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4.5 MORE ABOUT RANK

Since equivalent matrices have the same rank, it follows that if P and Q are
nonsingular matrices such that the product PAQ is defined, then

rank (A) = rank (PAQ) = rank (PA) = rank (AQ).

In other words, rank is invariant under multiplication by a nonsingular matrix.
However, multiplication by rectangular or singular matrices can alter the rank,
and the following formula shows exactly how much alteration occurs.

Rank of a Product
If A is m × n and B is n × p, then

rank (AB) = rank (B) − dimN (A) ∩ R (B). (4.5.1)

Proof. Start with a basis S = {x1,x2, . . . ,xs} for N (A) ∩ R (B), and no-
tice N (A) ∩ R (B) ⊆ R (B). If dimR (B) = s + t, then, as discussed in
Example 4.4.5, there exists an extension set Sext = {z1, z2, . . . , zt} such that
B = {x1, . . . ,xs, z1, . . . , zt} is a basis for R (B). The goal is to prove that
dimR (AB) = t, and this is done by showing T = {Az1,Az2, . . . ,Azt} is a
basis for R (AB). T spans R (AB) because if b ∈ R (AB), then b = ABy
for some y, but By ∈ R (B) implies By =

∑s
i=1 ξixi +

∑t
i=1 ηizi, so

b = A

(

s
∑

i=1

ξixi +
t
∑

i=1

ηizi

)

=
s
∑

i=1

ξiAxi +
t
∑

i=1

ηiAzi =
t
∑

i=1

ηiAzi.

T is linearly independent because if 0 =
∑t

i=1 αiAzi = A
∑t

i=1 αizi, then
∑t

i=1 αizi ∈ N (A) ∩ R (B), so there are scalars βj such that

t
∑

i=1

αizi =
s
∑

j=1

βjxj or, equivalently,
t
∑

i=1

αizi −
s
∑

j=1

βjxj = 0,

and hence the only solution for the αi ’s and βi ’s is the trivial solution because
B is an independent set. Thus T is a basis for R (AB), so t = dimR (AB) =
rank (AB), and hence

rank (B) = dimR (B) = s + t = dimN (A) ∩ R (B) + rank (AB).

It’s sometimes necessary to determine an explicit basis for N (A) ∩ R (B).
In particular, such a basis is needed to construct the Jordan chains that are
associated with the Jordan form that is discussed on pp. 582 and 594. The
following example outlines a procedure for finding such a basis.
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Basis for an Intersection
If A is m × n and B is n × p, then a basis for N (A) ∩ R (B) can
be constructed by the following procedure.

◃ Find a basis {x1,x2, . . . ,xr} for R (B).

◃ Set Xn×r =
(

x1 |x2 | · · · |xr

)

.

◃ Find a basis {v1,v2, . . . ,vs} for N (AX).

◃ B = {Xv1,Xv2, . . . ,Xvs} is a basis for N (A) ∩ R (B).

Proof. The strategy is to argue that B is a maximal linear independent sub-
set of N (A) ∩ R (B). Since each Xvj belongs to R (X) = R (B), and since
AXvj = 0, it’s clear that B ⊂ N (A) ∩ R (B). Let Vr×s =

(

v1 |v2 | · · · |vs

)

,
and notice that V and X each have full column rank. Consequently, N (X) = 0
so, by (4.5.1),

rank (XV)n×s = rank (V) − dimN (X) ∩ R (V) = rank (V) = s,

which insures that B is linearly independent. B is a maximal independent
subset of N (A) ∩ R (B) because (4.5.1) also guarantees that

s = dimN (AX) = dimN (X) + dimN (A) ∩ R (X) (see Exercise 4.5.10)
= dimN (A) ∩ R (B).

The utility of (4.5.1) is mitigated by the fact that although rank (A) and
rank (B) are frequently known or can be estimated, the term dimN (A)∩R (B)
can be costly to obtain. In such cases (4.5.1) still provides us with useful upper
and lower bounds for rank (AB) that depend only on rank (A) and rank (B).

Bounds on the Rank of a Product
If A is m × n and B is n × p, then

• rank (AB) ≤ min {rank (A), rank (B)} , (4.5.2)

• rank (A) + rank (B) − n ≤ rank (AB). (4.5.3)
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Proof. In words, (4.5.2) says that the rank of a product cannot exceed the rank
of either factor. To prove rank (AB) ≤ rank (B), use (4.5.1) and write

rank (AB) = rank (B) − dimN (A) ∩ R (B) ≤ rank (B).

This says that the rank of a product cannot exceed the rank of the right-hand
factor. To show that rank (AB) ≤ rank (A), remember that transposition does
not alter rank, and use the reverse order law for transposes together with the
previous statement to write

rank (AB) = rank (AB)T = rank
(

BT AT
)

≤ rank
(

AT
)

= rank (A).

To prove (4.5.3), notice that N (A)∩R (B) ⊆ N (A), and recall from (4.4.5) that
if M and N are spaces such that M ⊆ N , then dimM ≤ dimN . Therefore,

dimN (A) ∩ R (B) ≤ dimN (A) = n − rank (A),

and the lower bound on rank (AB) is obtained from (4.5.1) by writing

rank (AB) = rank (B) − dimN (A) ∩ R (B) ≥ rank (B) + rank (A) − n.

The products AT A and AAT and their complex counterparts A∗A and
AA∗ deserve special attention because they naturally appear in a wide variety
of applications.

Products ATA and AAT

For A ∈ ℜm×n, the following statements are true.

• rank
(

AT A
)

= rank (A) = rank
(

AAT
)

. (4.5.4)

• R
(

AT A
)

= R
(

AT
)

and R
(

AAT
)

= R (A). (4.5.5)

• N
(

AT A
)

= N (A) and N
(

AAT
)

= N
(

AT
)

. (4.5.6)

For A ∈ Cm×n, the transpose operation (⋆)T must be replaced by the
conjugate transpose operation (⋆)∗.
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Proof. First observe that N
(

AT
)

∩ R (A) = {0} because

x ∈ N
(

AT
)

∩ R (A) =⇒ AT x = 0 and x = Ay for some y

=⇒ xT x = yT AT x = 0 =⇒
∑

x2
i = 0

=⇒ x = 0.

Formula (4.5.1) for the rank of a product now guarantees that

rank
(

AT A
)

= rank (A) − dimN
(

AT
)

∩ R (A) = rank (A),

which is half of (4.5.4)—the other half is obtained by reversing the roles of A
and AT . To prove (4.5.5) and (4.5.6), use the facts R (AB) ⊆ R (A) and
N (B) ⊆ N (AB) (see Exercise 4.2.12) to write R

(

AT A
)

⊆ R
(

AT
)

and
N (A) ⊆ N

(

AT A
)

. The first half of (4.5.5) and (4.5.6) now follows because

dimR
(

AT A
)

= rank
(

AT A
)

= rank (A) = rank
(

AT
)

= dimR
(

AT
)

,

dimN (A) = n − rank (A) = n − rank
(

AT A
)

= dimN
(

AT A
)

.

Reverse the roles of A and AT to get the second half of (4.5.5) and (4.5.6).

To see why (4.5.4)—(4.5.6) might be important, consider an m × n system
of equations Ax = b that may or may not be consistent. Multiplying on the
left-hand side by AT produces the n × n system

AT Ax = AT b

called the associated system of normal equations, which has some ex-
tremely interesting properties. First, notice that the normal equations are always
consistent, regardless of whether or not the original system is consistent because
(4.5.5) guarantees that AT b ∈ R

(

AT
)

= R
(

AT A
)

(i.e., the right-hand side is
in the range of the coefficient matrix), so (4.2.3) insures consistency. However, if
Ax = b happens to be consistent, then Ax = b and AT Ax = AT b have the
same solution set because if p is a particular solution of the original system,
then Ap = b implies AT Ap = AT b (i.e., p is also a particular solution of
the normal equations), so the general solution of Ax = b is S = p + N (A),
and the general solution of AT Ax = AT b is

p + N
(

AT A
)

= p + N (A) = S.

Furthermore, if Ax = b is consistent and has a unique solution, then the same
is true for AT Ax = AT b, and the unique solution common to both systems is

x =
(

AT A
)−1

AT b. (4.5.7)
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This follows because a unique solution (to either system) exists if and only if
0 = N (A) = N

(

AT A
)

, and this insures (AT A)n×n must be nonsingular (by
(4.2.11)), so (4.5.7) is the unique solution to both systems. Caution! When
A is not square, A−1 does not exist, and the reverse order law for inversion
doesn’t apply to

(

AT A
)−1

, so (4.5.7) cannot be further simplified.
There is one outstanding question—what do the solutions of the normal

equations AT Ax = AT b represent when the original system Ax = b is not
consistent? The answer, which is of fundamental importance, will have to wait
until §4.6, but let’s summarize what has been said so far.

Normal Equations
• For an m × n system Ax = b, the associated system of normal

equations is defined to be the n × n system AT Ax = AT b.

• AT Ax = AT b is always consistent, even when Ax = b is not
consistent.

• When Ax = b is consistent, its solution set agrees with that of
AT Ax = AT b. As discussed in §4.6, the normal equations provide
least squares solutions to Ax = b when Ax = b is inconsistent.

• AT Ax = AT b has a unique solution if and only if rank (A) = n,

in which case the unique solution is x =
(

AT A
)−1AT b.

• When Ax = b is consistent and has a unique solution, then the
same is true for AT Ax = AT b, and the unique solution to both
systems is given by x =

(

AT A
)−1AT b.

Example 4.5.1
Caution! Use of the product AT A or the normal equations is not recom-
mended for numerical computation. Any sensitivity to small perturbations that
is present in the underlying matrix A is magnified by forming the product
AT A. In other words, if Ax = b is somewhat ill-conditioned, then the asso-
ciated system of normal equations AT Ax = AT b will be ill-conditioned to an
even greater extent, and the theoretical properties surrounding AT A and the
normal equations may be lost in practical applications. For example, consider
the nonsingular system Ax = b, where

A =
(

3 6
1 2.01

)

and b =
(

9
3.01

)

.

If Gaussian elimination with 3-digit floating-point arithmetic is used to solve
Ax = b, then the 3-digit solution is (1, 1), and this agrees with the exact
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solution. However if 3-digit arithmetic is used to form the associated system of
normal equations, the result is

(

10 20
20 40

)(

x1

x2

)

=
(

30
60.1

)

.

The 3-digit representation of AT A is singular, and the associated system of
normal equations is inconsistent. For these reasons, the normal equations are
often avoided in numerical computations. Nevertheless, the normal equations
are an important theoretical idea that leads to practical tools of fundamental
importance such as the method of least squares developed in §4.6 and §5.13.

Because the concept of rank is at the heart of our subject, it’s important to
understand rank from a variety of different viewpoints. The statement below is
one more way to think about rank. 29

Rank and the Largest Nonsingular Submatrix
The rank of a matrix Am×n is precisely the order of a maximal square
nonsingular submatrix of A. In other words, to say rank (A) = r
means that there is at least one r × r nonsingular submatrix in A,
and there are no nonsingular submatrices of larger order.

Proof. First demonstrate that there exists an r × r nonsingular submatrix in
A, and then show there can be no nonsingular submatrix of larger order. Begin
with the fact that there must be a maximal linearly independent set of r rows
in A as well as a maximal independent set of r columns, and prove that the
submatrix Mr×r lying on the intersection of these r rows and r columns is
nonsingular. The r independent rows can be permuted to the top, and the
remaining rows can be annihilated using row operations, so

A row∼
(

Ur×n

0

)

.

Now permute the r independent columns containing M to the left-hand side,
and use column operations to annihilate the remaining columns to conclude that

A row∼
(

Ur×n

0

)

col∼
(

Mr×r N
0 0

)

col∼
(

Mr×r 0
0 0

)

.

29
This is the last characterization of rank presented in this text, but historically this was the
essence of the first definition (p. 44) of rank given by Georg Frobenius (p. 662) in 1879.



216 Chapter 4 Vector Spaces

Rank isn’t changed by row or column operations, so r = rank (A) = rank (M),
and thus M is nonsingular. Now suppose that W is any other nonsingu-
lar submatrix of A, and let P and Q be permutation matrices such that
PAQ =

(

W X
Y Z

)

. If

E =
(

I 0
−YW−1 I

)

, F =
(

I −W−1X
0 I

)

, and S = Z − YW−1X,

then

EPAQF =
(

W 0
0 S

)

=⇒ A ∼
(

W 0
0 S

)

, (4.5.8)

and hence r = rank (A) = rank (W) + rank (S) ≥ rank (W) (recall Example
3.9.3). This guarantees that no nonsingular submatrix of A can have order
greater than r = rank (A).

Example 4.5.2

Problem: Determine the rank of A =
(

1 2 1
2 4 1
3 6 1

)

.

Solution: rank (A) = 2 because there is at least one 2 × 2 nonsingular sub-
matrix (e.g., there is one lying on the intersection of rows 1 and 2 with columns
2 and 3), and there is no larger nonsingular submatrix (the entire matrix is sin-
gular). Notice that not all 2 × 2 matrices are nonsingular (e.g., consider the one
lying on the intersection of rows 1 and 2 with columns 1 and 2).

Earlier in this section we saw that it is impossible to increase the rank by
means of matrix multiplication—i.e., (4.5.2) says rank (AE) ≤ rank (A). In
a certain sense there is a dual statement for matrix addition that says that it
is impossible to decrease the rank by means of a “small” matrix addition—i.e.,
rank (A + E) ≥ rank (A) whenever E has entries of small magnitude.

Small Perturbations Can’t Reduce Rank
If A and E are m × n matrices such that E has entries of sufficiently
small magnitude, then

rank (A + E) ≥ rank (A). (4.5.9)

The term “sufficiently small” is further clarified in Exercise 5.12.4.
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Proof. Suppose rank (A) = r, and let P and Q be nonsingular matrices
that reduce A to rank normal form—i.e., PAQ =

(

Ir 0
0 0

)

. If P and Q are

applied to E to form PEQ =
(

E11 E12
E21 E22

)

, where E11 is r × r, then

P(A + E)Q =
(

Ir + E11 E12

E21 E22

)

. (4.5.10)

If the magnitude of the entries in E are small enough to insure that Ek
11 → 0

as k → ∞, then the discussion of the Neumann series on p. 126 insures that
I + E11 is nonsingular. (Exercise 4.5.14 gives another condition on the size of
E11 to insure this.) This allows the right-hand side of (4.5.10) to be further
reduced by writing
(

I 0
−E21(I + E11)−1 I

)(

I + E11 E12

E21 E22

)(

I −(I + E11)−1E12

0 I

)

=
(

I − E11 0
0 S

)

,

where S = E22 − E21 (I + E11)
−1 E12. In other words,

A + E ∼
(

I − E11 0
0 S

)

,

and therefore

rank (A + E) = rank (Ir + E11) + rank (S) (recall Example 3.9.3)
= rank (A) + rank (S)
≥ rank (A).

(4.5.11)

Example 4.5.3
A Pitfall in Solving Singular Systems. Solving Ax = b with floating-
point arithmetic produces the exact solution of a perturbed system whose coeffi-
cient matrix is A+E. If A is nonsingular, and if we are using a stable algorithm
(an algorithm that insures that the entries in E have small magnitudes), then
(4.5.9) guarantees that we are finding the exact solution to a nearby system that
is also nonsingular. On the other hand, if A is singular, then perturbations of
even the slightest magnitude can increase the rank, thereby producing a system
with fewer free variables than the original system theoretically demands, so even
a stable algorithm can result in a significant loss of information. But what are
the chances that this will actually occur in practice? To answer this, recall from
(4.5.11) that

rank (A + E) = rank (A) + rank (S), where S = E22 −E21 (I + E11)
−1 E12.
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If the rank is not to jump, then the perturbation E must be such that S = 0,
which is equivalent to saying E22 = E21 (I + E11)

−1 E12. Clearly, this requires
the existence of a very specific (and quite special) relationship among the entries
of E, and a random perturbation will almost never produce such a relation-
ship. Although rounding errors cannot be considered to be truly random, they
are random enough so as to make the possibility that S = 0 very unlikely.
Consequently, when A is singular, the small perturbation E due to roundoff
makes the possibility that rank (A + E) > rank (A) very likely. The moral is
to avoid floating-point solutions of singular systems. Singular problems can often
be distilled down to a nonsingular core or to nonsingular pieces, and these are
the components you should be dealing with.

Since no more significant characterizations of rank will be given, it is ap-
propriate to conclude this section with a summary of all of the different ways we
have developed to say “rank.”

Summary of Rank
For A ∈ ℜm×n, each of the following statements is true.
• rank (A) = The number of nonzero rows in any row echelon form

that is row equivalent to A.

• rank (A) = The number of pivots obtained in reducing A to a row
echelon form with row operations.

• rank (A) = The number of basic columns in A (as well as the num-
ber of basic columns in any matrix that is row equivalent
to A ).

• rank (A) = The number of independent columns in A —i.e., the size
of a maximal independent set of columns from A.

• rank (A) = The number of independent rows in A —i.e., the size of
a maximal independent set of rows from A.

• rank (A) = dimR (A).
• rank (A) = dimR

(

AT
)

.

• rank (A) = n − dimN (A).
• rank (A) = m − dimN

(

AT
)

.

• rank (A) = The size of the largest nonsingular submatrix in A.

For A ∈ Cm×n, replace (⋆)T with (⋆)∗.
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Exercises for section 4.5

4.5.1. Verify that rank
(

AT A
)

= rank (A) = rank
(

AAT
)

for

A =

⎛

⎝

1 3 1 −4
−1 −3 1 0

2 6 2 −8

⎞

⎠ .

4.5.2. Determine dim N (A) ∩ R (B) for

A =

⎛

⎝

−2 1 1
−4 2 2

0 0 0

⎞

⎠ and B =

⎛

⎝

1 3 1 −4
−1 −3 1 0

2 6 2 −8

⎞

⎠ .

4.5.3. For the matrices given in Exercise 4.5.2, use the procedure described
on p. 211 to determine a basis for N (A) ∩ R (B).

4.5.4. If A1A2 · · ·Ak is a product of square matrices such that some Ai is
singular, explain why the entire product must be singular.

4.5.5. For A ∈ ℜm×n, explain why AT A = 0 implies A = 0.

4.5.6. Find rank (A) and all nonsingular submatrices of maximal order in

A =

⎛

⎝

2 −1 1
4 −2 1
8 −4 1

⎞

⎠ .

4.5.7. Is it possible that rank (AB) < rank (A) and rank (AB) < rank (B)
for the same pair of matrices?

4.5.8. Is rank (AB) = rank (BA) when both products are defined? Why?

4.5.9. Explain why rank (AB) = rank (A) − dimN
(

BT
)

∩ R
(

AT
)

.

4.5.10. Explain why dimN (Am×nBn×p) = dimN (B) + dimR (B) ∩ N (A).
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4.5.11. Sylvester’s law of nullity, given by James J. Sylvester in 1884, states
that for square matrices A and B,

max {ν(A), ν(B)} ≤ ν(AB) ≤ ν(A) + ν(B),

where ν(⋆) = dimN (⋆) denotes the nullity.
(a) Establish the validity of Sylvester’s law.
(b) Show Sylvester’s law is not valid for rectangular matrices be-

cause ν(A) > ν(AB) is possible. Is ν(B) > ν(AB) possible?

4.5.12. For matrices Am×n and Bn×p, prove each of the following statements:

(a) rank (AB) = rank (A) and R (AB) = R (A) if rank (B) = n.
(b) rank (AB) = rank (B) and N (AB) = N (B) if rank (A) = n.

4.5.13. Perform the following calculations using the matrices:

A =

⎛

⎝

1 2
2 4
1 2.01

⎞

⎠ and b =

⎛

⎝

1
2
1.01

⎞

⎠ .

(a) Find rank (A), and solve Ax = b using exact arithmetic.
(b) Find rank

(

AT A
)

, and solve AT Ax=AT b exactly.
(c) Find rank (A), and solve Ax = b with 3-digit arithmetic.
(d) Find AT A, AT b, and the solution of AT Ax = AT b with

3-digit arithmetic.

4.5.14. Prove that if the entries of Fr×r satisfy
∑r

j=1 |fij | < 1 for each i (i.e.,
each absolute row sum < 1), then I + F is nonsingular. Hint: Use the
triangle inequality for scalars |α+β| ≤ |α|+|β| to show N (I + F) = 0.

4.5.15. If A =
(

W X
Y Z

)

, where rank (A) = r = rank (Wr×r), show that
there are matrices B and C such that

A =
(

W WC
BW BWC

)

=
(

I
B

)

W
(

I | C
)

.

4.5.16. For a convergent sequence {Ak}∞k=1 of matrices, let A = limk→∞ Ak.
(a) Prove that if each Ak is singular, then A is singular.
(b) If each Ak is nonsingular, must A be nonsingular? Why?
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4.5.17. The Frobenius Inequality. Establish the validity of Frobenius’s 1911
result that states that if ABC exists, then

rank (AB) + rank (BC) ≤ rank (B) + rank (ABC).

Hint: If M = R (BC)∩N (A) and N = R (B)∩N (A), then M ⊆ N .

4.5.18. If A is n × n, prove that the following statements are equivalent:
(a) N (A) = N

(

A2
)

.
(b) R (A) = R

(

A2
)

.
(c) R (A) ∩ N (A) = {0}.

4.5.19. Let A and B be n × n matrices such that A = A2, B = B2, and
AB = BA = 0.

(a) Prove that rank (A + B) = rank (A) + rank (B). Hint: Con-
sider

(

A
B

)

(A + B)(A | B).
(b) Prove that rank (A) + rank (I − A) = n.

4.5.20. Moore–Penrose Inverse. For A ∈ ℜm×n such that rank (A) = r,
let A = BC be the full rank factorization of A in which Bm×r is the
matrix of basic columns from A and Cr×n is the matrix of nonzero
rows from EA (see Exercise 3.9.8). The matrix defined by

A† = CT
(

BT ACT
)−1

BT

is called the Moore–Penrose
30

inverse of A. Some authors refer to
A† as the pseudoinverse or the generalized inverse of A. A more elegant
treatment is given on p. 423, but it’s worthwhile to introduce the idea
here so that it can be used and viewed from different perspectives.

(a) Explain why the matrix BT ACT is nonsingular.
(b) Verify that x = A†b solves the normal equations AT Ax = AT b (as

well as Ax = b when it is consistent).
(c) Show that the general solution for AT Ax = AT b (as well as Ax = b

when it is consistent) can be described as

x = A†b +
(

I − A†A
)

h,

30
This is in honor of Eliakim H. Moore (1862–1932) and Roger Penrose (a famous contemporary
English mathematical physicist). Each formulated a concept of generalized matrix inversion—
Moore’s work was published in 1922, and Penrose’s work appeared in 1955. E. H. Moore is
considered by many to be America’s first great mathematician.
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where h is a “free variable” vector in ℜn×1.
Hint: Verify AA†A = A, and then show R

(

I − A†A
)

= N (A).
(d) If rank (A) = n, explain why A† =

(

AT A
)−1AT .

(e) If A is square and nonsingular, explain why A† = A−1.

(f) Verify that A† = CT
(

BT ACT
)−1 BT satisfies the Penrose equations:

AA†A = A,
(

AA†)T = AA†,

A†AA† = A†,
(

A†A
)T = A†A.

Penrose originally defined A† to be the unique solution to these four
equations.
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columns) in P are the unit vectors that appear according to the permutation

π =
(

1 2 · · · n
π1 π2 · · · πn

)
, then

aij =
[
PBPT

]
ij

=

⎡

⎢⎣

⎛

⎜⎝

eT
π1

...
eT

πn

⎞

⎟⎠B ( eπ1 · · · eπn )

⎤

⎥⎦

ij

= eT
πi

Beπj = bπiπj .

Consequently, aij ̸= 0 if and only if bπiπj ̸= 0, and thus G(A) and G(B)
are the same except for the fact that node Nk in G(A) is node Nπk in G(B)
for each k = 1, 2, . . . , n. Now we can prove G(A) is not strongly connected
⇐⇒ A is reducible. If A is reducible, then there is a permutation matrix such

that PT AP = B =
(

X Y
0 Z

)
, where X is r×r and Z is n−r×n−r.

The zero pattern in B indicates that the nodes {N1, N2, . . . , Nr} in G(B) are
inaccessible from nodes {Nr+1, Nr+2, . . . , Nn} , and hence G(B) is not strongly
connected—e.g., there is no sequence of edges leading from Nr+1 to N1. Since
G(B) is the same as G(A) except that the nodes have different numbers, we
may conclude that G(A) is also not strongly connected. Conversely, if G(A)
is not strongly connected, then there are two nodes in G(A) such that one
is inaccessible from the other by any sequence of directed edges. Relabel the
nodes in G(A) so that this pair is N1 and Nn, where N1 is inaccessible
from Nn. If there are additional nodes—excluding Nn itself—which are also
inaccessible from Nn, label them N2, N3, . . . , Nr so that the set of all nodes that
are inaccessible from Nn —with the possible exception of Nn itself—is Nn =
{N1, N2, . . . , Nr} (inaccessible nodes). Label the remaining nodes—which are
all accessible from Nn —as Nn = {Nr+1, Nr+2, . . . , Nn−1} (accessible nodes).
It follows that no node in Nn can be accessible from any node in Nn, for
otherwise nodes in Nn would be accessible from Nn through nodes in Nn.

In other words, if Nr+k ∈ Nn and Nr+k → Ni ∈ Nn, then Nn → Nr+k →

Ni, which is impossible. This means that if π =
(

1 2 · · · n
π1 π2 · · · πn

)
is the

permutation generated by the relabeling process, then aπiπj = 0 for each i =
r+1, r+2, . . . , n−1 and j = 1, 2, . . . , r. Therefore, if B = PT AP, where P is
the permutation matrix corresponding to the permutation π, then bij = aπiπj ,

so PT AP = B =
(

X Y
0 Z

)
, where X is r×r and Z is n−r×n−r, and

thus A is reducible.

Solutions for exercises in section 4. 5

4.5.1. rank
(
AT A

)
= rank (A) = rank

(
AAT

)
= 2

4.5.2. dimN (A) ∩R (B) = rank (B)−rank (AB) = 2−1 = 1.
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4.5.3. Gaussian elimination yields X =

(
1 1

−1 1
2 2

)
, V =

(
1
1

)
, and XV =

(
2
0
4

)
.

4.5.4. Statement (4.5.2) says that the rank of a product cannot exceed the rank of any
factor.

4.5.5. rank (A) = rank
(
AT A

)
= 0 =⇒ A = 0.

4.5.6. rank (A) = 2, and there are six 2×2 nonsingular submatrices in A.

4.5.7. Yes. A =
(

1 1
1 1

)
and B =

(
1 1
−1 −1

)
is one of many examples.

4.5.8. No—it is not difficult to construct a counterexample using two singular matrices.
If either matrix is nonsingular, then the statement is true.

4.5.9. Transposition does not alter rank, so (4.5.1) says

rank (AB) = rank(AB)T = rank
(
BT AT

)

= rank
(
AT
)
−dimN

(
BT
)
∩R

(
AT
)

= rank (A)−dimN
(
BT
)
∩R

(
AT
)
.

4.5.10. This follows immediately from (4.5.1) because dimN (AB) = p−rank (AB)
and dimN (B) = p−rank (B).

4.5.11. (a) First notice that N (B) ⊆ N (AB) (Exercise 4.2.12) for all conformable A
and B, so, by (4.4.5), dimN (B) ≤ dimN (AB), or ν(B) ≤ ν(AB), is always
true—this also answers the second half of part (b). If A and B are both n×n,
then the rank-plus-nullity theorem together with (4.5.2) produces

ν(A) = dimN (A) = n−rank (A) ≤ n−rank (AB) = dimN (AB) = ν(AB),

so, together with the first observation, we have max {ν(A), ν(B)} ≤ ν(AB).
The rank-plus-nullity theorem applied to (4.5.3) yields ν(AB) ≤ ν(A) + ν(B).
(b) To see that ν(A) > ν(AB) is possible for rectangular matrices, consider

A = ( 1 1 ) and B =
(

1
1

)
.

4.5.12. (a) rank (Bn×p) = n =⇒ R (B) = ℜn =⇒ N (A)∩R (B) = N (A) =⇒

rank (AB) = rank (B)−dimN (A) ∩R (B) = n−dimN (A)
= n−(n−rank (A)) = rank (A)

It’s always true that R (AB) ⊆ R (A). When dimR (AB) = dimR (A) (i.e.,
when rank (AB) = rank (A) ), (4.4.6) implies R (AB) = R (A).
(b) rank (Am×n) = n =⇒ N (A) = {0} =⇒ N (A) ∩R (B) = {0} =⇒

rank (AB) = rank (B)−dimN (A) ∩R (B) = rank (B)

Assuming the product exists, it is always the case that N (B) ⊆ N (AB). Use
rank (B) = rank (AB) =⇒ p−rank (B) = p−rank (AB) =⇒ dimN (B) =
dimN (AB) together with (4.4.6) to conclude that N (B) = N (AB).
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4.5.13. (a) rank (A) = 2, and the unique exact solution is (−1, 1).
(b) Same as part (a).
(c) The 3-digit rank is 2, and the unique 3-digit solution is (−1, 1).

(d) The 3-digit normal equations
(

6 12
12 24

)(
x1

x2

)
=
(

6.01
12

)
have infinitely

many 3-digit solutions.
4.5.14. Use an indirect argument. Suppose x ∈ N (I + F) in which xi ̸= 0 is a compo-

nent of maximal magnitude. Use the triangle inequality together with x =−Fx
to conclude

|xi| =
∣∣∣

r∑

j=1

fijxj

∣∣∣ ≤
r∑

j=1

|fijxj | =
r∑

j=1

|fij | |xj | ≤
( r∑

j=1

|fij |
)
|xi| < |xi|,

which is impossible. Therefore, N (I + F) = 0, and hence I+F is nonsingular.
4.5.15. Follow the approach used in (4.5.8) to write

A ∼
(

W 0
0 S

)
, where S = Z−YW−1X.

rank (A) = rank (W) =⇒ rank (S) = 0 =⇒ S = 0, so Z = YW−1X.
The desired conclusion now follows by taking B = YW−1 and C = W−1X.

4.5.16. (a) Suppose that A is nonsingular, and let Ek = Ak−A so that lim
k→∞

Ek = 0.

This together with (4.5.9) implies there exists a sufficiently large value of k such
that

rank (Ak) = rank (A + Ek) ≥ rank (A) = n,

which is impossible because each Ak is singular. Therefore, the supposition that
A is nonsingular must be false.
(b) No!—consider

[
1
k

]
1×1
→ [0].

4.5.17. M ⊆ N because R (BC) ⊆ R (B), and therefore dimM ≤ dimN . For-
mula (4.5.1) guarantees dimM = rank (BC) −rank (ABC) and dimN =
rank (B)−rank (AB), so the desired conclusion now follows.

4.5.18. N (A) ⊆ N
(
A2
)

and R
(
A2
)
⊆ R (A) always hold, so (4.4.6) insures

N (A) = N
(
A2
)
⇐⇒ dimN (A) = dimN

(
A2
)

⇐⇒ n−rank (A) = n−rank
(
A2
)

⇐⇒ rank (A) = rank
(
A2
)

⇐⇒ R (A) = R
(
A2
)
.

Formula (4.5.1) says rank
(
A2
)

= rank (A)−dimR (A) ∩N (A), so
R
(
A2
)

= R (A)⇐⇒ rank
(
A2
)

= rank (A)⇐⇒ dimR (A) ∩N (A) = 0.
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4.5.19. (a) Since
(

A
B

)
(A + B)(A | B) =

(
A
B

)
(A | B) =

(
A 0
0 B

)
,

the result of Example 3.9.3 together with (4.5.2) insures

rank (A) + rank (B) ≤ rank (A + B).

Couple this with the fact that rank (A + B) ≤ rank (A) + rank (B) (see Ex-
ample 4.4.8) to conclude rank (A + B) = rank (A) + rank (B).
(b) Verify that if B = I−A, then B2 = B and AB = BA = 0, and apply
the result of part (a).

4.5.20. (a) BT ACT = BT BCCT . The products BT B and CCT are each nonsin-
gular because they are r×r with

rank
(
BT B

)
= rank (B) = r and rank

(
CCT

)
= rank (C) = r.

(b) Notice that A† = CT
(
BT BCCT

)−1BT = CT
(
CCT

)−1(BT B
)−1BT , so

AT AA†b = CT BT BCCT
(
CCT

)−1(
BT B

)−1
BT b = CT BT b = AT b.

If Ax = b is consistent, then its solution set agrees with the solution set for the
normal equations.
(c) AA†A = BCCT

(
CCT

)−1(BT B
)−1BT BC = BC = A. Now,

x ∈ R
(
I−A†A

)
=⇒ x =

(
I−A†A

)
y for some y

=⇒ Ax =
(
A−AA†A

)
y = 0 =⇒ x ∈ N (A).

Conversely,

x ∈ N (A) =⇒ Ax = 0 =⇒ x =
(
I−A†A

)
x =⇒ x ∈ R

(
I−A†A

)
,

so R
(
I−A†A

)
= N (A). As h ranges over all of ℜn×1, the expression(

I−A†A
)
h generates R

(
I−A†A

)
= N (A). Since A†b is a particular solu-

tion of AT Ax = AT b, the general solution is

x = A†b + N (A) = A†b +
(
I−A†A

)
h.

(d) If r = n, then B = A and C = In.
(e) If A is nonsingular, then so is AT , and

A† =
(
AT A

)−1
AT = A−1

(
AT
)−1

AT = A−1.

(f) Follow along the same line as indicated in the solution to part (c) for the
case AA†A = A.


