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4.3 LINEAR INDEPENDENCE

For a given set of vectors S = {v1,v2, . . . ,vn} there may or may not exist
dependency relationships in the sense that it may or may not be possible to
express one vector as a linear combination of the others. For example, in the set

A =

⎧

⎨

⎩

⎛

⎝

1
−1

2

⎞

⎠ ,

⎛

⎝

3
0

−1

⎞

⎠ ,

⎛

⎝

9
−3

4

⎞

⎠

⎫

⎬

⎭

,

the third vector is a linear combination of the first two—i.e., v3 = 3v1 + 2v2.
Such a dependency always can be expressed in terms of a homogeneous equation
by writing

3v1 + 2v2 − v3 = 0.

On the other hand, it is evident that there are no dependency relationships in
the set

B =

⎧

⎨

⎩

⎛

⎝

1
0
0

⎞

⎠ ,

⎛

⎝

0
1
0

⎞

⎠ ,

⎛

⎝

0
0
1

⎞

⎠

⎫

⎬

⎭

because no vector can be expressed as a combination of the others. Another way
to say this is to state that there are no solutions for α1, α2, and α3 in the
homogeneous equation

α1v1 + α2v2 + α3v3 = 0

other than the trivial solution α1 = α2 = α3 = 0. These observations are the
basis for the following definitions.

Linear Independence
A set of vectors S = {v1,v2, . . . ,vn} is said to be a linearly in-
dependent set whenever the only solution for the scalars αi in the
homogeneous equation

α1v1 + α2v2 + · · · + αnvn = 0 (4.3.1)

is the trivial solution α1 = α2 = · · · = αn = 0. Whenever there is a
nontrivial solution for the α ’s (i.e., at least one αi ̸= 0 ) in (4.3.1), the
set S is said to be a linearly dependent set. In other words, linearly
independent sets are those that contain no dependency relationships,
and linearly dependent sets are those in which at least one vector is a
combination of the others. We will agree that the empty set is always
linearly independent.
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It is important to realize that the concepts of linear independence and de-
pendence are defined only for sets—individual vectors are neither linearly inde-
pendent nor dependent. For example consider the following sets:

S1 =
{(

1
0

)

,

(

0
1

)}

, S2 =
{(

1
0

)

,

(

1
1

)}

, S3 =
{(

1
0

)

,

(

0
1

)

,

(

1
1

)}

.

It should be clear that S1 and S2 are linearly independent sets while S3 is
linearly dependent. This shows that individual vectors can simultaneously belong
to linearly independent sets as well as linearly dependent sets. Consequently, it
makes no sense to speak of “linearly independent vectors” or “linearly dependent
vectors.”

Example 4.3.1
Problem: Determine whether or not the set

S =

⎧

⎨

⎩

⎛

⎝

1
2
1

⎞

⎠ ,

⎛

⎝

1
0
2

⎞

⎠ ,

⎛

⎝

5
6
7

⎞

⎠

⎫

⎬

⎭

is linearly independent.
Solution: Simply determine whether or not there exists a nontrivial solution
for the α ’s in the homogeneous equation

α1

⎛

⎝

1
2
1

⎞

⎠+ α2

⎛

⎝

1
0
2

⎞

⎠+ α3

⎛

⎝

5
6
7

⎞

⎠ =

⎛

⎝

0
0
0

⎞

⎠

or, equivalently, if there is a nontrivial solution to the homogeneous system
⎛

⎝

1 1 5
2 0 6
1 2 7

⎞

⎠

⎛

⎝

α1

α2

α3

⎞

⎠ =

⎛

⎝

0
0
0

⎞

⎠ .

If A =
(

1 1 5
2 0 6
1 2 7

)

, then EA =
(

1 0 3
0 1 2
0 0 0

)

, and therefore there exist nontrivial

solutions. Consequently, S is a linearly dependent set. Notice that one particular
dependence relationship in S is revealed by EA because it guarantees that
A∗3 = 3A∗1 +2A∗2. This example indicates why the question of whether or not
a subset of ℜm is linearly independent is really a question about whether or not
the nullspace of an associated matrix is trivial. The following is a more formal
statement of this fact.
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Linear Independence and Matrices
Let A be an m × n matrix.
• Each of the following statements is equivalent to saying that the

columns of A form a linearly independent set.
◃ N (A) = {0}. (4.3.2)
◃ rank (A) = n. (4.3.3)

• Each of the following statements is equivalent to saying that the rows
of A form a linearly independent set.
◃ N

(

AT
)

= {0}. (4.3.4)
◃ rank (A) = m. (4.3.5)

• When A is a square matrix, each of the following statements is
equivalent to saying that A is nonsingular.
◃ The columns of A form a linearly independent set. (4.3.6)
◃ The rows of A form a linearly independent set. (4.3.7)

Proof. By definition, the columns of A are a linearly independent set when
the only set of α ’s satisfying the homogeneous equation

0 = α1A∗1 + α2A∗2 + · · · + αnA∗n =
(

A∗1 |A∗2 | · · · |A∗n

)

⎛

⎜

⎜

⎝

α1

α2
...

αn

⎞

⎟

⎟

⎠

is the trivial solution α1 = α2 = · · · = αn = 0, which is equivalent to saying
N (A) = {0}. The fact that N (A) = {0} is equivalent to rank (A) = n was
demonstrated in (4.2.10). Statements (4.3.4) and (4.3.5) follow by replacing A
by AT in (4.3.2) and (4.3.3) and by using the fact that rank (A) = rank

(

AT
)

.
Statements (4.3.6) and (4.3.7) are simply special cases of (4.3.3) and (4.3.5).

Example 4.3.2
Any set {ei1 , ei2 , . . . , ein} consisting of distinct unit vectors is a linearly indepen-
dent set because rank

(

ei1 | ei2 | · · · | ein

)

= n. For example, the set of unit vec-

tors {e1, e2, e4} in ℜ4 is linearly independent because rank

⎛

⎝

1 0 0
0 1 0
0 0 0
0 0 1

⎞

⎠ = 3.
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Example 4.3.3
Diagonal Dominance. A matrix An×n is said to be diagonally dominant
whenever

|aii| >
n
∑

j=1
j ̸=i

|aij | for each i = 1, 2, . . . , n.

That is, the magnitude of each diagonal entry exceeds the sum of the magni-
tudes of the off-diagonal entries in the corresponding row. Diagonally dominant
matrices occur naturally in a wide variety of practical applications, and when
solving a diagonally dominant system by Gaussian elimination, partial pivoting
is never required—you are asked to provide the details in Exercise 4.3.15.

Problem: In 1900, Minkowski (p. 278) discovered that all diagonally dominant
matrices are nonsingular. Establish the validity of Minkowski’s result.

Solution: The strategy is to prove that if A is diagonally dominant, then
N (A) = {0}, so that (4.3.2) together with (4.3.6) will provide the desired
conclusion. Use an indirect argument—suppose there exists a vector x ̸= 0 such
that Ax = 0, and assume that xk is the entry of maximum magnitude in x.
Focus on the kth component of Ax, and write the equation Ak∗x = 0 as

akkxk = −
n
∑

j=1
j ̸=k

akjxj .

Taking absolute values of both sides and using the triangle inequality together
with the fact that |xj | ≤ |xk| for each j produces

|akk| |xk| =
∣

∣

∣

∣

∣

n
∑

j=1
j ̸=k

akjxj

∣

∣

∣

∣

∣

≤
n
∑

j=1
j ̸=k

|akjxj | =
n
∑

j=1
j ̸=k

|akj | |xj | ≤
( n
∑

j=1
j ̸=k

|akj |
)

|xk|.

But this implies that

|akk| ≤
n
∑

j=1
j ̸=k

|akj |,

which violates the hypothesis that A is diagonally dominant. Therefore, the
assumption that there exists a nonzero vector in N (A) must be false, so we
may conclude that N (A) = {0}, and hence A is nonsingular.

Note: An alternate solution is given in Example 7.1.6 on p. 499.
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Example 4.3.4
Vandermonde Matrices. Matrices of the form

Vm×n =

⎛

⎜

⎜

⎝

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
... · · ·

...
1 xm x2

m · · · xn−1
m

⎞

⎟

⎟

⎠

in which xi ̸= xj for all i ̸= j are called Vandermonde
26

matrices.

Problem: Explain why the columns in V constitute a linearly independent set
whenever n ≤ m.

Solution: According to (4.3.2), the columns of V form a linearly independent
set if and only if N (V) = {0}. If

⎛

⎜

⎜

⎝

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
... · · ·

...
1 xm x2

m · · · xn−1
m

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

α0

α1
...

αn−1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0
0
...
0

⎞

⎟

⎟

⎠

, (4.3.8)

then for each i = 1, 2, . . . , m,

α0 + xiα1 + x2
i α2 + · · · + xn−1

i αn−1 = 0.

This implies that the polynomial

p(x) = α0 + α1x + α2x
2 + · · · + αn−1x

n−1

has m distinct roots—namely, the xi ’s. However, deg p(x) ≤ n − 1 and the
fundamental theorem of algebra guarantees that if p(x) is not the zero polyno-
mial, then p(x) can have at most n− 1 distinct roots. Therefore, (4.3.8) holds
if and only if αi = 0 for all i, and thus (4.3.2) insures that the columns of V
form a linearly independent set.

26
This is named in honor of the French mathematician Alexandre-Theophile Vandermonde (1735–
1796). He made a variety of contributions to mathematics, but he is best known perhaps for
being the first European to give a logically complete exposition of the theory of determinants.
He is regarded by many as being the founder of that theory. However, the matrix V (and
an associated determinant) named after him, by Lebesgue, does not appear in Vandermonde’s
published work. Vandermonde’s first love was music, and he took up mathematics only after
he was 35 years old. He advocated the theory that all art and music rested upon a general
principle that could be expressed mathematically, and he claimed that almost anyone could
become a composer with the aid of mathematics.
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Example 4.3.5
Problem: Given a set of m points S = {(x1, y1), (x2, y2), . . . , (xm, ym)} in
which the xi ’s are distinct, explain why there is a unique polynomial

ℓ(t) = α0 + α1t + α2t
2 + · · · + αm−1t

m−1 (4.3.9)

of degree m − 1 that passes through each point in S.

Solution: The coefficients αi must satisfy the equations

α0 + α1x1 + α2x
2
1 + · · · + αm−1x

m−1
1 = ℓ(x1) = y1,

α0 + α1x2 + α2x
2
2 + · · · + αm−1x

m−1
2 = ℓ(x2) = y2,

...

α0 + α1xm + α2x
2
m + · · · + αm−1x

m−1
m = ℓ(xm) = ym.

Writing this m × m system as
⎛

⎜

⎜

⎝

1 x1 x2
1 · · · xm−1

1

1 x2 x2
2 · · · xm−1

2
...

...
... · · ·

...
1 xm x2

m · · · xm−1
m

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

α0

α1
...

αm−1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

y1

y2
...

ym

⎞

⎟

⎟

⎠

reveals that the coefficient matrix is a square Vandermonde matrix, so the result
of Example 4.3.4 guarantees that it is nonsingular. Consequently, the system has
a unique solution, and thus there is one and only one possible set of coefficients
for the polynomial ℓ(t) in (4.3.9). In fact, ℓ(t) must be given by

ℓ(t) =
m
∑

i=1

⎛

⎝yi

∏m
j ̸=i(t − xj)

∏m
j ̸=i(xi − xj)

⎞

⎠ .

Verify this by showing that the right-hand side is indeed a polynomial of degree
m − 1 that passes through the points in S. The polynomial ℓ(t) is known as
the Lagrange

27
interpolation polynomial of degree m − 1.

If rank (Am×n) < n, then the columns of A must be a dependent set—
recall (4.3.3). For such matrices we often wish to extract a maximal linearly
independent subset of columns—i.e., a linearly independent set containing as
many columns from A as possible. Although there can be several ways to make
such a selection, the basic columns in A always constitute one solution.

27
Joseph Louis Lagrange (1736–1813), born in Turin, Italy, is considered by many to be one
of the two greatest mathematicians of the eighteenth century—Euler is the other. Lagrange
occupied Euler’s vacated position in 1766 in Berlin at the court of Frederick the Great who
wrote that “the greatest king in Europe” wishes to have at his court “the greatest mathe-
matician of Europe.” After 20 years, Lagrange left Berlin and eventually moved to France.
Lagrange’s mathematical contributions are extremely wide and deep, but he had a particularly
strong influence on the way mathematical research evolved. He was the first of the top-class
mathematicians to recognize the weaknesses in the foundations of calculus, and he was among
the first to attempt a rigorous development.
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Maximal Independent Subsets
If rank (Am×n) = r, then the following statements hold.

• Any maximal independent subset of columns from A con-
tains exactly r columns.

(4.3.10)

• Any maximal independent subset of rows from A contains
exactly r rows.

(4.3.11)

• In particular, the r basic columns in A constitute one
maximal independent subset of columns from A.

(4.3.12)

Proof. Exactly the same linear relationships that exist among the columns of
A must also hold among the columns of EA —by (3.9.6). This guarantees that
a subset of columns from A is linearly independent if and only if the columns
in the corresponding positions in EA are an independent set. Let

C =
(

c1 | c2 | · · · | ck

)

be a matrix that contains an independent subset of columns from EA so that
rank (C) = k —recall (4.3.3). Since each column in EA is a combination of the
r basic (unit) columns in EA, there are scalars βij such that cj =

∑r
i=1 βijei

for j = 1, 2, . . . , k. These equations can be written as the single matrix equation

(

c1 | c2 | · · · | ck

)

=
(

e1 | e2 | · · · | er

)

⎛

⎜

⎜

⎝

β11 β12 · · · β1k

β21 β22 · · · β2k
...

...
. . .

...
βr1 βr2 · · · βrk

⎞

⎟

⎟

⎠

or

Cm×k =
(

Ir

0

)

Br×k =
(

Br×k

0

)

, where B = [βij ].

Consequently, r ≥ rank (C) = k, and therefore any independent subset of
columns from EA —and hence any independent set of columns from A —cannot
contain more than r vectors. Because the r basic (unit) columns in EA form
an independent set, the r basic columns in A constitute an independent set.
This proves (4.3.10) and (4.3.12). The proof of (4.3.11) follows from the fact that
rank (A) = rank

(

AT
)

—recall (3.9.11).
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Basic Facts of Independence
For a nonempty set of vectors S = {u1,u2, . . . ,un} in a space V, the
following statements are true.
• If S contains a linearly dependent subset, then S itself

must be linearly dependent.
(4.3.13)

• If S is linearly independent, then every subset of S is
also linearly independent.

(4.3.14)

• If S is linearly independent and if v ∈ V, then the ex-
tension set Sext = S∪{v} is linearly independent if and
only if v /∈ span (S) .

(4.3.15)

• If S ⊆ ℜm and if n > m, then S must be linearly
dependent.

(4.3.16)

Proof of (4.3.13). Suppose that S contains a linearly dependent subset, and,
for the sake of convenience, suppose that the vectors in S have been permuted
so that this dependent subset is Sdep = {u1,u2, . . . ,uk} . According to the
definition of dependence, there must be scalars α1, α2, . . . , αk, not all of which
are zero, such that α1u1 +α2u2 + · · ·+αkuk = 0. This means that we can write

α1u1 + α2u2 + · · · + αkuk + 0uk+1 + · · · + 0un = 0,

where not all of the scalars are zero, and hence S is linearly dependent.

Proof of (4.3.14). This is an immediate consequence of (4.3.13).

Proof of (4.3.15). If Sext is linearly independent, then v /∈ span (S) , for
otherwise v would be a combination of vectors from S thus forcing Sext to
be a dependent set. Conversely, suppose v /∈ span (S) . To prove that Sext is
linearly independent, consider a linear combination

α1u1 + α2u2 + · · · + αnun + αn+1v = 0. (4.3.17)

It must be the case that αn+1 = 0, for otherwise v would be a combination of
vectors from S. Consequently,

α1u1 + α2u2 + · · · + αnun = 0.

But this implies that
α1 = α2 = · · · = αn = 0

because S is linearly independent. Therefore, the only solution for the α ’s in
(4.3.17) is the trivial set, and hence Sext must be linearly independent.

Proof of (4.3.16). This follows from (4.3.3) because if the ui ’s are placed as
columns in a matrix Am×n, then rank (A) ≤ m < n.
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Example 4.3.6
Let V be the vector space of real-valued functions of a real variable, and let S =
{f1(x), f2(x), . . . , fn(x)} be a set of functions that are n−1 times differentiable.
The Wronski

28
matrix is defined to be

W(x) =

⎛

⎜

⎜

⎜

⎜

⎝

f1(x) f2(x) · · · fn(x)
f ′
1(x) f ′

2(x) · · · f ′
n(x)

...
...

. . .
...

f (n−1)
1 (x) f (n−1)

2 (x) · · · f (n−1)
n (x)

⎞

⎟

⎟

⎟

⎟

⎠

.

Problem: If there is at least one point x = x0 such that W(x0 ) is nonsingular,
prove that S must be a linearly independent set.

Solution: Suppose that

0 = α1f1(x) + α2f2(x) + · · · + αnfn(x) (4.3.18)

for all values of x. When x = x0 , it follows that

0 = α1f1(x0 ) + α2f2(x0 ) + · · · + αnfn(x0 ),

0 = α1f
′
1(x0 ) + α2f

′
2(x0 ) + · · · + αnf ′

n(x0 ),
...

0 = α1f
(n−1)
1 (x0 ) + α2f

(n−1)
2 (x0 ) + · · · + αnf (n−1)

n (x0 ),

which means that v =

⎛

⎜

⎝

α1
α2
...

αn

⎞

⎟

⎠
∈ N

(

W(x0 )
)

. But N
(

W(x0 )
)

= {0} because

W(x0 ) is nonsingular, and hence v = 0. Therefore, the only solution for the
α ’s in (4.3.18) is the trivial solution α1 = α2 = · · · = αn = 0 thereby insuring
that S is linearly independent.

28
This matrix is named in honor of the Polish mathematician Jozef Maria Höené Wronski
(1778–1853), who studied four special forms of determinants, one of which was the deter-
minant of the matrix that bears his name. Wronski was born to a poor family near Poznan,
Poland, but he studied in Germany and spent most of his life in France. He is reported to have
been an egotistical person who wrote in an exhaustively wearisome style. Consequently, almost
no one read his work. Had it not been for his lone follower, Ferdinand Schweins (1780–1856)
of Heidelberg, Wronski would probably be unknown today. Schweins preserved and extended
Wronski’s results in his own writings, which in turn received attention from others. Wronski
also wrote on philosophy. While trying to reconcile Kant’s metaphysics with Leibniz’s calculus,
Wronski developed a social philosophy called “Messianism” that was based on the belief that
absolute truth could be achieved through mathematics.
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For example, to verify that the set of polynomials P =
{

1, x, x2, . . . , xn
}

is
linearly independent, observe that the associated Wronski matrix

W(x) =

⎛

⎜

⎜

⎜

⎜

⎝

1 x x2 · · · xn

0 1 2x · · · nxn−1

0 0 2 · · · n(n − 1)xn−2

...
...

...
. . .

...
0 0 0 · · · n!

⎞

⎟

⎟

⎟

⎟

⎠

is triangular with nonzero diagonal entries. Consequently, W(x) is nonsingular
for every value of x, and hence P must be an independent set.

Exercises for section 4.3

4.3.1. Determine which of the following sets are linearly independent. For those
sets that are linearly dependent, write one of the vectors as a linear
combination of the others.

(a)

⎧

⎨

⎩

⎛

⎝

1
2
3

⎞

⎠ ,

⎛

⎝

2
1
0

⎞

⎠ ,

⎛

⎝

1
5
9

⎞

⎠

⎫

⎬

⎭

,

(b) {( 1 2 3 ) , ( 0 4 5 ) , ( 0 0 6 ) , ( 1 1 1 )} ,

(c)

⎧

⎨

⎩

⎛

⎝

3
2
1

⎞

⎠ ,

⎛

⎝

1
0
0

⎞

⎠ ,

⎛

⎝

2
1
0

⎞

⎠

⎫

⎬

⎭

,

(d) {( 2 2 2 2 ) , ( 2 2 0 2 ) , ( 2 0 2 2 )} ,

(e)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
2
0
4
0
3
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
2
0
4
1
3
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
2
1
4
0
3
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
2
0
4
0
3
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

4.3.2. Consider the matrix A =
(

2 1 1 0
4 2 1 2
6 3 2 2

)

.

(a) Determine a maximal linearly independent subset of columns
from A.

(b) Determine the total number of linearly independent subsets that
can be constructed using the columns of A.
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4.3.3. Suppose that in a population of a million children the height of each one
is measured at ages 1 year, 2 years, and 3 years, and accumulate this
data in a matrix

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 yr 2 yr 3 yr
#1 h11 h12 h13

#2 h21 h22 h23
...

...
...

...
#i hi1 hi2 hi3
...

...
...

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= H.

Explain why there are at most three “independent children” in the sense
that the heights of all the other children must be a combination of these
“independent” ones.

4.3.4. Consider a particular species of wildflower in which each plant has several
stems, leaves, and flowers, and for each plant let the following hold.

S = the average stem length (in inches).
L = the average leaf width (in inches).
F = the number of flowers.

Four particular plants are examined, and the information is tabulated
in the following matrix:

A =

⎛

⎜

⎜

⎝

S L F

#1 1 1 10
#2 2 1 12
#3 2 2 15
#4 3 2 17

⎞

⎟

⎟

⎠

.

For these four plants, determine whether or not there exists a linear rela-
tionship between S, L, and F. In other words, do there exist constants
α0 , α1, α2, and α3 such that α0 + α1S + α2L + α3F = 0 ?

4.3.5. Let S = {0} be the set containing only the zero vector.
(a) Explain why S must be linearly dependent.
(b) Explain why any set containing a zero vector must be linearly

dependent.

4.3.6. If T is a triangular matrix in which each tii ̸= 0, explain why the rows
and columns of T must each be linearly independent sets.
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4.3.7. Determine whether or not the following set of matrices is a linearly
independent set:

{(

1 0
0 0

)

,

(

1 1
0 0

)

,

(

1 1
1 0

)

,

(

1 1
1 1

)}

.

4.3.8. Without doing any computation, determine whether the following ma-
trix is singular or nonsingular:

A =

⎛

⎜

⎜

⎜

⎜

⎝

n 1 1 · · · 1
1 n 1 · · · 1
1 1 n · · · 1
...

...
...

. . .
...

1 1 1 · · · n

⎞

⎟

⎟

⎟

⎟

⎠

n×n

.

4.3.9. In theory, determining whether or not a given set is linearly independent
is a well-defined problem with a straightforward solution. In practice,
however, this problem is often not so well defined because it becomes
clouded by the fact that we usually cannot use exact arithmetic, and con-
tradictory conclusions may be produced depending upon the precision
of the arithmetic. For example, let

S =

⎧

⎨

⎩

⎛

⎝

.1

.4

.7

⎞

⎠ ,

⎛

⎝

.2

.5

.8

⎞

⎠ ,

⎛

⎝

.3

.6

.901

⎞

⎠

⎫

⎬

⎭

.

(a) Use exact arithmetic to determine whether or not S is linearly
independent.

(b) Use 3-digit arithmetic (without pivoting or scaling) to determine
whether or not S is linearly independent.

4.3.10. If Am×n is a matrix such that
∑n

j=1 aij = 0 for each i = 1, 2, . . . , m
(i.e., each row sum is 0), explain why the columns of A are a linearly
dependent set, and hence rank (A) < n.

4.3.11. If S = {u1,u2, . . . ,un} is a linearly independent subset of ℜm×1, and
if Pm×m is a nonsingular matrix, explain why the set

P(S) = {Pu1,Pu2, . . . ,Pun}

must also be a linearly independent set. Is this result still true if P is
singular?
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4.3.12. Suppose that S = {u1,u2, . . . ,un} is a set of vectors from ℜm. Prove
that S is linearly independent if and only if the set

S ′ =

{

u1,
2
∑

i=1

ui,
3
∑

i=1

ui, . . . ,
n
∑

i=1

ui

}

is linearly independent.

4.3.13. Which of the following sets of functions are linearly independent?
(a) {sinx, cos x, x sinx} .

(b)
{

ex, xex, x2ex
}

.

(c)
{

sin2 x, cos2 x, cos 2x
}

.

4.3.14. Prove that the converse of the statement given in Example 4.3.6 is false
by showing that S =

{

x3, |x|3
}

is a linearly independent set, but the
associated Wronski matrix W(x) is singular for all values of x.

4.3.15. If AT is diagonally dominant, explain why partial pivoting is not needed
when solving Ax = b by Gaussian elimination. Hint: If after one step
of Gaussian elimination we have

A =
(

α dT

c B

)

one step
−−−−−−−−→

(

α dT

0 B − cdT

α

)

,

show that AT being diagonally dominant implies X =
(

B − cdT

α

)T

must also be diagonally dominant.
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4.2.8. yT b = 0 ∀ y ∈ N
(
AT
)

= R
(
PT

2

)
=⇒ P2b = 0 =⇒ b ∈ N (P2) = R (A)

4.2.9. x ∈ R
(
A | B

)
⇐⇒ ∃ y such that x =

(
A | B

)
y =

(
A | B

)(y1

y2

)
= Ay1 +

By2 ⇐⇒ x ∈ R (A) + R (B)
4.2.10. (a) p+N (A) is the set of all possible solutions to Ax = b. Recall from (2.5.7)

that the general solution of a nonhomogeneous equation is a particular solution
plus the general solution of the homogeneous equation Ax = 0. The general
solution of the homogeneous equation is simply a way of describing all possible
solutions of Ax = 0, which is N (A).
(b) rank (A3×3) = 1 means that N (A) is spanned by two vectors, and hence
N (A) is a plane through the origin. From the parallelogram law, p + N (A) is
a plane parallel to N (A) passing through the point defined by p.
(c) This time N (A) is spanned by a single vector, and p + N (A) is a line
parallel to N (A) passing through the point defined by p.

4.2.11. a ∈ R
(
AT
)
⇐⇒ ∃ y such that aT = yT A. If Ax = b, then

aT x = yT Ax = yT b,

which is independent of x.

4.2.12. (a) b ∈ R (AB) =⇒ ∃ x such that b = ABx = A(Bx) =⇒ b ∈ R (A)
because b is the image of Bx.
(b) x ∈ N (B) =⇒ Bx = 0 =⇒ ABx = 0 =⇒ x ∈ N (AB).

4.2.13. Given any z ∈ R (AB), the object is to show that z can be written as some
linear combination of the Abi ’s. Argue as follows. z ∈ R (AB) =⇒ z = ABy
for some y. But it is always true that By ∈ R (B), so

By = α1b1 + α2b2 + · · · + αnbn,

and therefore z = ABy = α1Ab1 + α2Ab2 + · · · + αnAbn.

Solutions for exercises in section 4. 3

4.3.1. (a) and (b) are linearly dependent—all others are linearly independent. To write
one vector as a combination of others in a dependent set, place the vectors as
columns in A and find EA. This reveals the dependence relationships among
columns of A.

4.3.2. (a) According to (4.3.12), the basic columns in A always constitute one maximal
linearly independent subset.
(b) Ten—5 sets using two vectors, 4 sets using one vector, and the empty set.

4.3.3. rank (H) ≤ 3, and according to (4.3.11), rank (H) is the maximal number of
independent rows in H.
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4.3.4. The question is really whether or not the columns in

Â =

⎛

⎜⎜⎝

S L F

#1 1 1 1 10
#2 1 2 1 12
#3 1 2 2 15
#4 1 3 2 17

⎞

⎟⎟⎠

are linearly independent. Reducing Â to EÂ shows that 5+2S +3L−F = 0.
4.3.5. (a) This follows directly from the definition of linear dependence because there

are nonzero values of α such that α0 = 0.
(b) This is a consequence of (4.3.13).

4.3.6. If each tii ̸= 0, then T is nonsingular, and the result follows from (4.3.6) and
(4.3.7).

4.3.7. It is linearly independent because

α1

(
1 0
0 0

)
+ α2

(
1 1
0 0

)
+ α3

(
1 1
1 0

)
+ α4

(
1 1
1 1

)
=
(

0 0
0 0

)

⇐⇒ α1

⎛

⎜⎝

1
0
0
0

⎞

⎟⎠+ α2

⎛

⎜⎝

1
1
0
0

⎞

⎟⎠+ α3

⎛

⎜⎝

1
1
1
0

⎞

⎟⎠+ α4

⎛

⎜⎝

1
1
1
1

⎞

⎟⎠ =

⎛

⎜⎝

0
0
0
0

⎞

⎟⎠

⇐⇒

⎛

⎜⎝

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

⎞

⎟⎠

⎛

⎜⎝

α1

α2

α3

α4

⎞

⎟⎠ =

⎛

⎜⎝

0
0
0
0

⎞

⎟⎠⇐⇒

⎛

⎜⎝

α1

α2

α3

α4

⎞

⎟⎠ =

⎛

⎜⎝

0
0
0
0

⎞

⎟⎠ .

4.3.8. A is nonsingular because it is diagonally dominant.
4.3.9. S is linearly independent using exact arithmetic, but using 3-digit arithmetic

yields the conclusion that S is dependent.
4.3.10. If e is the column vector of all 1’s, then Ae = 0, so that N (A) ̸= {0}.
4.3.11. (Solution 1.)

∑
i αiPui = 0 =⇒ P

∑
i αiui = 0 =⇒

∑
i αiui =

0 =⇒ each αi = 0 because the ui ’s are linearly independent.
(Solution 2.) If Am×n is the matrix containing the ui ’s as columns, then
PA = B is the matrix containing the vectors in P(S) as its columns. Now,

A row∼ B =⇒ rank (B) = rank (A) = n,

and hence (4.3.3) insures that the columns of B are linearly independent. The
result need not be true if P is singular—take P = 0 for example.

4.3.12. If Am×n is the matrix containing the ui ’s as columns, and if

Qn×n =

⎛

⎜⎜⎝

1 1 · · · 1
0 1 · · · 1
...

...
. . .

...
0 0 · · · 1

⎞

⎟⎟⎠ ,
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then the columns of B = AQ are the vectors in S ′. Clearly, Q is nonsingular
so that A col∼ B, and thus rank (A) = rank (B). The desired result now follows
from (4.3.3).

4.3.13. (a) and (b) are linearly independent because the Wronski matrix W(0) is non-
singular in each case. (c) is dependent because sin2 x− cos2 x + cos 2x = 0.

4.3.14. If S were dependent, then there would exist a constant α such that x3 = α|x|3
for all values of x. But this would mean that

α =
x3

|x|3 =
{

1 if x > 0,
−1 if x < 0,

which is clearly impossible since α must be constant. The associated Wronski
matrix is

W(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(
x3 x3

3x2 3x2

)
when x ≥ 0,

(
x3 −x3

3x2 −3x2

)
when x < 0,

which is singular for all values of x.
4.3.15. Start with the fact that

AT diag. dom. =⇒ |bii| > |di| +
∑

j ̸=i

|bji| and |α| >
∑

j

|cj |

=⇒
∑

j ̸=i

|bji| < |bii|− |di| and
1
|α|
∑

j ̸=i

|cj | < 1− |ci|
|α| ,

and then use the forward and backward triangle inequality to write

∑

j ̸=i

|xij | =
∑

j ̸=i

∣∣∣∣bji −
dicj

α

∣∣∣∣ ≤
∑

j ̸=i

|bji| +
|di|
|α|

∑

j ̸=i

|cj |

<
(
|bii|− |di|

)
+ |di|

(
1− |ci|

|α|

)
= |bii|−

|di| |ci|
|α|

≤
∣∣∣∣bii −

dici

α

∣∣∣∣ = |xii|.

Now, diagonal dominance of AT insures that α is the entry of largest magni-
tude in the first column of A, so no row interchange is needed at the first step
of Gaussian elimination. After one step, the diagonal dominance of X guar-
antees that the magnitude of the second pivot is maximal with respect to row
interchanges. Proceeding by induction establishes that no step requires partial
pivoting.


