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4.4 BASIS AND DIMENSION

Recall from §4.1 that S is a spanning set for a space V if and only if every
vector in V is a linear combination of vectors in S. However, spanning sets
can contain redundant vectors. For example, a subspace L defined by a line
through the origin in ℜ2 may be spanned by any number of nonzero vectors
{v1,v2, . . . ,vk} in L, but any one of the vectors {vi} by itself will suffice.
Similarly, a plane P through the origin in ℜ3 can be spanned in many different
ways, but the parallelogram law indicates that a minimal spanning set need only
be an independent set of two vectors from P. These considerations motivate the
following definition.

Basis
A linearly independent spanning set for a vector space V is called a
basis for V.

It can be proven that every vector space V possesses a basis—details for
the case when V ⊆ ℜm are asked for in the exercises. Just as in the case of
spanning sets, a space can possess many different bases.

Example 4.4.1

• The unit vectors S = {e1, e2, . . . , en} in ℜn are a basis for ℜn. This is
called the standard basis for ℜn.

• If A is an n × n nonsingular matrix, then the set of rows in A as well as
the set of columns from A constitute a basis for ℜn. For example, (4.3.3)
insures that the columns of A are linearly independent, and we know they
span ℜn because R (A) = ℜn —recall Exercise 4.2.5(b).

• For the trivial vector space Z = {0}, there is no nonempty linearly indepen-
dent spanning set. Consequently, the empty set is considered to be a basis
for Z.

• The set
{

1, x, x2, . . . , xn
}

is a basis for the vector space of polynomials
having degree n or less.

• The infinite set
{

1, x, x2, . . .
}

is a basis for the vector space of all polynomi-
als. It should be clear that no finite basis is possible.
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Spaces that possess a basis containing an infinite number of vectors are
referred to as infinite-dimensional spaces, and those that have a finite basis
are called finite-dimensional spaces. This is often a line of demarcation in
the study of vector spaces. A complete theoretical treatment would include the
analysis of infinite-dimensional spaces, but this text is primarily concerned with
finite-dimensional spaces over the real or complex numbers. It can be shown that,
in effect, this amounts to analyzing ℜn or Cn and their subspaces.

The original concern of this section was to try to eliminate redundancies
from spanning sets so as to provide spanning sets containing a minimal number
of vectors. The following theorem shows that a basis is indeed such a set.

Characterizations of a Basis
Let V be a subspace of ℜm, and let B = {b1,b2, . . . ,bn} ⊆ V. The
following statements are equivalent.

• B is a basis for V. (4.4.1)

• B is a minimal spanning set for V. (4.4.2)

• B is a maximal linearly independent subset of V. (4.4.3)

Proof. First argue that (4.4.1) =⇒ (4.4.2) =⇒ (4.4.1), and then show (4.4.1)
is equivalent to (4.4.3).

Proof of (4.4.1) =⇒ (4.4.2). First suppose that B is a basis for V, and
prove that B is a minimal spanning set by using an indirect argument—i.e.,
assume that B is not minimal, and show that this leads to a contradiction. If
X = {x1,x2, . . . ,xk} is a basis for V in which k < n, then each bj can be
written as a combination of the xi ’s. That is, there are scalars αij such that

bj =
k
∑

i=1

αijxi for j = 1, 2, . . . , n. (4.4.4)

If the b ’s and x ’s are placed as columns in matrices

Bm×n =
(

b1 |b2 | · · · |bn

)

and Xm×k =
(

x1 |x2 | · · · |xk

)

,

then (4.4.4) can be expressed as the matrix equation

B = XA, where, Ak×n = [αij ] .

Since the rank of a matrix cannot exceed either of its size dimensions, and since
k < n, we have that rank (A) ≤k < n, so that N (A) ̸= {0}—recall (4.2.10).
If z ̸= 0 is such that Az = 0, then Bz = 0. But this is impossible because
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the columns of B are linearly independent, and hence N (B) = {0}—recall
(4.3.2). Therefore, the supposition that there exists a basis for V containing
fewer than n vectors must be false, and we may conclude that B is indeed a
minimal spanning set.

Proof of (4.4.2) =⇒ (4.4.1). If B is a minimal spanning set, then B must
be a linearly independent spanning set. Otherwise, some bi would be a linear
combination of the other b ’s, and the set

B′ = {b1, . . . ,bi−1,bi+1, . . . ,bn}

would still span V, but B′ would contain fewer vectors than B, which is im-
possible because B is a minimal spanning set.

Proof of (4.4.3) =⇒ (4.4.1). If B is a maximal linearly independent subset
of V, but not a basis for V, then there exists a vector v ∈ V such that
v /∈ span (B) . This means that the extension set

B ∪ {v} = {b1,b2, . . . ,bn,v}

is linearly independent—recall (4.3.15). But this is impossible because B is a
maximal linearly independent subset of V. Therefore, B is a basis for V.

Proof of (4.4.1) =⇒ (4.4.3). Suppose that B is a basis for V, but not a
maximal linearly independent subset of V, and let

Y = {y1,y2, . . . ,yk} ⊆ V, where k > n

be a maximal linearly independent subset—recall that (4.3.16) insures the ex-
istence of such a set. The previous argument shows that Y must be a basis
for V. But this is impossible because we already know that a basis must be a
minimal spanning set, and B is a spanning set containing fewer vectors than Y.
Therefore, B must be a maximal linearly independent subset of V.

Although a space V can have many different bases, the preceding result
guarantees that all bases for V contain the same number of vectors. If B1 and
B2 are each a basis for V, then each is a minimal spanning set, and thus they
must contain the same number of vectors. As we are about to see, this number
is quite important.

Dimension
The dimension of a vector space V is defined to be

dim V = number of vectors in any basis for V
= number of vectors in any minimal spanning set for V
= number of vectors in any maximal independent subset of V.
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Example 4.4.2

• If Z = {0} is the trivial subspace, then dimZ = 0 because the basis for
this space is the empty set.

• If L is a line through the origin in ℜ3, then dimL = 1 because a basis for
L consists of any nonzero vector lying along L.

• If P is a plane through the origin in ℜ3, then dimP = 2 because a minimal
spanning set for P must contain two vectors from P.

• dimℜ3 = 3 because the three unit vectors
{(

1
0
0

)

,

(

0
1
0

)

,

(

0
0
1

)}

constitute

a basis for ℜ3.

• dimℜn = n because the unit vectors {e1, e2, . . . , en} in ℜn form a basis.

Example 4.4.3
Problem: If V is an n -dimensional space, explain why every independent
subset S = {v1,v2, . . . ,vn} ⊂ V containing n vectors must be a basis for V.

Solution: dimV = n means that every subset of V that contains more than n
vectors must be linearly dependent. Consequently, S is a maximal independent
subset of V, and hence S is a basis for V.

Example 4.4.2 shows that in a loose sense the dimension of a space is a
measure of the amount of “stuff” in the space—a plane P in ℜ3 has more
“stuff” in it than a line L, but P contains less “stuff” than the entire space
ℜ3. Recall from the discussion in §4.1 that subspaces of ℜn are generalized
versions of flat surfaces through the origin. The concept of dimension gives us a
way to distinguish between these “flat” objects according to how much “stuff”
they contain—much the same way we distinguish between lines and planes in ℜ3.
Another way to think about dimension is in terms of “degrees of freedom.” In
the trivial space Z, there are no degrees of freedom—you can move nowhere—
whereas on a line there is one degree of freedom—length; in a plane there are
two degrees of freedom—length and width; in ℜ3 there are three degrees of
freedom—length, width, and height; etc.

It is important not to confuse the dimension of a vector space V with the
number of components contained in the individual vectors from V. For example,
if P is a plane through the origin in ℜ3, then dimP = 2, but the individual
vectors in P each have three components. Although the dimension of a space V
and the number of components contained in the individual vectors from V need
not be the same, they are nevertheless related. For example, if V is a subspace of
ℜn, then (4.3.16) insures that no linearly independent subset in V can contain
more than n vectors and, consequently, dimV ≤n. This observation generalizes
to produce the following theorem.
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Subspace Dimension
For vector spaces M and N such that M ⊆ N , the following state-
ments are true.

• dimM ≤dimN . (4.4.5)

• If dimM = dimN , then M = N . (4.4.6)

Proof. Let dimM = m and dimN = n, and use an indirect argument to
prove (4.4.5). If it were the case that m > n, then there would exist a linearly
independent subset of N (namely, a basis for M ) containing more than n vec-
tors. But this is impossible because dimN is the size of a maximal independent
subset of N . Thus m ≤n. Now prove (4.4.6). If m = n but M ≠ N , then
there exists a vector x such that x ∈ N but x /∈ M. If B is a basis for M,
then x /∈ span (B) , and the extension set E = B∪{x} is a linearly independent
subset of N —recall (4.3.15). But E contains m + 1 = n + 1 vectors, which is
impossible because dimN = n is the size of a maximal independent subset of
N . Hence M = N .

Let’s now find bases and dimensions for the four fundamental subspaces
of an m × n matrix A of rank r, and let’s start with R (A). The entire set
of columns in A spans R (A), but they won’t form a basis when there are
dependencies among some of the columns. However, the set of basic columns in
A is also a spanning set—recall (4.2.8)—and the basic columns always constitute
a linearly independent set because no basic column can be a combination of other
basic columns (otherwise it wouldn’t be basic). So, the set of basic columns is a
basis for R (A), and, since there are r of them, dimR (A) = r = rank (A).

Similarly, the entire set of rows in A spans R
(

AT
)

, but the set of all rows
is not a basis when dependencies exist. Recall from (4.2.7) that if U =

(

Cr×n
0

)

is any row echelon form that is row equivalent to A, then the rows of C span
R
(

AT
)

. Since rank (C) = r, (4.3.5) insures that the rows of C are linearly
independent. Consequently, the rows in C are a basis for R

(

AT
)

, and, since
there are r of them, dimR

(

AT
)

= r = rank (A). Older texts referred to
dimR

(

AT
)

as the row rank of A, while dimR (A) was called the column rank
of A, and it was a major task to prove that the row rank always agrees with the
column rank. Notice that this is a consequence of the discussion above where it
was observed that dimR

(

AT
)

= r = dimR (A).
Turning to the nullspaces, let’s first examine N

(

AT
)

. We know from
(4.2.12) that if P is a nonsingular matrix such that PA = U is in row echelon
form, then the last m − r rows in P span N

(

AT
)

. Because the set of rows
in a nonsingular matrix is a linearly independent set, and because any subset
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of an independent set is again independent—see (4.3.7) and (4.3.14)—it follows
that the last m − r rows in P are linearly independent, and hence they con-
stitute a basis for N

(

AT
)

. And this implies dimN
(

AT
)

= m − r (i.e., the
number of rows in A minus the rank of A). Replacing A by AT shows that
dimN

(

AT T
)

= dimN (A) is the number of rows in AT minus rank
(

AT
)

.

But rank
(

AT
)

= rank (A) = r, so dim N (A) = n − r. We deduced dimN (A)
without exhibiting a specific basis, but a basis for N (A) is easy to describe.
Recall that the set H containing the hi ’s appearing in the general solution
(4.2.9) of Ax = 0 spans N (A). Since there are exactly n − r vectors in H,
and since dimN (A) = n − r, H is a minimal spanning set, so, by (4.4.2), H
must be a basis for N (A). Below is a summary of facts uncovered above.

Fundamental Subspaces—Dimension and Bases
For an m × n matrix of real numbers such that rank (A) = r,

• dimR (A) = r, (4.4.7)

• dimN (A) = n − r, (4.4.8)

• dimR
(

AT
)

= r, (4.4.9)

• dimN
(

AT
)

= m − r. (4.4.10)

Let P be a nonsingular matrix such that PA = U is in row echelon
form, and let H be the set of hi ’s appearing in the general solution
(4.2.9) of Ax = 0.

• The basic columns of A form a basis for R (A). (4.4.11)

• The nonzero rows of U form a basis for R
(

AT
)

. (4.4.12)

• The set H is a basis for N (A). (4.4.13)

• The last m − r rows of P form a basis for N
(

AT
)

. (4.4.14)

For matrices with complex entries, the above statements remain valid
provided that AT is replaced with A∗ .

Statements (4.4.7) and (4.4.8) combine to produce the following theorem.

Rank Plus Nullity Theorem
• dimR (A) + dimN (A) = n for all m × n matrices. (4.4.15)
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In loose terms, this is a kind of conservation law—it says that as the amount
of “stuff” in R (A) increases, the amount of “stuff” in N (A) must decrease,
and vice versa. The phrase rank plus nullity is used because dim R (A) is the
rank of A, and dimN (A) was traditionally known as the nullity of A.

Example 4.4.4
Problem: Determine the dimension as well as a basis for the space spanned by

S =

⎧

⎨

⎩

⎛

⎝

1
2
1

⎞

⎠ ,

⎛

⎝

1
0
2

⎞

⎠ ,

⎛

⎝

5
6
7

⎞

⎠

⎫

⎬

⎭

.

Solution 1: Place the vectors as columns in a matrix A, and reduce

A =

⎛

⎝

1 1 5
2 0 6
1 2 7

⎞

⎠ − → EA =

⎛

⎝

1 0 3
0 1 2
0 0 0

⎞

⎠ .

Since span (S) = R (A), we have

dim
(

span (S)
)

= dimR (A) = rank (A) = 2.

The basic columns B =
{(

1
2
1

)

,

(

1
0
2

)}

are a basis for R (A) = span (S) .

Other bases are also possible. Examining EA reveals that any two vectors in S
form an independent set, and therefore any pair of vectors from S constitutes
a basis for span (S) .

Solution 2: Place the vectors from S as rows in a matrix B, and reduce B
to row echelon form:

B =

⎛

⎝

1 2 1
1 0 2
5 6 7

⎞

⎠ − → U =

⎛

⎝

1 2 1
0 − 2 1
0 0 0

⎞

⎠ .

This time we have span (S) = R
(

BT
)

, so that

dim
(

span (S)
)

= dimR
(

BT
)

= rank (B) = rank (U) = 2,

and a basis for span (S) = R
(

BT
)

is given by the nonzero rows in U.
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Example 4.4.5
Problem: If Sr = {v1,v2, . . . ,vr} is a linearly independent subset of an
n -dimensional space V, where r < n, explain why it must be possible to find
extension vectors {vr+1, . . . ,vn} from V such that

Sn = {v1, . . . ,vr,vr+1, . . . ,vn}
is a basis for V.

Solution 1: r < n means that span (Sr) ̸= V, and hence there exists a vector
vr+1 ∈ V such that vr+1 /∈ span (Sr) . The extension set Sr+1 = Sr∪{vr+1} is
an independent subset of V containing r+1 vectors—recall (4.3.15). Repeating
this process generates independent subsets Sr+2,Sr+3, . . . , and eventually leads
to a maximal independent subset Sn ⊂ V containing n vectors.

Solution 2: The first solution shows that it is theoretically possible to find
extension vectors, but the argument given is not much help in actually computing
them. It is easy to remedy this situation. Let {b1,b2, . . . ,bn} be any basis for
V, and place the given vi ’s along with the bi ’s as columns in a matrix

A =
(

v1 | · · · |vr |b1 | · · · |bn

)

.

Clearly, R (A) = V so that the set of basic columns from A is a basis for V.
Observe that {v1,v2, . . . ,vr} are basic columns in A because no one of these is
a combination of preceding ones. Therefore, the remaining n − r basic columns
must be a subset of {b1,b2, . . . ,bn}—say they are

{

bj1 ,bj2 , . . . ,bjn−r

}

. The
complete set of basic columns from A, and a basis for V, is the set

B =
{

v1, . . . ,vr,bj1 , . . . ,bjn−r

}

.

For example, to extend the independent set

S =

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎝

1
0

− 1
2

⎞

⎟

⎠
,

⎛

⎜

⎝

0
0
1

− 2

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

to a basis for ℜ4, append the standard basis {e1, e2, e3, e4} to the vectors in
S, and perform the reduction

A =

⎛

⎜

⎝

1 0 1 0 0 0
0 0 0 1 0 0

− 1 1 0 0 1 0
2 − 2 0 0 0 1

⎞

⎟

⎠
− → EA =

⎛

⎜

⎝

1 0 1 0 0 0
0 1 1 0 0 − 1/2
0 0 0 1 0 0
0 0 0 0 1 1/2

⎞

⎟

⎠
.

This reveals that {A∗ 1,A∗ 2,A∗ 4,A∗ 5} are the basic columns in A, and there-
fore

B =

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎝

1
0

− 1
2

⎞

⎟

⎠
,

⎛

⎜

⎝

0
0
1

− 2

⎞

⎟

⎠
,

⎛

⎜

⎝

0
1
0
0

⎞

⎟

⎠
,

⎛

⎜

⎝

0
0
1
0

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

is a basis for ℜ4 that contains S.



202 Chapter 4 Vector Spaces

Example 4.4.6
Rank and Connectivity. A set of points (or nodes), {N1, N2, . . . , Nm} , to-
gether with a set of paths (or edges), {E1, E2, . . . , En} , between the nodes is
called a graph . A connected graph is one in which there is a sequence of edges
linking any pair of nodes, and a directed graph is one in which each edge has been
assigned a direction. For example, the graph in Figure 4.4.1 is both connected
and directed.

E6

E5

E4

E3

E2E1

1

2

3

4

Figure 4.4.1

The connectivity of a directed graph is independent of the directions assigned
to the edges—i.e., changing the direction of an edge doesn’t change the connec-
tivity. (Exercise 4.4.20 presents another type of connectivity in which direction
matters.) On the surface, the concepts of graph connectivity and matrix rank
seem to have little to do with each other, but, in fact, there is a close relationship.
The incidence matrix associated with a directed graph containing m nodes
and n edges is defined to be the m × n matrix E whose (k, j) -entry is

ekj =

⎧

⎨

⎩

1 if edge Ej is directed toward node Nk.
− 1 if edge Ej is directed away from node Nk.

0 if edge Ej neither begins nor ends at node Nk.

For example, the incidence matrix associated with the graph in Figure 4.4.1 is

E =

⎛

⎜

⎜

⎝

E1 E2 E3 E4 E5 E6

N1 1 − 1 0 0 − 1 0
N2 − 1 0 − 1 1 0 0
N3 0 0 1 0 1 1
N4 0 1 0 − 1 0 − 1

⎞

⎟

⎟

⎠

. (4.4.16)

Each edge in a directed graph is associated with two nodes—the nose and the tail
of the edge—so each column in E must contain exactly two nonzero entries—a
(+1) and a (− 1). Consequently, all column sums are zero. In other words, if
eT = ( 1 1 · · · 1 ) , then eT E = 0, so e ∈ N

(

ET
)

, and

rank (E) = rank
(

ET
)

= m − dimN
(

ET
)

≤m − 1. (4.4.17)

This inequality holds regardless of the connectivity of the associated graph, but
marvelously, equality is attained if and only if the graph is connected.



4.4 Basis and Dimension 203

Rank and Connectivity
Let G be a graph containing m nodes. If G is undirected, arbitrarily
assign directions to the edges to make G directed, and let E be the
corresponding incidence matrix.

• G is connected if and only if rank (E) = m − 1. (4.4.18)

Proof. Suppose G is connected. Prove rank (E) = m − 1 by arguing that
dimN

(

ET
)

= 1, and do so by showing e = ( 1 1 · · · 1 )T is a basis N
(

ET
)

.
To see that e spans N

(

ET
)

, consider an arbitrary x ∈ N
(

ET
)

, and focus on
any two components xi and xk in x along with the corresponding nodes Ni

and Nk in G. Since G is connected, there must exist a subset of r nodes,

{Nj1 , Nj2 , . . . , Njr} , where i = j1 and k = jr,

such that there is an edge between Njp and Njp+1 for each p = 1, 2, . . . , r − 1.
Therefore, corresponding to each of the r − 1 pairs

(

Njp , Njp+1

)

, there must
exist a column cp in E (not necessarily the pth column) such that components
jp and jp+1 in cp are complementary in the sense that one is (+1) while the
other is (− 1) (all other components are zero). Because xT E = 0, it follows that
xT cp = 0, and hence xjp = xjp+1 . But this holds for every p = 1, 2, . . . , r − 1,
so xi = xk for each i and k, and hence x = αe for some scalar α. Thus {e}
spans N

(

ET
)

. Clearly, {e} is linearly independent, so it is a basis N
(

ET
)

,
and, therefore, dimN

(

ET
)

= 1 or, equivalently, rank (E) = m − 1. Conversely,
suppose rank (E) = m − 1, and prove G is connected with an indirect argument.
If G is not connected, then G is decomposable into two nonempty subgraphs
G1 and G2 in which there are no edges between nodes in G1 and nodes in G2.
This means that the nodes in G can be ordered so as to make E have the form

E =
(

E1 0
0 E2

)

,

where E1 and E2 are the incidence matrices for G1 and G2, respectively. If
G1 and G2 contain m1 and m2 nodes, respectively, then (4.4.17) insures that

rank (E)=rank

(

E1 0
0 E2

)

=rank (E1)+rank (E1)≤(m1 − 1)+(m2 − 1)=m − 2.

But this contradicts the hypothesis that rank (E) = m − 1, so the supposition
that G is not connected must be false.
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Example 4.4.7
An Application to Electrical Circuits. Recall from the discussion on p. 73
that applying Kirchhoff’s node rule to an electrical circuit containing m nodes
and n branches produces m homogeneous linear equations in n unknowns (the
branch currents), and Kirchhoff’s loop rule provides a nonhomogeneous equation
for each simple loop in the circuit. For example, consider the circuit in Figure
4.4.2 along with its four nodal equations and three loop equations—this is the
same circuit appearing on p. 73, and the equations are derived there.

1

2
3

4

R1

R6

R5

R4

R3

R2

E4

E3

E2E1

I2

I4

I1

I5

I6I3

A B

C

Node 1: I1 − I2 − I5 = 0
Node 2: − I1 − I3 + I4 = 0
Node 3: I3 + I5 + I6 = 0
Node 4: I2 − I4 − I6 = 0

Loop A: I1R1 − I3R3 + I5R5 = E1 − E3

Loop B: I2R2 − I5R5 + I6R6 = E2

Loop C: I3R3 + I4R4 − I6R6 = E3 + E4

Figure 4.4.2

The directed graph and associated incidence matrix E defined by this circuit
are the same as those appearing in Example 4.4.6 in Figure 4.4.1 and equation
(4.4.16), so it’s apparent that the 4 × 3 homogeneous system of nodal equations
is precisely the system Ex = 0. This observation holds for general circuits. The
goal is to compute the six currents I1, I2, . . . , I6 by selecting six independent
equations from the entire set of node and loop equations. In general, if a circuit
containing m nodes is connected in the graph sense, then (4.4.18) insures that
rank (E) = m − 1, so there are m independent nodal equations. But Example
4.4.6 also shows that 0 = eT E = E1∗ + E2∗ + · · · + Em∗ , which means that
any row can be written in terms of the others, and this in turn implies that
every subset of m − 1 rows in E must be independent (see Exercise 4.4.13).
Consequently, when any nodal equation is discarded, the remaining ones are
guaranteed to be independent. To determine an n × n nonsingular system that
has the n branch currents as its unique solution, it’s therefore necessary to find
n − m+1 additional independent equations, and, as shown in §2.6, these are the
loop equations. A simple loop in a circuit is now seen to be a connected subgraph
that does not properly contain other connected subgraphs. Physics dictates that
the currents must be uniquely determined, so there must always be n − m + 1
simple loops, and the combination of these loop equations together with any
subset of m − 1 nodal equations will be a nonsingular n × n system that yields
the branch currents as its unique solution. For example, any three of the nodal
equations in Figure 4.4.2 can be coupled with the three simple loop equations to
produce a 6 × 6 nonsingular system whose solution is the six branch currents.
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If X and Y are subspaces of a vector space V, then the sum of X and
Y was defined in §4.1 to be

X + Y = {x + y | x ∈ X and y ∈ Y},

and it was demonstrated in (4.1.1) that X + Y is again a subspace of V. You
were asked in Exercise 4.1.8 to prove that the intersection X ∩ Y is also a
subspace of V. We are now in a position to exhibit an important relationship
between dim (X + Y) and dim (X ∩ Y) .

Dimension of a Sum
If X and Y are subspaces of a vector space V, then

dim (X + Y) = dimX + dimY − dim (X ∩ Y) . (4.4.19)

Proof. The strategy is to construct a basis for X + Y and count the number
of vectors it contains. Let S = {z1, z2, . . . , zt} be a basis for X ∩ Y. Since
S ⊆ X and S ⊆ Y, there must exist extension vectors {x1,x2, . . . ,xm} and
{y1,y2, . . . ,yn} such that

BX = {z1, . . . , zt,x1, . . . ,xm} = a basis for X

and
BY = {z1, . . . , zt,y1, . . . ,yn} = a basis for Y.

We know from (4.1.2) that B = BX ∪BY spans X +Y, and we wish show that
B is linearly independent. If

t
∑

i=1

αizi +
m
∑

j=1

βjxj +
n
∑

k=1

γkyk = 0, (4.4.20)

then
n
∑

k=1

γkyk = −

⎛

⎝

t
∑

i=1

αizi +
m
∑

j=1

βjxj

⎞

⎠ ∈ X .

Since it is also true that
∑

k γkyk ∈ Y, we have that
∑

k γkyk ∈ X ∩ Y, and
hence there must exist scalars δi such that

n
∑

k=1

γkyk =
t
∑

i=1

δizi or, equivalently,
n
∑

k=1

γkyk −
t
∑

i=1

δizi = 0.
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Since BY is an independent set, it follows that all of the γk ’s (as well as all
δi ’s) are zero, and (4.4.20) reduces to

∑t
i=1 αizi +

∑m
j=1 βjxj = 0. But BX is

also an independent set, so the only way this can hold is for all of the αi ’s as
well as all of the βj ’s to be zero. Therefore, the only possible solution for the
α ’s, β ’s, and γ ’s in the homogeneous equation (4.4.20) is the trivial solution,
and thus B is linearly independent. Since B is an independent spanning set, it
is a basis for X + Y and, consequently,

dim (X + Y) = t+m+n = (t+m)+(t+n) − t = dimX+dimY − dim (X ∩ Y) .

Example 4.4.8
Problem: Show that rank (A + B) ≤rank (A) + rank (B).

Solution: Observe that

R (A + B) ⊆ R (A) + R (B)

because if b ∈ R (A + B), then there is a vector x such that

b = (A + B)x = Ax + Bx ∈ R (A) + R (B).

Recall from (4.4.5) that if M and N are vector spaces such that M ⊆ N , then
dimM ≤dimN . Use this together with formula (4.4.19) for the dimension of a
sum to conclude that

rank (A + B) = dimR (A + B) ≤dim
(

R (A) + R (B)
)

= dimR (A) + dimR (B) − dim
(

R (A) ∩ R (B)
)

≤dimR (A) + dimR (B) = rank (A) + rank (B).

Exercises for section 4.4

4.4.1. Find the dimensions of the four fundamental subspaces associated with

A =

⎛

⎝

1 2 2 3
2 4 1 3
3 6 1 4

⎞

⎠ .

4.4.2. Find a basis for each of the four fundamental subspaces associated with

A =

⎛

⎝

1 2 0 2 1
3 6 1 9 6
2 4 1 7 5

⎞

⎠ .
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4.4.3. Determine the dimension of the space spanned by the set

S =

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎝

1
2

− 1
3

⎞

⎟

⎠
,

⎛

⎜

⎝

1
0
0
2

⎞

⎟

⎠
,

⎛

⎜

⎝

2
8

− 4
8

⎞

⎟

⎠
,

⎛

⎜

⎝

1
1
1
1

⎞

⎟

⎠
,

⎛

⎜

⎝

3
3
0
6

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

.

4.4.4. Determine the dimensions of each of the following vector spaces:
(a) The space of polynomials having degree n or less.
(b) The space ℜm×n of m × n matrices.
(c) The space of n × n symmetric matrices.

4.4.5. Consider the following matrix and column vector:

A =

⎛

⎝

1 2 2 0 5
2 4 3 1 8
3 6 1 5 5

⎞

⎠ and v =

⎛

⎜

⎜

⎜

⎝

− 8
1
3
3
0

⎞

⎟

⎟

⎟

⎠

.

Verify that v ∈ N (A), and then extend {v} to a basis for N (A).

4.4.6. Determine whether or not the set

B =

⎧

⎨

⎩

⎛

⎝

2
3
2

⎞

⎠ ,

⎛

⎝

1
1

− 1

⎞

⎠

⎫

⎬

⎭

is a basis for the space spanned by the set

A =

⎧

⎨

⎩

⎛

⎝

1
2
3

⎞

⎠ ,

⎛

⎝

5
8
7

⎞

⎠ ,

⎛

⎝

3
4
1

⎞

⎠

⎫

⎬

⎭

.

4.4.7. Construct a 4 × 4 homogeneous system of equations that has no zero
coefficients and three linearly independent solutions.

4.4.8. Let B = {b1,b2, . . . ,bn} be a basis for a vector space V. Prove that
each v ∈ V can be expressed as a linear combination of the bi ’s

v = α1b1 + α2b2 + · · · + αnbn,

in only one way—i.e., the coordinates αi are unique.
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4.4.9. For A ∈ ℜm×n and a subspace S of ℜn×1, the image

A(S) = {Ax |x ∈ S}
of S under A is a subspace of ℜm×1 —recall Exercise 4.1.9. Prove
that if S ∩ N (A) = 0, then dimA(S) = dim(S). Hint: Use a basis
{s1, s2, . . . , sk} for S to determine a basis for A(S).

4.4.10. Explain why
∣

∣rank (A) − rank (B)
∣

∣≤rank (A − B).

4.4.11. If rank (Am×n) = r and rank (Em×n) = k ≤r, explain why

r − k ≤rank (A + E) ≤r + k.

In words, this says that a perturbation of rank k can change the rank
by at most k.

4.4.12. Explain why every nonzero subspace V ⊆ ℜn must possess a basis.

4.4.13. Explain why every set of m − 1 rows in the incidence matrix E of a
connected directed graph containing m nodes is linearly independent.

4.4.14. For the incidence matrix E of a directed graph, explain why
[

EET
]

ij
=
{

number of edges at node i when i = j,
− (number of edges between nodes i and j) when i ̸= j.

4.4.15. If M and N are subsets of a space V, explain why

dim
(

span (M ∪N )
)

= dim
(

span (M)
)

+ dim
(

span (N )
)

− dim
(

span (M) ∩ span (N )
)

.

4.4.16. Consider two matrices Am×n and Bm×k.
(a) Explain why

rank (A | B) = rank (A) + rank (B) − dim
(

R (A) ∩ R (B)
)

.

Hint: Recall Exercise 4.2.9.
(b) Now explain why

dimN (A | B) = dimN (A)+dimN (B)+dim
(

R (A)∩R (B)
)

.

(c) Determine dim
(

R (C)∩N (C)
)

and dim
(

R (C) + N (C)
)

for

C =

⎛

⎜

⎜

⎜

⎝

− 1 1 1 − 2 1
− 1 0 3 − 4 2
− 1 0 3 − 5 3
− 1 0 3 − 6 4
− 1 0 3 − 6 4

⎞

⎟

⎟

⎟

⎠

.
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4.4.17. Suppose that A is a matrix with m rows such that the system Ax = b
has a unique solution for every b ∈ ℜm. Explain why this means that
A must be square and nonsingular.

4.4.18. Let S be the solution set for a consistent system of linear equations
Ax = b.

(a) If Smax = {s1, s2, . . . , st} is a maximal independent subset of
S, and if p is any particular solution, prove that

span (Smax) = span {p} + N (A).

Hint: First show that x ∈ S implies x ∈ span (Smax) , and
then demonstrate set inclusion in both directions with the aid
of Exercise 4.2.10.

(b) If b ̸= 0 and rank (Am×n) = r, explain why Ax = b has
n − r + 1 “independent solutions.”

4.4.19. Let rank (Am×n) = r, and suppose Ax = b with b ̸= 0 is a consistent
system. If H = {h1,h2, . . . ,hn−r} is a basis for N (A), and if p is a
particular solution to Ax = b, show that

Smax = {p, p + h1, p + h2, . . . , p + hn−r}

is a maximal independent set of solutions.

4.4.20. Strongly Connected Graphs. In Example 4.4.6 we started with a
graph to construct a matrix, but it’s also possible to reverse the situation
by starting with a matrix to build an associated graph. The graph of
An×n (denoted by G(A)) is defined to be the directed graph on n
nodes {N1, N2, . . . , Nn} in which there is a directed edge leading from
Ni to Nj if and only if aij ̸= 0. The directed graph G(A) is said to
be strongly connected provided that for each pair of nodes (Ni, Nk)
there is a sequence of directed edges leading from Ni to Nk. The matrix
A is said to be reducible if there exists a permutation matrix P such
that PT AP =

(

X Y
0 Z

)

, where X and Z are both square matrices.
Otherwise, A is said to be irreducible. Prove that G(A) is strongly
connected if and only if A is irreducible. Hint: Prove the contrapositive:
G(A) is not strongly connected if and only if A is reducible.
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Solutions for exercises in section 4. 4

4.4.1. dimR (A) = dimR
(
AT
)

= rank (A) = 2, dimN (A) = n − r = 4 − 2 = 2,
and dimN

(
AT
)

= m− r = 3− 2 = 1.

4.4.2. BR(A) =

⎧
⎨

⎩

⎛

⎝
1
3
2

⎞

⎠ ,

⎛

⎝
0
1
1

⎞

⎠

⎫
⎬

⎭ , BN(AT ) =

⎧
⎨

⎩

⎛

⎝
1
−1

1

⎞

⎠

⎫
⎬

⎭

BR(AT ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜⎝

1
2
0
2
1

⎞

⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎝

0
0
1
3
3

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, BN(A) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜⎝

−2
1
0
0
0

⎞

⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎝

−2
0
−3

1
0

⎞

⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎝

−1
0
−3

0
1

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

4.4.3. dim
(
span (S)

)
= 3

4.4.4. (a) n + 1 (See Example 4.4.1) (b) mn (c) n2+n
2

4.4.5. Use the technique of Example 4.4.5. Find EA to determine

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
h1=

⎛

⎜⎜⎜⎝

−2
1
0
0
0

⎞

⎟⎟⎟⎠
, h2=

⎛

⎜⎜⎜⎝

−2
0
1
1
0

⎞

⎟⎟⎟⎠
, h3=

⎛

⎜⎜⎜⎝

−1
0
−2

0
1

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

is a basis for N (A). Reducing the matrix
(
v, h1, h2, h3

)
to row echelon

form reveals that its first, second, and fourth columns are basic, and hence
{v, h1, h3} is a basis for N (A) that contains v.

4.4.6. Placing the vectors from A and B as rows in matrices and reducing

A =

⎛

⎝
1 2 3
5 8 7
3 4 1

⎞

⎠ −→ EA =

⎛

⎝
1 0 −5
0 1 4
0 0 0

⎞

⎠

and
B =

(
2 3 2
1 1 −1

)
−→ EB =

(
1 0 −5
0 1 4

)

shows A and B have the same row space (recall Example 4.2.2), and hence A
and B span the same space. Because B is linearly independent, it follows that
B is a basis for span (A) .

4.4.7. 3 = dimN (A) = n − r = 4 − rank (A) =⇒ rank (A) = 1. Therefore, any
rank-one matrix with no zero entries will do the job.

4.4.8. If v = α1b1+ α2b2+ · · · + αnbn and v = β1b1+ β2b2+ · · · + βnbn, then
subtraction produces

0 = (α1− β1)b1+ (α2− β2)b2+ · · · + (αn − βn)bn.
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But B is a linearly independent set, so this equality can hold only if (αi−βi) = 0
for each i = 1, 2, . . . , n, and hence the αi ’s are unique.

4.4.9. Prove that if {s1, s2, . . . , sk} is a basis for S, then {As1,As2, . . . ,Ask} is a
basis for A(S). The result of Exercise 4.1.9 insures that

span {As1,As2, . . . ,Ask} = A(S),

so we need only establish the independence of {As1,As2, . . . ,Ask}. To do this,
write

k∑

i=1

αi (Asi) = 0 =⇒ A

(
k∑

i=1

αisi

)

= 0 =⇒
k∑

i=1

αisi ∈ N (A)

=⇒
k∑

i=1

αisi = 0 because S ∩N (A) = 0

=⇒ α1= α2= · · · = αk = 0

because {s1, s2, . . . , sk} is linearly independent. Since {As1,As2, . . . ,Ask} is
a basis for A(S), it follows that dimA(S) = k = dim(S).

4.4.10. rank (A) = rank (A−B + B) ≤ rank (A−B) + rank (B) implies that

rank (A)− rank (B) ≤ rank (A−B).

Furthermore, rank (B) = rank (B−A + A) ≤ rank (B−A) + rank (A) =
rank (A−B) + rank (A) implies that

−
(
rank (A)− rank (B)

)
≤ rank (A−B).

4.4.11. Example 4.4.8 guarantees that rank (A + E) ≤ rank (A) + rank (E) = r + k.
Use Exercise 4.4.10 to write

rank (A + E) = rank (A− (−E)) ≥ rank (A)− rank (−E) = r − k.

4.4.12. Let v1 ∈ V such that v1 ̸= 0. If span {v1} = V, then S1 = {v1} is an
independent spanning set for V, and we are finished. If span {v1} ̸= V, then
there is a vector v2∈ V such that v2 /∈ span {v1} , and hence the extension set
S2= {v1,v2} is independent. If span (S2) = V, then we are finished. Otherwise,
we can proceed as described in Example 4.4.5 and continue to build independent
extension sets S3,S4, . . . . Statement (4.3.16) guarantees that the process must
eventually yield a linearly independent spanning set Sk with k ≤ n.

4.4.13. Since 0 = eT E = E1∗+E2∗+· · ·+Em∗, any row can be written as a combination
of the other m − 1 rows, so any set of m − 1 rows from E spans N

(
ET
)
.

Furthermore, rank (E) = m − 1 insures that no fewer than m − 1 vectors
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can span N
(
ET
)
, and therefore any set of m − 1 rows from E is a minimal

spanning set, and hence a basis.
4.4.14.

[
EET

]
ij

= Ei∗
(
ET
)
∗j

= Ei∗ (Ej∗)
T =

∑
k eikejk. Observe that edge Ek

touches node Ni if and only if eik = ± 1 or, equivalently, e2
ik = 1. Thus[

EET
]
ii

=
∑

k e2
ik = the number of edges touching Ni. If i ̸= j, then

eikejk =
{
−1 if Ek is between Ni and Nj

0 if Ek is not between Ni and Nj

so that
[
EET

]
ij

=
∑

k eikejk = − (the number of edges between Ni and Nj ).
4.4.15. Apply (4.4.19) to span (M ∪N ) = span (M) + span (N ) (see Exercise 4.1.7).
4.4.16. (a) Exercise 4.2.9 says R (A | B) = R (A) + R (B). Since rank is the same as

dimension of the range, (4.4.19) yields

rank (A | B) = dimR (A | B) = dim
(
R (A) + R (B)

)

= dimR (A) + dimR (B)− dim
(
R (A) ∩R (B)

)

= rank (A) + rank (B)− dim
(
R (A) ∩R (B)

)
.

(b) Use the results of part (a) to write

dimN (A | B) = n + k − rank (A | B)

=
(
n− rank (A)

)
+
(
k − rank (B)

)
+ dim

(
R (A) ∩R (B)

)

= dimN (A) + dimN (B) + dim
(
R (A) ∩R (B)

)
.

(c) Let A =

⎛

⎜⎜⎜⎝

−1 1 −2
−1 0 −4
−1 0 −5
−1 0 −6
−1 0 −6

⎞

⎟⎟⎟⎠
and B =

⎛

⎜⎜⎜⎝

3 −2
2 −1
1 0
0 1
0 1

⎞

⎟⎟⎟⎠
contain bases for R (C)

and N (C), respectively, so that R (A) = R (C) and R (B) = N (C). Use
either part (a) or part (b) to obtain

dim
(
R (C) ∩N (C)

)
= dim

(
R (A) ∩R (B)

)
= 2.

Using R (A | B) = R (A) + R (B) produces

dim
(
R (C) + N (C)

)
= dim

(
R (A) + R (B)

)
= rank (A | B) = 3.

4.4.17. Suppose A is m × n. Existence of a solution for every b implies R (A) = ℜm.
Recall from §2.5 that uniqueness of the solution implies rank (A) = n. Thus
m = dimR (A) = rank (A) = n so that A is m × m of rank m.
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4.4.18. (a) x ∈ S =⇒ x ∈ span (Smax) —otherwise, the extension set E = Smax∪{x}
would be linearly independent—which is impossible because E would contain
more independent solutions than Smax. Now show span (Smax) ⊆ span {p} +
N (A). Since S = p + N (A) (see Exercise 4.2.10), si ∈ S means there must
exist a corresponding vector ni ∈ N (A) such that si = p + ni, and hence

x ∈ span (Smax) =⇒ x =
t∑

i=1

αisi =
t∑

i=1

αi (p + ni) =
t∑

i=1

αip +
t∑

i=1

αini

=⇒ x ∈ span {p} + N (A)
=⇒ span (Smax) ⊆ span {p} + N (A).

To prove the reverse inclusion, observe that if x ∈ span {p}+N (A), then there
exists a scalar α and a vector n ∈ N (A) such that

x = αp + n = (α− 1)p + (p + n).

Because p and (p + n) are both solutions, S ⊆ span(Smax) guarantees that
p and (p + n) each belong to span (Smax) , and the closure properties of a
subspace insure that x ∈ span (Smax) . Thus span {p}+N (A) ⊆ span (Smax) .
(b) The problem is really to determine the value of t in Smax. The fact that
Smax is a basis for span (Smax) together with (4.4.19) produces

t = dim
(
span (Smax)

)
= dim

(
span {p} + N (A)

)

= dim
(
span {p}

)
+ dimN (A)− dim

(
span {p} ∩N (A)

)

= 1 + (n− r)− 0.

4.4.19. To show Smax is linearly independent, suppose

0 = α0p +
n−r∑

i=1

αi (p + hi) =

(
n−r∑

i=0

αi

)

p +
n−r∑

i=1

αihi.

Multiplication by A yields 0 =
(∑n−r

i=0 αi

)
b, which implies

∑n−r
i=0 αi = 0,

and hence
∑n−r

i=1 αihi = 0. Because H is independent, we may conclude that
α1 = α2 = · · · = αn−r = 0. Consequently, α0p = 0, and therefore α0 = 0
(because p ̸= 0 ), so that Smax is an independent set. By Exercise 4.4.18, it
must also be maximal because it contains n− r + 1 vectors.

4.4.20. The proof depends on the observation that if B = PT AP, where P is a per-
mutation matrix, then the graph G(B) is the same as G(A) except that the
nodes in G(B) have been renumbered according to the permutation defining
P. This follows because PT = P−1 implies A = PBPT , so if the rows (and
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columns) in P are the unit vectors that appear according to the permutation

π =
(

1 2 · · · n
π1 π2 · · · πn

)
, then

aij =
[
PBPT

]
ij

=

⎡

⎢⎣

⎛

⎜⎝

eT
π1

...
eT

πn

⎞

⎟⎠B ( eπ1 · · · eπn )

⎤

⎥⎦

ij

= eT
πi

Beπj = bπiπj .

Consequently, aij ̸= 0 if and only if bπiπj ̸= 0, and thus G(A) and G(B)
are the same except for the fact that node Nk in G(A) is node Nπk in G(B)
for each k = 1, 2, . . . , n. Now we can prove G(A) is not strongly connected
⇐⇒ A is reducible. If A is reducible, then there is a permutation matrix such

that PT AP = B =
(

X Y
0 Z

)
, where X is r × r and Z is n− r × n− r.

The zero pattern in B indicates that the nodes {N1, N2, . . . , Nr} in G(B) are
inaccessible from nodes {Nr+1, Nr+2, . . . , Nn} , and hence G(B) is not strongly
connected—e.g., there is no sequence of edges leading from Nr+1 to N1. Since
G(B) is the same as G(A) except that the nodes have different numbers, we
may conclude that G(A) is also not strongly connected. Conversely, if G(A)
is not strongly connected, then there are two nodes in G(A) such that one
is inaccessible from the other by any sequence of directed edges. Relabel the
nodes in G(A) so that this pair is N1 and Nn, where N1 is inaccessible
from Nn. If there are additional nodes—excluding Nn itself—which are also
inaccessible from Nn, label them N2, N3, . . . , Nr so that the set of all nodes that
are inaccessible from Nn —with the possible exception of Nn itself—is Nn =
{N1, N2, . . . , Nr} (inaccessible nodes). Label the remaining nodes—which are
all accessible from Nn —as Nn = {Nr+1, Nr+2, . . . , Nn−1} (accessible nodes).
It follows that no node in Nn can be accessible from any node in Nn, for
otherwise nodes in Nn would be accessible from Nn through nodes in Nn.

In other words, if Nr+k ∈ Nn and Nr+k → Ni ∈ Nn, then Nn → Nr+k →

Ni, which is impossible. This means that if π =
(

1 2 · · · n
π1 π2 · · · πn

)
is the

permutation generated by the relabeling process, then aπiπj = 0 for each i =
r+1, r+2, . . . , n−1 and j = 1, 2, . . . , r. Therefore, if B = PT AP, where P is
the permutation matrix corresponding to the permutation π, then bij = aπiπj ,

so PT AP = B =
(

X Y
0 Z

)
, where X is r × r and Z is n− r × n− r, and

thus A is reducible.

Solutions for exercises in section 4. 5

4.5.1. rank
(
AT A

)
= rank (A) = rank

(
AAT

)
= 2

4.5.2. dimN (A) ∩R (B) = rank (B)− rank (AB) = 2− 1 = 1.


