Let p be one particular solution of a linear system Ax = b.
(a) Explain the significance of the set

p + N (A) = {p + h | h ∈ N (A)} .

(b) If rank (A3×3) = 1, sketch a picture of p + N (A) in ℜ3.
(c) Repeat part (b) for the case when rank (A3×3) = 2.

4.2.11. Suppose that Ax = b is a consistent system of linear equations, and
let a ∈ R

(

AT
)

. Prove that the inner product aT x is constant for all
solutions to Ax = b.

4.2.12. For matrices such that the product AB is defined, explain why each of
the following statements is true.

(a) R (AB) ⊆ R (A).
(b) N (AB) ⊇ N (B).

4.2.13. Suppose that B = {b1,b2, . . . ,bn} is a spanning set for R (B). Prove
that A(B) = {Ab1,Ab2, . . . ,Abn} is a spanning set for R (AB).
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which shows z ∈ span (M) , and therefore span (M) ⊇ span (N ) .
4.1.12. To show span (S) ⊆ M, observe that x ∈ span (S) =⇒ x =

∑
i αivi.

If V is any subspace containing S, then
∑

i αivi ∈ V because V is closed
under addition and scalar multiplication, and therefore x ∈M. The fact that
M ⊆ span (S) follows because if x ∈M, then x ∈ span (S) because span (S)
is one particular subspace that contains S.

Solutions for exercises in section 4. 2

4.2.1. R (A) = span

⎧
⎨

⎩

⎛

⎝
1
−2

1

⎞

⎠ ,

⎛

⎝
1
0
2

⎞

⎠

⎫
⎬

⎭ , N
(
AT
)

= span

⎧
⎨

⎩

⎛

⎝
4
1
−2

⎞

⎠

⎫
⎬

⎭ ,

N (A) = span

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜⎝

−2
1
0
0
0

⎞

⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎝

2
0
−3

1
0

⎞

⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎝

−1
0
−4

0
1

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

R
(
AT
)

= span

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜⎝

1
2
0
−2

1

⎞

⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎝

0
0
1
3
4

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

4.2.2. (a) This is simply a restatement of equation (4.2.3).
(b) Ax = b has a unique solution if and only if rank (A) = n (i.e., there are
no free variables—see §2.5), and (4.2.10) says rank (A) = n⇐⇒ N (A) = {0}.

4.2.3. (a) It is consistent because b ∈ R (A).
(b) It is nonunique because N (A) ̸= {0}—see Exercise 4.2.2.

4.2.4. Yes, because rank[A|b] = rank (A) = 3 =⇒ ∃ x such that Ax = b —i.e.,
Ax = b is consistent.

4.2.5. (a) If R (A) = ℜn, then

R (A) = R (In) =⇒ A col∼ In =⇒ rank (A) = rank (In) = n.

(b) R (A) = R
(
AT
)

= ℜn and N (A) = N
(
AT
)

= {0}.
4.2.6. EA ̸= EB means that R

(
AT
)
̸= R

(
BT
)

and N (A) ̸= N (B). However,
EAT = EBT implies that R (A) = R (B) and N

(
AT
)

= N
(
BT
)
.

4.2.7. Demonstrate that rank (An×n) = n by using (4.2.10). If x ∈ N (A), then

Ax = 0 =⇒ A1x = 0 and A2x = 0

=⇒ x ∈ N (A1) = R
(
AT

2

)
=⇒ ∃ yT such that xT = yT A2

=⇒ xT x = yT A2x = 0 =⇒
∑

i

x2
i = 0 =⇒ x = 0.



30 Solutions

4.2.8. yT b = 0 ∀ y ∈ N
(
AT
)

= R
(
PT

2

)
=⇒ P2b = 0 =⇒ b ∈ N (P2) = R (A)

4.2.9. x ∈ R
(
A | B

)
⇐⇒ ∃ y such that x =

(
A | B

)
y =

(
A | B

)(y1

y2

)
= Ay1 +

By2 ⇐⇒ x ∈ R (A) + R (B)
4.2.10. (a) p+N (A) is the set of all possible solutions to Ax = b. Recall from (2.5.7)

that the general solution of a nonhomogeneous equation is a particular solution
plus the general solution of the homogeneous equation Ax = 0. The general
solution of the homogeneous equation is simply a way of describing all possible
solutions of Ax = 0, which is N (A).
(b) rank (A3×3) = 1 means that N (A) is spanned by two vectors, and hence
N (A) is a plane through the origin. From the parallelogram law, p + N (A) is
a plane parallel to N (A) passing through the point defined by p.
(c) This time N (A) is spanned by a single vector, and p + N (A) is a line
parallel to N (A) passing through the point defined by p.

4.2.11. a ∈ R
(
AT
)
⇐⇒ ∃ y such that aT = yT A. If Ax = b, then

aT x = yT Ax = yT b,

which is independent of x.

4.2.12. (a) b ∈ R (AB) =⇒ ∃ x such that b = ABx = A(Bx) =⇒ b ∈ R (A)
because b is the image of Bx.
(b) x ∈ N (B) =⇒ Bx = 0 =⇒ ABx = 0 =⇒ x ∈ N (AB).

4.2.13. Given any z ∈ R (AB), the object is to show that z can be written as some
linear combination of the Abi ’s. Argue as follows. z ∈ R (AB) =⇒ z = ABy
for some y. But it is always true that By ∈ R (B), so

By = α1b1 + α2b2 + · · · + αnbn,

and therefore z = ABy = α1Ab1 + α2Ab2 + · · · + αnAbn.

Solutions for exercises in section 4. 3

4.3.1. (a) and (b) are linearly dependent—all others are linearly independent. To write
one vector as a combination of others in a dependent set, place the vectors as
columns in A and find EA. This reveals the dependence relationships among
columns of A.

4.3.2. (a) According to (4.3.12), the basic columns in A always constitute one maximal
linearly independent subset.
(b) Ten—5 sets using two vectors, 4 sets using one vector, and the empty set.

4.3.3. rank (H) ≤ 3, and according to (4.3.11), rank (H) is the maximal number of
independent rows in H.


