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4.6 CLASSICAL LEAST SQUARES

The following problem arises in almost all areas where mathematics is applied.
At discrete points ti (often points in time), observations bi of some phenomenon
are made, and the results are recorded as a set of ordered pairs

D = {(t1, b1), (t2, b2), . . . , (tm, bm)} .

On the basis of these observations, the problem is to make estimations or predic-
tions at points (times) t̂ that are between or beyond the observation points ti.
A standard approach is to find the equation of a curve y = f(t) that closely fits
the points in D so that the phenomenon can be estimated at any nonobservation
point t̂ with the value ŷ = f(t̂).

Let’s begin by fitting a straight line to the points in D. Once this is under-
stood, it will be relatively easy to see how to fit the data with curved lines.
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Figure 4.6.1

The strategy is to determine the coefficients α and β in the equation of the
line f(t) = α + βt that best fits the points (ti, bi) in the sense that the sum
of the squares of the vertical 31 errors ε1, ε2, . . . , εm indicated in Figure 4.6.1 is

31
We consider only vertical errors because there is a tacit assumption that only the observations
bi are subject to error or variation. The ti ’s are assumed to be errorless constants—think of
them as being exact points in time (as they often are). If the ti ’s are also subject to variation,
then horizontal as well as vertical errors have to be considered in Figure 4.6.1, and a more
complicated theory known as total least squares (not considered in this text) emerges. The
least squares line L obtained by minimizing only vertical deviations will not be the closest
line to points in D in terms of perpendicular distance, but L is the best line for the purpose
of linear estimation—see §5.14 (p. 446).
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minimal. The distance from (ti, bi) to a line f(t) = α + βt is
εi = |f(ti) − bi| = |α + βti − bi|,

so that the objective is to find values for α and β such that
m
∑

i=1

ε2
i =

m
∑

i=1

(α + βti − bi)
2 is minimal.

Minimization techniques from calculus tell us that the minimum value must
occur at a solution to the two equations

0 =
∂
(

∑m
i=1 (α + βti − bi)

2
)

∂α
= 2

m
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Rearranging terms produces two equations in the two unknowns α and β
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(4.6.1)
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we see that the two equations (4.6.1) have the matrix form AT Ax = AT b.
In other words, (4.6.1) is the system of normal equations associated with the
system Ax = b (see p. 213). The ti ’s are assumed to be distinct numbers,
so rank (A) = 2, and (4.5.7) insures that the normal equations have a unique
solution given by
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Finally, notice that the total sum of squares of the errors is given by
m
∑

i=1

ε2
i =

m
∑

i=1

(α + βti − bi)
2 = (Ax − b)T (Ax − b).



4.6 Classical Least Squares 225

Example 4.6.1
Problem: A small company has been in business for four years and has recorded
annual sales (in tens of thousands of dollars) as follows.

Year 1 2 3 4

Sales 23 27 30 34

When this data is plotted as shown in Figure 4.6.2, we see that although the
points do not exactly lie on a straight line, there nevertheless appears to be a
linear trend. Predict the sales for any future year if this trend continues.
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Figure 4.6.2

Solution: Determine the line f(t) = α + βt that best fits the data in the sense
of least squares. If

A =
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then the previous discussion guarantees that x is the solution of the normal
equations AT Ax = AT b. That is,

(
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α
β

)

=
(

114
303

)

.

The solution is easily found to be α = 19.5 and β = 3.6, so we predict that the
sales in year t will be f(t) = 19.5 + 3.6t. For example, the estimated sales for
year five is $375,000. To get a feel for how close the least squares line comes to
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passing through the data points, let ε = Ax − b, and compute the sum of the
squares of the errors to be

m
∑

i=1

ε2
i = εT ε = (Ax − b)T (Ax − b) = .2.

General Least Squares Problem
For A ∈ ℜm×n and b ∈ ℜm, let ε = ε(x) = Ax − b. The general
least squares problem is to find a vector x that minimizes the quantity

m
∑

i=1

ε2
i = εT ε = (Ax − b)T (Ax − b).

Any vector that provides a minimum value for this expression is called
a least squares solution.

• The set of all least squares solutions is precisely the set of solutions
to the system of normal equations AT Ax = AT b.

• There is a unique least squares solution if and only if rank (A) = n,

in which case it is given by x =
(

AT A
)−1AT b.

• If Ax = b is consistent, then the solution set for Ax = b is the
same as the set of least squares solutions.

Proof.32 First prove that if x minimizes εT ε, then x must satisfy the normal
equations. Begin by using xT AT b = bT Ax (scalars are symmetric) to write

m
∑

i=1

ε2
i = εT ε = (Ax − b)T (Ax − b) = xT AT Ax − 2xT AT b + bT b. (4.6.2)

To determine vectors x that minimize the expression (4.6.2), we will again use
minimization techniques from calculus and differentiate the function

f(x1, x2, . . . , xn) = xT AT Ax − 2xT AT b + bT b (4.6.3)

with respect to each xi. Differentiating matrix functions is similar to differ-
entiating scalar functions (see Exercise 3.5.9) in the sense that if U = [uij ],
then
[

∂U
∂x

]

ij

=
∂uij

∂x
,

∂[U + V]
∂x

=
∂U
∂x

+
∂V
∂x

, and
∂[UV]

∂x
=

∂U
∂x

V + U
∂V
∂x

.

32
A more modern development not relying on calculus is given in §5.13 on p. 437, but the more
traditional approach is given here because it’s worthwhile to view least squares from both
perspectives.
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Applying these rules to the function in (4.6.3) produces

∂f

∂xi
=

∂xT

∂xi
AT Ax + xT AT A

∂x
∂xi

− 2
∂xT

∂xi
AT b.

Since ∂x/∂xi = ei (the ith unit vector), we have

∂f

∂xi
= eT

i AT Ax + xT AT Aei − 2eT
i AT b = 2eT

i AT Ax − 2eT
i AT b.

Using eT
i AT =

(

AT
)

i∗ and setting ∂f/∂xi = 0 produces the n equations
(

AT
)

i∗Ax =
(

AT
)

i∗b for i = 1, 2, . . . , n,

which can be written as the single matrix equation AT Ax = AT b. Calculus
guarantees that the minimum value of f occurs at some solution of this system.
But this is not enough—we want to know that every solution of AT Ax = AT b
is a least squares solution. So we must show that the function f in (4.6.3) attains
its minimum value at each solution to AT Ax = AT b. Observe that if z is a
solution to the normal equations, then f(z) = bT b − zT AT b. For any other
y ∈ ℜn×1, let u = y − z, so y = z + u, and observe that

f(y) = f(z) + vT v, where v = Au.

Since vT v =
∑

i v
2
i ≥ 0, it follows that f(z) ≤ f(y) for all y ∈ ℜn×1, and

thus f attains its minimum value at each solution of the normal equations. The
remaining statements in the theorem follow from the properties established on
p. 213.

The classical least squares problem discussed at the beginning of this sec-
tion and illustrated in Example 4.6.1 is part of a broader topic known as linear
regression, which is the study of situations where attempts are made to express
one variable y as a linear combination of other variables t1, t2, . . . , tn. In prac-
tice, hypothesizing that y is linearly related to t1, t2, . . . , tn means that one
assumes the existence of a set of constants {α0, α1, . . . , αn} (called parameters)
such that

y = α0 + α1t1 + α2t2 + · · · + αntn + ε,

where ε is a “random function” whose values “average out” to zero in some
sense. Practical problems almost always involve more variables than we wish to
consider, but it is frequently fair to assume that the effect of variables of lesser
significance will indeed “average out” to zero. The random function ε accounts
for this assumption. In other words, a linear hypothesis is the supposition that
the expected (or mean) value of y at each point where the phenomenon can be
observed is given by a linear equation

E(y) = α0 + α1t1 + α2t2 + · · · + αntn.
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To help seat these ideas, consider the problem of predicting the amount of
weight that a pint of ice cream loses when it is stored at very low temperatures.
There are many factors that may contribute to weight loss—e.g., storage tem-
perature, storage time, humidity, atmospheric pressure, butterfat content, the
amount of corn syrup, the amounts of various gums (guar gum, carob bean gum,
locust bean gum, cellulose gum), and the never-ending list of other additives and
preservatives. It is reasonable to believe that storage time and temperature are
the primary factors, so to predict weight loss we will make a linear hypothesis of
the form

y = α0 + α1t1 + α2t2 + ε,

where y = weight loss (grams), t1 = storage time (weeks), t2 = storage tem-
perature ( oF ), and ε is a random function to account for all other factors. The
assumption is that all other factors “average out” to zero, so the expected (or
mean) weight loss at each point (t1, t2) is

E(y) = α0 + α1t1 + α2t2. (4.6.4)

Suppose that we conduct an experiment in which values for weight loss are
measured for various values of storage time and temperature as shown below.

Time (weeks) 1 1 1 2 2 2 3 3 3

Temp (oF ) −10 −5 0 −10 −5 0 −10 −5 0

Loss (grams) .15 .18 .20 .17 .19 .22 .20 .23 .25
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and if we were lucky enough to exactly observe the mean weight loss each time
(i.e., if bi = E(yi) ), then equation (4.6.4) would insure that Ax = b is a
consistent system, so we could solve for the unknown parameters α0, α1, and
α2. However, it is virtually impossible to observe the exact value of the mean
weight loss for a given storage time and temperature, and almost certainly the
system defined by Ax = b will be inconsistent—especially when the number
of observations greatly exceeds the number of parameters. Since we can’t solve
Ax = b to find exact values for the αi ’s, the best we can hope for is a set of
“good estimates” for these parameters.
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The famous Gauss–Markov theorem (developed on p. 448) states that under
certain reasonable assumptions concerning the random error function ε, the
“best” estimates for the αi ’s are obtained by minimizing the sum of squares
(Ax − b)T (Ax− b). In other words, the least squares estimates are the “best”
way to estimate the αi ’s.

Returning to our ice cream example, it can be verified that b /∈ R (A), so, as
expected, the system Ax = b is not consistent, and we cannot determine exact
values for α0, α1, and α2. The best we can do is to determine least squares esti-
mates for the αi ’s by solving the associated normal equations AT Ax = AT b,
which in this example are

⎛
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−45 −90 375
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⎠
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⎠ .

The solution is
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α2

⎞
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⎛
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.025

.005

⎞

⎠ ,

and the estimating equation for mean weight loss becomes

ŷ = .174 + .025t1 + .005t2.

For example, the mean weight loss of a pint of ice cream that is stored for nine
weeks at a temperature of −35oF is estimated to be

ŷ = .174 + .025(9) + .005(−35) = .224 grams.

Example 4.6.2
Least Squares Curve Fitting Problem: Find a polynomial

p(t) = α0 + α1t + α2t
2 + · · · + αn−1t

n−1

with a specified degree that comes as close as possible in the sense of least squares
to passing through a set of data points

D = {(t1, b1), (t2, b2), . . . , (tm, bm)} ,

where the ti ’s are distinct numbers, and n ≤ m.
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Figure 4.6.3

Solution: For the εi ’s indicated in Figure 4.6.3, the objective is to minimize
the sum of squares
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2 = (Ax − b)T (Ax − b),

where

A =

⎛

⎜

⎜

⎝

1 t1 t21 · · · tn−1
1

1 t2 t22 · · · tn−1
2

...
...

... · · ·
...

1 tm t2m · · · tn−1
m

⎞

⎟

⎟

⎠

, x =

⎛

⎜

⎜

⎝

α0

α1
...

αn−1

⎞

⎟

⎟

⎠

, and b =

⎛

⎜

⎜

⎝

b1

b2
...

bm

⎞

⎟

⎟

⎠

.

In other words, the least squares polynomial of degree n−1 is obtained from the
least squares solution associated with the system Ax = b. Furthermore, this
least squares polynomial is unique because Am×n is the Vandermonde matrix
of Example 4.3.4 with n ≤ m, so rank (A) = n, and Ax = b has a unique
least squares solution given by x =

(

AT A
)−1AT b.

Note: We know from Example 4.3.5 on p. 186 that the Lagrange interpolation
polynomial ℓ(t) of degree m−1 will exactly fit the data—i.e., it passes through
each point in D. So why would one want to settle for a least squares fit when
an exact fit is possible? One answer stems from the fact that in practical work
the observations bi are rarely exact due to small errors arising from imprecise
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measurements or from simplifying assumptions. For this reason, it is the trend
of the observations that needs to be fitted and not the observations themselves.
To hit the data points, the interpolation polynomial ℓ(t) is usually forced to
oscillate between or beyond the data points, and as m becomes larger the oscil-
lations can become more pronounced. Consequently, ℓ(t) is generally not useful
in making estimations concerning the trend of the observations—Example 4.6.3
drives this point home. In addition to exactly hitting a prescribed set of data
points, an interpolation polynomial called the Hermite polynomial (p. 607) can
be constructed to have specified derivatives at each data point. While this helps,
it still is not as good as least squares for making estimations on the basis of
observations.

Example 4.6.3
A missile is fired from enemy territory, and its position in flight is observed by
radar tracking devices at the following positions.

Position down range (miles) 0 250 500 750 1000

Height (miles) 0 8 15 19 20

Suppose our intelligence sources indicate that enemy missiles are programmed
to follow a parabolic flight path—a fact that seems to be consistent with the
diagram obtained by plotting the observations on the coordinate system shown
in Figure 4.6.4.
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Figure 4.6.4

Problem: Predict how far down range the missile will land.
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Solution: Determine the parabola f(t) = α0 + α1t + α2t2 that best fits the
observed data in the least squares sense. Then estimate where the missile will
land by determining the roots of f (i.e., determine where the parabola crosses
the horizontal axis). As it stands, the problem will involve numbers having rela-
tively large magnitudes in conjunction with relatively small ones. Consequently,
it is better to first scale the data by considering one unit to be 1000 miles. If

A =
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⎜
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,

and if ε = Ax − b, then the object is to find a least squares solution x that
minimizes

5
∑

i=1

ε2
i = εT ε = (Ax − b)T (Ax − b).

We know that such a least squares solution is given by the solution to the system
of normal equations AT Ax = AT b, which in this case is

⎛

⎝

5 2.5 1.875
2.5 1.875 1.5625
1.875 1.5625 1.3828125

⎞

⎠
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⎝
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⎠ =

⎛
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.0349375
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⎠ .

The solution (rounded to four significant digits) is

x =

⎛

⎝

−2.286 × 10−4

3.983 × 10−2

−1.943 × 10−2

⎞

⎠ ,

and the least squares parabola is

f(t) = −.0002286 + .03983t − .01943t2.

To estimate where the missile will land, determine where this parabola crosses
the horizontal axis by applying the quadratic formula to find the roots of f(t)
to be t = .005755 and t = 2.044. Therefore, we estimate that the missile will
land 2044 miles down range. The sum of the squares of the errors associated with
the least squares solution is

5
∑

i=1

ε2
i = εT ε = (Ax − b)T (Ax − b) = 4.571 × 10−7.
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Least Squares vs. Lagrange Interpolation. Instead of using least squares,
fit the observations exactly with the fourth-degree Lagrange interpolation poly-
nomial

ℓ(t) =
11
375

t +
17

750000
t2 − 1

18750000
t3 +

1
46875000000

t4

described in Example 4.3.5 on p. 186 (you can verify that ℓ(ti) = bi for each
observation). As the graph in Figure 4.6.5 indicates, ℓ(t) has only one real
nonnegative root, so it is worthless for predicting where the missile will land.
This is characteristic of Lagrange interpolation.

y = ℓ(t)

Figure 4.6.5

Computational Note: Theoretically, the least squares solutions of Ax = b
are exactly the solutions of the normal equations AT Ax = AT b, but form-
ing and solving the normal equations to compute least squares solutions with
floating-point arithmetic is not recommended. As pointed out in Example 4.5.1
on p. 214, any sensitivities to small perturbations that are present in the under-
lying problem are magnified by forming the normal equations. In other words, if
the underlying problem is somewhat ill-conditioned, then the system of normal
equations will be ill-conditioned to an even greater extent. Numerically stable
techniques that avoid the normal equations are presented in Example 5.5.3 on
p. 313 and Example 5.7.3 on p. 346.

Epilogue

While viewing a region in the Taurus constellation on January 1, 1801, Giuseppe
Piazzi, an astronomer and director of the Palermo observatory, observed a small
“star” that he had never seen before. As Piazzi and others continued to watch
this new “star”—which was really an asteroid—they noticed that it was in fact
moving, and they concluded that a new “planet” had been discovered. However,
their new “planet” completely disappeared in the autumn of 1801. Well-known
astronomers of the time joined the search to relocate the lost “planet,” but all
efforts were in vain.
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In September of 1801 Carl F. Gauss decided to take up the challenge of
finding this lost “planet.” Gauss allowed for the possibility of an elliptical or-
bit rather than constraining it to be circular—which was an assumption of the
others—and he proceeded to develop the method of least squares. By December
the task was completed, and Gauss informed the scientific community not only
where the lost “planet” was located, but he also predicted its position at fu-
ture times. They looked, and it was exactly where Gauss had predicted it would
be! The asteroid was named Ceres, and Gauss’s contribution was recognized by
naming another minor asteroid Gaussia.

This extraordinary feat of locating a tiny and distant heavenly body from
apparently insufficient data astounded the scientific community. Furthermore,
Gauss refused to reveal his methods, and there were those who even accused
him of sorcery. These events led directly to Gauss’s fame throughout the entire
European community, and they helped to establish his reputation as a mathe-
matical and scientific genius of the highest order.

Gauss waited until 1809, when he published his Theoria Motus Corporum
Coelestium In Sectionibus Conicis Solem Ambientium, to systematically develop
the theory of least squares and his methods of orbit calculation. This was in
keeping with Gauss’s philosophy to publish nothing but well-polished work of
lasting significance. When criticized for not revealing more motivational aspects
in his writings, Gauss remarked that architects of great cathedrals do not obscure
the beauty of their work by leaving the scaffolds in place after the construction
has been completed. Gauss’s theory of least squares approximation has indeed
proven to be a great mathematical cathedral of lasting beauty and significance.

Exercises for section 4.6

4.6.1. Hooke’s law says that the displacement y of an ideal spring is propor-
tional to the force x that is applied—i.e., y = kx for some constant k.
Consider a spring in which k is unknown. Various masses are attached,
and the resulting displacements shown in Figure 4.6.6 are observed. Us-
ing these observations, determine the least squares estimate for k.

x (lb) y (in)

5 11.1
7 15.4
8 17.5
10 22.0
12 26.3

x

y

Figure 4.6.6
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4.6.2. Show that the slope of the line that passes through the origin in ℜ2 and
comes closest in the least squares sense to passing through the points
{(x1, y1), (x2, y2), . . . , (xn, yn)} is given by m =

∑

i xiyi/
∑

i x2
i .

4.6.3. A small company has been in business for three years and has recorded
annual profits (in thousands of dollars) as follows.

Year 1 2 3

Sales 7 4 3

Assuming that there is a linear trend in the declining profits, predict the
year and the month in which the company begins to lose money.

4.6.4. An economist hypothesizes that the change (in dollars) in the price of a
loaf of bread is primarily a linear combination of the change in the price
of a bushel of wheat and the change in the minimum wage. That is, if B
is the change in bread prices, W is the change in wheat prices, and M
is the change in the minimum wage, then B = αW +βM. Suppose that
for three consecutive years the change in bread prices, wheat prices, and
the minimum wage are as shown below.

Year 1 Year 2 Year 3

B +$1 +$1 +$1

W +$1 +$2 0$

M +$1 0$ −$1

Use the theory of least squares to estimate the change in the price of
bread in Year 4 if wheat prices and the minimum wage each fall by $1.

4.6.5. Suppose that a researcher hypothesizes that the weight loss of a pint of
ice cream during storage is primarily a linear function of time. That is,

y = α0 + α1t + ε,

where y = the weight loss in grams, t = the storage time in weeks, and
ε is a random error function whose mean value is 0. Suppose that an
experiment is conducted, and the following data is obtained.

Time (t) 1 2 3 4 5 6 7 8

Loss (y) .15 .21 .30 .41 .49 .59 .72 .83

(a) Determine the least squares estimates for the parameters α0

and α1.
(b) Predict the mean weight loss for a pint of ice cream that is stored

for 20 weeks.
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4.6.6. After studying a certain type of cancer, a researcher hypothesizes that
in the short run the number (y) of malignant cells in a particular tissue
grows exponentially with time (t). That is, y = α0eα1t. Determine least
squares estimates for the parameters α0 and α1 from the researcher’s
observed data given below.

t (days) 1 2 3 4 5

y (cells) 16 27 45 74 122

Hint: What common transformation converts an exponential function
into a linear function?

4.6.7. Using least squares techniques, fit the following data

x −5 −4 −3 −2 −1 0 1 2 3 4 5

y 2 7 9 12 13 14 14 13 10 8 4

with a line y = α0 + α1x and then fit the data with a quadratic y =
α0 +α1x+α2x2. Determine which of these two curves best fits the data
by computing the sum of the squares of the errors in each case.

4.6.8. Consider the time (T ) it takes for a runner to complete a marathon (26
miles and 385 yards). Many factors such as height, weight, age, previous
training, etc. can influence an athlete’s performance, but experience has
shown that the following three factors are particularly important:

x1 = Ponderal index =
height (in.)

[weight (lbs.)]
1
3
,

x2 = Miles run the previous 8 weeks,
x3 = Age (years).

A linear model hypothesizes that the time T (in minutes) is given by
T = α0 + α1x1 + α2x2 + α3x3 + ε, where ε is a random function
accounting for all other factors and whose mean value is assumed to
be zero. On the basis of the five observations given below, estimate the
expected marathon time for a 43-year-old runner of height 74 in., weight
180 lbs., who has run 450 miles during the previous eight weeks.

T x1 x2 x3

181 13.1 619 23
193 13.5 803 42
212 13.8 207 31
221 13.1 409 38
248 12.5 482 45

What is your personal predicted mean marathon time?
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4.6.9. For A ∈ ℜm×n and b ∈ ℜm, prove that x2 is a least squares solution
for Ax = b if and only if x2 is part of a solution to the larger system

( Im×m A

AT 0n×n

)(x1

x2

)

=
(b

0

)

. (4.6.5)

Note: It is not uncommon to encounter least squares problems in which
A is extremely large but very sparse (mostly zero entries). For these
situations, the system (4.6.5) will usually contain significantly fewer
nonzero entries than the system of normal equations, thereby helping to
overcome the memory requirements that plague these problems. Using
(4.6.5) also eliminates the undesirable need to explicitly form the prod-
uct AT A —recall from Example 4.5.1 that forming AT A can cause
loss of significant information.

4.6.10. In many least squares applications, the underlying data matrix Am×n

does not have independent columns—i.e., rank (A) < n —so the corre-
sponding system of normal equations AT Ax = AT b will fail to have
a unique solution. This means that in an associated linear estimation
problem of the form

y = α1t1 + α2t2 + · · · + αntn + ε

there will be infinitely many least squares estimates for the parameters
αi, and hence there will be infinitely many estimates for the mean value
of y at any given point (t1, t2, . . . , tn) —which is clearly an undesirable
situation. In order to remedy this problem, we restrict ourselves to mak-
ing estimates only at those points (t1, t2, . . . , tn) that are in the row
space of A. If

t =

⎛

⎜

⎜

⎝

t1
t2
...
tn

⎞

⎟

⎟

⎠

∈ R
(

AT
)

, and if x =

⎛

⎜

⎜

⎝

α̂1

α̂2
...

α̂n

⎞

⎟

⎟

⎠

is any least squares solution (i.e., AT Ax = AT b ), prove that the esti-
mate defined by

ŷ = tT x =
n
∑

i=1

tiα̂i

is unique in the sense that ŷ is independent of which least squares
solution x is used.
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Solutions for exercises in section 4. 6

4.6.1. A =

⎛

⎜⎜⎜⎝

5
7
8

10
12

⎞

⎟⎟⎟⎠
and b =

⎛

⎜⎜⎜⎝

11.1
15.4
17.5
22.0
26.3

⎞

⎟⎟⎟⎠
, so AT A = 382 and AT b = 838.9. Thus the

least squares estimate for k is 838.9/382 = 2.196.
4.6.2. This is essentially the same problem as Exercise 4.6.1. Because it must pass

through the origin, the equation of the least squares line is y = mx, and hence

A =

⎛

⎜⎜⎝

x1

x2
...

xn

⎞

⎟⎟⎠ and b =

⎛

⎜⎜⎝

y1

y2
...

yn

⎞

⎟⎟⎠ , so AT A =
∑

i x2
i and AT b =

∑
i xiyi.

4.6.3. Look for the line p = α + βt that comes closest to the data in the least squares
sense. That is, find the least squares solution for the system Ax = b, where

A =

⎛

⎝
1 1
1 2
1 3

⎞

⎠ , x =
(

α
β

)
, and b =

⎛

⎝
7
4
3

⎞

⎠ .

Set up normal equations AT Ax = AT b to get
(

3 6
6 14

)(
α
β

)
=
(

14
24

)
=⇒

(
α
β

)
=
(

26/3
−2

)
=⇒ p = (26/3)−2t.

Setting p = 0 gives t = 13/3. In other words, we expect the company to begin
losing money on May 1 of year five.

4.6.4. The associated linear system Ax = b is

Year 1: α + β = 1
Year 2: 2α = 1
Year 3: −β = 1

or

⎛

⎝
1 1
2 0
0 −1

⎞

⎠
(

α
β

)
=

⎛

⎝
1
1
1

⎞

⎠ .

The least squares solution to this inconsistent system is obtained from the system

of normal equations AT Ax = AT b that is
(

5 1
1 2

)(
α
β

)
=
(

3
0

)
. The unique

solution is
(

α
β

)
=
(

2/3
−1/3

)
, so the least squares estimate for the increase in

bread prices is

B =
2
3
W −1

3
M.

When W =−1 and M =−1, we estimate that B =−1/3.
4.6.5. (a) α0 = .02 and α1 = .0983. (b) 1.986 grams.
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4.6.6. Use ln y = lnα0 + α1t to obtain the least squares estimates α0 = 9.73 and
α1 = .507.

4.6.7. The least squares line is y = 9.64 + .182x and for εi = 9.64 + .182xi−yi, the
sum of the squares of these errors is

∑
i ε2

i = 162.9. The least squares quadratic
is y = 13.97+ .1818x−.4336x2, and the corresponding sum of squares of the
errors is

∑
ε2

i = 1.622. Therefore, we conclude that the quadratic provides a
much better fit.

4.6.8. 230.7min. (α0 = 492.04, α1 =−23.435, α2 =−.076134, α3 = 1.8624)
4.6.9. x2 is a least squares solution =⇒ AT Ax2 = AT b =⇒ 0 = AT (b−Ax2).

If we set x1 = b−Ax2, then

( Im×m A

AT 0n×n

)(x1

x2

)
=
( Im×m A

AT 0n×n

)(b−Ax2

x2

)
=
(b

0

)
.

The converse is true because
( Im×m A

AT 0n×n

)(x1

x2

)
=
(b

0

)
=⇒ Ax2 = b−x1 and AT x1 = 0

=⇒ AT Ax2 = AT b−AT x1 = AT b.

4.6.10. t ∈ R
(
AT
)

= R
(
AT A

)
=⇒ tT = zT AT A for some z. For each x satisfying

AT Ax = AT b, write

ŷ = tT x = zT AT Ax = zT AT b,

and notice that zT AT b is independent of x.

Solutions for exercises in section 4. 7

4.7.1. (b) and (f)
4.7.2. (a), (c), and (d)
4.7.3. Use any x to write T(0) = T(x−x) = T(x)−T(x) = 0.
4.7.4. (a)
4.7.5. (a) No (b) Yes
4.7.6. T(u1) = (2, 2) = 2u1 + 0u2 and T(u2) = (3, 6) = 0u1 + 3u2 so that [T]B =(

2 0
0 3

)
.

4.7.7. (a) [T]SS′ =

⎛

⎝
1 3
0 0
2 −4

⎞

⎠ (b) [T]SS′′ =

⎛

⎝
2 −4
0 0
1 3

⎞

⎠

4.7.8. [T]B =

⎛

⎝
1 −3/2 1/2
−1 1/2 1/2

0 1/2 −1/2

⎞

⎠ and [v]B =

⎛

⎝
1
1
0

⎞

⎠ .


